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Abstract
The recognition of human activities has become a dominant emerging research problem
and widely covered application areas in surveillance, wellness management, healthcare,
and many more. In real life, the activity recognition is a challenging issue because human
beings are often performing the activities not only simple but also complex and hetero-
geneous in nature. Most of the existing approaches are addressing the problem of
recognizing only simple straightforward activities (e.g. walking, running, standing, sit-
ting, etc.). Recognizing the complex and heterogeneous human activities are a challeng-
ing research problem whereas only a limited number of existing works are addressing this
issue. In this paper, we proposed a novel Deep-HAR model by ensembling the
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) for
recognizing the simple, complex, and heterogeneous type activities. Here, the CNNs are
used for extracting the features whereas RNNs are used for finding the useful patterns in
time-series sequential data. The activities recognition performance of the proposed model
was evaluated using three different publicly available datasets, namely WISDM,
PAMAP2, and KU-HAR. Through extensive experiments, we have demonstrated that
the proposed model performs well in recognizing all types of activities and has achieved
an accuracy of 99.98%, 99.64%, and 99.98% for simple, complex, and heterogeneous
activities respectively.
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1 Introduction

Due to the advancements in wireless sensor technology, Human Activity Recognition
(HAR) has been an emerging research area in recent years. Typical HAR application
domains include activities analysis in the smart home [23], surveillance [44], wellness
management [41], elders caring [40], gesture recognition [25], abnormal activities detection
[7], healthcare [45], body temperature and indoor condition monitoring in quarantine due to
COVID-19 [18], physical exercise recognition in the gym [9, 21], patients caring [10], and
more. Currently, the research trends are varied among sensors, images, and video-based data
for recognizing the activities of human beings. The sensor-based technique, however, has
attracted the interest of researchers due to its low cost, ease of implementation, location
independence, and non-harmful free radiation. The accelerometer and gyroscope sensors are
widely utilized in digital devices such as smartphones and smartwatches for activity
recognition [32]. Sensor data acquisition, segmentation, feature extraction, model training
and validation, and classification are the five phases in which activity recognition tasks are
typically accomplished, as illustrated in Fig. 1.

The first phase of the HAR system is to continuously acquire the sensor data while the
subjects (e.g. humans) perform the activities using embedded sensors. Here, we need to apply
data preprocessing for removing anomalies and outliers. The second phase is segmentation,
responsible for slicing the time-series raw sensor data into equal sizes of window length. The
third phase is feature extraction, extracting relevant useful features based on the time,
frequency, and time-frequency domains. However, the segmentation and feature extraction
needs to be done carefully because the classification performance is directly influenced by
segment length and the quality of the features extracted from the sensor data. In the model
training and validation phase, a suitable model (either machine or deep learning) is trained and
validated by optimizing the parameters as per the application’s needs. Finally, the classification
phase recognizes the activity class labels on the input streaming of sensor data. Both machine
learningand deep learning models have been widely used for HAR applications. Recently, the
deep learning techniques gained momentum and outperform the traditional machine learning
techniques which require essential sensor data preprocessing, lack of unique procedures for
feature extraction, and domain knowledge experts.

In real life, human beings are not only performing simple activities (one after another activity)
but also performs complex (a set of sequential temporal sub-activities), and heterogeneous
activities (collection activity classes that differ from each other in terms of their associated

Fig. 1 Classical block diagram of HAR
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actions). The problem of recognizing just simple activities (e.g. walking, running, standing,
sitting, etc.) has been addressed in the majority of existing approaches. Recognizing complex and
heterogeneous activities, on the other hand, is a difficult research challenge that necessitates very
sophisticated and competent models. The problem of recognizing complex and heterogeneous
activities does not receive much attention among the researchers and only a few existing works
are addressing these activities [26]. Moreover, creating models with the capability of recognizing
more complex and heterogeneous activities can further widen the application scope of the HAR.

In addition, there is a lack of research work that provides globally accepted solutions for the
recognition of the simple, complex, and heterogeneous activities. This attracted our interest
and motivated us to do this research work. In this study, we proposed a novel ensemble deep
learning model for identifying simple, complex, and heterogeneous activities by recasting the
HAR issue as a time-series based pattern classification challenge. To improve the performance,
the ensemble learning technique combines various individual models. Deep ensemble learning
models with multilayer processing architecture outperform shallow or traditional classification
models in terms of recognition rates by combining the advantages of deep learning with
ensemble learning [11]. The deep ensemble models have covered various range of application
areas such as face recognition [29], cancer prediction [51], detection of COVID-19 on CT
images [54], bioinformatics [3], sustainable business management [14, 36], edge computing
[19], and more. The proposed novel approach is named as Deep-HAR model which is an
ensemble deep learning model using Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) [27, 30]. This ensemble model have been used for two different
purposes i.e. the convolutional layers are the fundamental building block of the CNNs, used
for mining the effective features from raw dataset whereas recurrent layers in RNNs for
activities classification whose embedded memory cell remembers the previous time series
activities. As different types of activities (simple, complex, and heterogeneous) differ in their
characteristics, classification models need to be tuned specifically for better recognition of each
activity category. The deep ensemble model is the ideal choice for recognizing different
activity types and the proposed model combines the beneficial features of CNNs (feature
extraction) and RNNs (classification). In summary, we highlight the major research contribu-
tions addressed in this paper as follows.

1. We proposed a novel Deep-HAR model following the concept of the two-step recognition
process. In the first step, the proposed model learns and extracts the efficient features from
raw sensory data using current and temporal activity dependencies, accomplished through
convolutional layers. The recurrent layers with the association of memory cells performst
the activity recognition task in the second step.

2. The convolutional layers in CNNs can directly learn and extract the efficient spatial-
temporal features from raw sensor data which need not require manual feature extraction
and the feature engineering.

3. The proposed model needs a little bit of preprocessing of the experimental datasets, which
makes undoubtedly accepted and suitable for the deployment of real-time activities
recognition system.

4. The detailed comparative study on the recognition performance of our proposed model
with recent publications on publicly available datasets are presented. The WISDM,
PAMAP2, and KU-HAR datasets are used for simple, complex, and heterogeneous
activities, respectively and experimentally demonstrated that the proposed model outper-
forms over existing models.
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5. The experimental datasets used are suffering from the class imbalanced problem which
usually affects the performance of classifiers. However, our proposed model has robust-
ness against the class imbalanced problem.

The remaining part of the paper is unfolded as follows. Section 2 details the related literature
review for HAR whereas the problem statement is given in section 3. Section 4 gives an
overview of the description of experimental datasets. The experimental materials and methods
are described in section 5. An in-depth discussion of the proposed Deep-HAR model is
presented in section 6 and section 7 gives information regarding the experimental results and
discussion. Finally, the summary of our research work and conclusions are presented in section
8.

2 Literature review

In recent research, various machine and deep learning techniques are predominantly used to
accomplish the HAR. Earlier, researchers have widely used the classical machine learning
techniques for activities recognition including the Random Forest (RF) [49], Support Vector
Machine(SVM) [43], XG Boost classifier [53], Na ve Bayes [48], and more. The effectiveness
of traditional machine learning classifiers is significantly reliant on manual feature extraction
in most cases. Domain expertise limits this, as it is time-consuming and resource-intensive. To
address these issues, the researchers have started to prefer deep learning techniques. Recent
advancements in sensor-based HAR have revealed that deep learning algorithms, rather than
relying on time-consuming manual feature learning on raw data, have produced remarkable
performance on difficult activity detection problems with minimal feature engineering [46]. To
combat manual feature engineering, the most common deep learning algorithms have been
applied includes CNN [2, 35, 50], RNN [20], Generative Adversarial Networks (GAN) [34],
LSTM [4], and their variant forms. Our objective behind this work is to propose a model to
detect the user’s activities ranging from simple to heterogeneous types. We have used three
different publicly available datasets, WISDM, PAMAP2, and KU-HAR, as a representation of
simple, complex, and heterogeneous activities, respectively. More details on these datasets are
given in the subsequent section.

The recent works for HAR on theWISDM dataset include the Unsupervised Deep Learning
Assisted Reconstructed Coder (UDR-RC) [22], 1D-CNN [13], Att-based Residual Network
[12], lightweight RNN-LSTM [1], andAdaptive Feature Fusion Network (AFFNet) [47]. These
models achieved the accuracy rate of 97.50%, 94.20%, 98.85%, 95.78%, and 94.60%, respec-
tively. For the PAMAP2 dataset, the researchers have recently used the One-shot learning
methods [24], Deep Learning Architecture for Physical Activity Recognition (DELAPAR)
[15], Att-based Residual Network [12], Residual Network and Heterogeneous CNN (ResNet+
HC) [17], and float CNN [5] with an accuracy rate of 84.41%, 96.62%, 93.16%, 92.97%, and
85.23%, respectively. The KU-HAR dataset was used by the RF classifier [33] and the
transformer model [8], with accuracy rates of 90.00% and 99.20%, respectively.

Recognizing complex and heterogeneous activities have not gained much attention unlike
recognizing simple straightforward activities. In [42], the authors have proposed the hybrid
method, a combination of bi-directional Long-Short TermMemory (BiLSTM) and Skip-Chain
Conditional random field (SCCRF) as a BiLSTM-SCCRF approach for recognition of con-
current and interleaved activities using the Kasteren HouseB from Kasteren and Kyoto 3 from
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CASAS benchmark datasets. Their proposed method has achieved an average accuracy rate
of more than 93.00%. The authors in [52], have proposed a novel knowledge-driven
approach for the recognition of concurrent activities (KCAR). This approach has been
applied on a large scale of the real-world dataset and achieved an accuracy rate of
91.00%. In [31], the authors have proposed a shapelet-based approach (i.e. dictionary for
time series patterns) for recognition of complex type activities using the opportunity
experimental dataset. This approach has achieved an average accuracy rate of 96.00%.
The authors in [16], have proposed a novel Emerging Patterns based approach for the
detection of sequential, interleaved, and concurrent Activity Recognition (epSICAR). The
experimental results with a segment length of 15-seconds achieved the accuracy rate of
90.96%, 87.98%, and 78.58% for sequential, interleaved, and complex type activities,
respectively. The authors have conducted experimental studies in their own real smart
home. The description of the recently published works related to our research work is
summarized in Table 1.

Most of the existing works in the literature are competent, have novelty, and are innovative
in model’s architecture and performance but are designed for detection of simple straightfor-
ward activities. Moreover, some research works detect complex activities but lack in terms of
performance and in detecting all types of activities. Some also work utilize external sensors to
gather high-quality data to increase the recognition rates and focus only on single activity
detection. In this regard, we have proposed a novel deep ensemble approach named as Deep-
HAR model which is an ensemble of CNNs and RNNs model with the capability to detect the
simple, complex, and heterogeneous types of activities.

3 Problem statement

The research problem statement for recognizing the simple, complex, and heterogeneous
activities can be formulated using the following equations. Let’s assume that given three
different datasets D = (d1, d2, d3) for simple (S), complex (C), and heterogeneous (H)
activities. Furthermore, the given datasets have split into training (X), validation (Y), and
testing (Z), mentioned using the Eqs. (1), (2), and (3):

Dataset d1ð Þ ¼ Training X d1ð Þ; Validating Yd1ð Þ; Testing Yd1ð Þ½ � ð1Þ

Dataset d2ð Þ ¼ Training X d2ð Þ; Validating Yd2ð Þ; Testing Yd2ð Þ½ � ð2Þ

Dataset d3ð Þ ¼ Training X d3ð Þ; Validating Yd3ð Þ; Testing Yd3ð Þ½ � ð3Þ

In Eqs. (4), (5), and (6), the split datasets Xdn, Ydn, and Zdn consists of (t) number of
observations, where n = dataset number.

X dn ¼ x1; x2; x3;…; xt
� � ð4Þ

Ydn ¼ y1; y2; y3;…; yt
� � ð5Þ

Zdn ¼ z1; z2; z3;…; zt
� � ð6Þ
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The simple activities label (Sm) = {s1, s2, s3, …, sm1}, complex activities label (Cm)
= {c1, c2, c3, …, cm2}, and heterogeneous activities label (Hm) = {h1, h2, h3, …,
hm3} are unique, and the number of total activity labels equals to m1+m2+m3. Now, the
prediction model (M) uses the Xdn, Ydn, and Zdn samples for training, validating, and
testing, respectively.

Training Mð Þ∈ X d1;Xd2;X d3;…;X dnf g ð7Þ

Validating Mð Þ∈ Yd1; Yd2; Yd3;…; Ydnf g ð8Þ

Testing Mð Þ∈ Zd1; Zd2; Zd3;…; Zdnf g ð9Þ

In Eq. 7, the training samples Xdn are used for model training. However, for better perfor-
mance, we need to optimize the parameter values, which called hyperparameter tuning. To
accomplish the hyperparameter tuning task, Eq. 8 helps for validating the model using Ydn.
Finally, the designed model (M) use the testing Zdn samples for assigning each row of
the observation with activity class labels using (Eq. 9).

4 Experimental datasets description

The technical background details of experimental datasets are discussed in this section. For
experiments, we have used the WISDM [28], PAMAP2 [37], and KU-HAR [33] datasets
concerning the simple, complex, and heterogeneous activities, respectively. The summarized
information regarding the experimental datasets has given in Table 2.

For simple-type activities, we have used WISDM as the experimental dataset. Simple
activities are those activities that cannot be divided in to sub-activities. A single smartphone-
based sensor (X, Y, and Z axis) has used to gather the data and mounted in the pocket of front
leg pants. In the experimental context, 36 individuals are participated to perform the six
activities. The annotated six activities in the WISDM dataset, are listed as Standing, Sitting,
Downstairs, Upstairs, Jogging, and Walking. These activities were sampled at 20 Hz on a
triaxial accelerometer sensor.

The complex activities contains a set of sequentially temporal sub-activities. We have
used PAMAP2 as the experimental dataset for complex-type activities. This dataset was
collected using Colibri wireless Inertial Measurement Units (IMU) that contains two
accelerometers, a gyroscope, and a magnetometer sensors, mounted at the Chest, Wrist,
and ankle, respectively. PAMAP2 dataset includes a total of 18 daily living activities. There
was a collection constraint that a total of nine subjects can perform any twelve activities out
of the listed 18 activities. The activities in the PAMAP2 dataset, are listed as Lying, Sitting,
Standing, Walking, Running, Cycling, Nordic Walking, Watching TV, Computer Work,
Car Driving, Ascending Stairs, Descending Stairs, Vacuum Cleaning, Ironing, Folding
Laundry, House Cleaning, Playing Soccer, Rope Jumping, and Other (Transient Activities).
These activities were sampled at 100 Hz.
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For heterogeneous-type activities, we have used KU-HAR as the experimental dataset. The
heterogeneous activities may have common subactivies but still contains unique patterns
among the group of activities in particular dataset. In other words, the activity classes are
different from each other in terms of the associated actions, although some of them are similar,
such as walking forward, backward, and in circles. The process of dataset collection was
accomplished using smartphone-based accelerometer and a gyroscope tri-axial sensors (X, Y,
and Z axis), mounted at the waist. In the experimental context, a total of 90 individuals
participated to perform the prescribed eighteen activities. These activities in the KU-HAR
dataset, are listed as Walk-Circle, Walk-Backward, Table-Tennis, Push-Up, Run, Jump, Stair-
Down, Stair-Up, Walk, Sit-Up, Pick, Lay-Stand, Talk-Sit, Lay, Talk-Stand, Stand, Sit, and
Stand-Sit that have been sampled at 100 Hz. The activity sample distributions over the
experimental datasets are shown in Table 3 and graphically demonstrated in Fig. 2.

Among the experimental datasets, the WISDM has been extremely influenced by
the class imbalanced problem. This indicates that the distribution of data samples is
highly skewed. In the WISDM dataset, the occurrence of sitting and standing activity
classes are too less whereas walking and jogging have the highest number of samples.
However, the remaining activities (upstairs and downstairs) have the average number
of occurrences. The PAMAP2 dataset has also the occurrence of the class imbalanced
problem, like the WISDM dataset. The rope jumping activity has the lowest number
of samples, followed by running, descending stairs, and ascending stairs activity
samples whereas ironing and walking consists of the highest number of activity
samples. However, the cycling, vacuum cleaning, sitting, nordic walking, standing,
and lying have equivalent number of samples in the PAMAP2 dataset. The KU-HAR
dataset also suffers from class imbalance problem. The walk circle activity has the
lowest samples whereas the stand-sit contained the highest number of samples.
However, the remaining sixteen activities have the approximately equivalent number
of samples distribution.

Table 2 Description of experimental datasets

Dataset WISDM [28] PAMAP2 [37] KU-HAR [33]

Sensors (#) 1 3 2
Sensors Accelerometer Colibri wireless Inertial Measurement

Units (IMU)
Accelerometer and Gyroscope

Activities (#) 6 18 18
Activities Standing, Sitting,

Downstairs,
Upstairs, Jogging,
and Walking

Lying, Sitting, Standing, Walking,
Running, Cycling, Nordic
Walking, Watching TV, Computer
Work, Car Driving, Ascending
Stairs, Descending Stairs, Vacuum
Cleaning, Ironing, Folding
Laundry, House Cleaning, Playing
Soccer, Rope Jumping, and Other
(Transient Activities)

Walk-Circle, Walk-Backward,
Table-Tennis, Push-Up, Run,
Jump, Stair-Down, Stair-Up,
Walk, Sit-Up, Pick, Lay-Stand,
Talk-Sit, Lay, Talk-Stand,
Stand, Sit, and Stand-Sit

Placement Front pants leg
pocket

Chest, Wrist, and ankle Waist

Sampling
Rate (Hz)

20 100 100

Years 2010 2012 2021
Subjects 36 9 90
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5 Experimental materials and methods

The goal behind the Deep-HAR is to architect a common model for recognizing the simple,
complex, and heterogeneous activity patterns. The graphical representation of different activity
patterns on a time series scale splited into n – segments (t1, t2, t3, …, tn), is shown in Fig. 3.
The n number of simple activities (Sa1, Sa2, Sa3, …, San) performed in the sequential mode
which means no embedding of sub-activities, are shown in Fig. 3(A). The n number of
complex activities (Ca1, Ca2, Ca3, …, Can) containing the set of temporal activities (Ctemp1,
…, Ctempn), such as washing hands: opening the water tap, using a shop, washing hands, and
closing the water tap, are shown in Fig. 3(B). Figure. 3(C) contains the n number of
heterogeneous activities (Ha1, Ha2, Ha3, …, Han) hold unique properties (Htemp1, …,
Htempn) that make them differ from simple and complex activities. In the heterogeneous

Table 3 Distribution of activity samples with contributed percentage over the experimental datasets

Dataset Activity Name Samples (#) Percentage (%)

WISDM Walking 1,37,375 40.00
Jogging 1,29,392 37.67
Upstairs 35,137 10.23
Downstairs 33,358 09.71
Sitting 4599 01.33
Standing 3555 01.03
Total 3,43,416 100.00

PAMAP2 Rope Jumping 49,360 02.54
Running 98,199 05.05
Descending Stairs 1,04,944 05.40
Ascending Stairs 1,17,216 06.03
Cycling 1,64,600 08.47
Vacuum Cleaning 1,75,353 09.02
Sitting 1,85,188 09.53
Nordic Walking 1,88,107 09.68
Standing 1,89,931 09.77
Lying 1,92,523 09.90
Ironing 2,38,690 12.28
Walking 2,38,761 12.28
Total 19,42,872 100.00

KU-HAR Walk-circle 77,664 01.24
Walk-backwards 94,537 01.51
Table-tennis 1,36,314 02.19
Push-up 1,44,895 02.32
Run 17,8880 02.87
Jump 2,00,300 03.21
Stair-down 2,34,678 03.77
Stair-up 2,40,350 03.86
Walk 2,62,887 04.22
Sit-up 3,02,085 04.85
Pick 4,00,353 06.43
Lay-stand 5,28,414 08.49
Talk-sit 5,32,901 08.56
Lay 5,44,237 08.74
Talk-stand 5,58,800 08.98
Stand 5,64,052 09.06
Sit 5,65,796 09.09
Stand-sit 6,54,696 10.52
Total 62,21,839 100.00
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Fig. 2 Graphical view of activity
samples distribution for (A)
WISDM, (B) PAMAP2, and (C)
KU-HAR dataset
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category, the subject performs the activity by repeatedly switching between two or more
associated activities. For instance, in stand-sit and lay-stand activities, the subject repeatedly
stands and sits and standing up and laying down repeatedly.

5.1 Convolutional Neural Networks (CNNs)

The CNN is a special class of neural networks that process the grid-like data. The commonly
used CNN architectures consist of one dimension, two dimensions, and three dimensions. The
two or three dimensional CNNs are mostly used for handling image and video data processing.
However, the one dimensional CNN has used signal processing or vector data manipulation
[38]. The layered architecture of CNN is built up with convolutional, pooling, and fully
connected layers. The features from the experimental dataset are extracted by the first two
convolutional and pooling layers. Finally, the fully connected layer is used for classification
[39]. The graphical view of simple CNN architecture has shown in Fig. 4. The mathematical
background details of CNN architecture are demonstrated as follows:

5.1.1 Convolutional layers

The convolutional layers are the primary building block of CNN, which extract the most
suitable and efficient features from the raw dataset. The convolutional kernels are scanned
over the complete dimension of raw data, then compute the dot product between input
dimensions and filter values. With this event, CNN quickly learns the effective spatial and
temporal domain features. Equation (10) is used for calculating the outcomes of the
convolutional layer [6].

Ok
i ¼ bki þ ∑

j¼1

Nk−1

Ik−1i ⨂Wk−1
ji ð10Þ

Fig. 3 Graphical view of activity patterns of (A) simple, (B) complex, and (C) heterogeneous activities
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where Ok
i defined as outcomes of convolutional layer, bki is bias of ith neuron at layer K, I

k−1
i

is the output of ith neuron at layer k − 1, Wk−1
ji is the kernel from jth neuron of k − 1 layer to

the ith neuron of k layer.

5.1.2 Pooling layers

After the convolutional layer, we normally use the pooling layer. This layer is used to reduce
the size of the feature map through downsampling. The pooling layer preserves only effective
features and avoids redundant feature sets. The aggregate operations (maximum, average, and
summation) are the most commonly employed pooling layers. Equation (11) is used for
computing the outcomes of the max-pooling layer [6].

Pl n;mð Þ ¼ max j−1ð ÞWþ1≤m σl m; nð Þ
n o

ð11Þ

where Pl (n, m) defines the pooling layer P at lthlayer with dimension n rows and m columns, W
denotes the convolution kernel space, and the activation function denoted by σ finds the
maximum value in (n × m) dimension at lth layer.

5.1.3 Activation functions

The activation function controls whether or not a neuron is activated. The most
commonly utilized activation functions are ReLU (Rectified Linear Unit) and softmax.
The ReLU activation function replaces the negative values with zeros and passes the
non-negative values the same as the inputs. This activation function is followed by
every convolutional layer. The ReLU activation function carries the non-linearity nature
and has no back-propagation error. Equation (12) is used for computing the ReLU
function.

π xð Þ ¼ max 0; xð Þ ð12Þ
where π indicates the ReLU activation functions and (x) is network parameters.

In most neural networks, the softmax activation function is utilized at the classification
layer. This calculates the probability distribution at the classification layer and then maps the

Output Layer

Fully Connected Layer
Convolutional + Pooling 

Layer
Input Layer

Fig. 4 The basic building block of the CNN architecture
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output values to the [0, 1] range, and their total sum of probability values is equal to one.
Equation (13) is used for computing the softmax activation function.

σ xð Þi ¼
exi

∑k
j¼1e

x
j

; j ¼ 1; 2; 3;……; k ð13Þ

where σ indicates the softmax activation function, x is non-normalized parameters, and
indexed value j for output unit for 1, 2, ……. , k.

5.1.4 Fully connected layers

This is a feed-forward neural network in its most basic form. The final convolutional or
pooling layer output is flattened and then given as input to the fully connected layer. The
formula used by the fully connected layer is given in Equation (14) [6].

Ol
output ¼ f xl−1 � wl � bl

� � ð14Þ

where f denotes the activation function, xl − 1 is input from the previous layer, wl is the neural
weight at lth layer, and b bias at lth layer.

5.1.5 Dropout layers

The dropout layers are mostly used for handling the overfitting problem. While training the
neural networks, some neurons are trained in dependency mode and work similarly. This is
beneficial to remove those neurons otherwise will generate overfitting issues. The dropout
layer eliminates certain neurons from the network at random without affecting the classifica-
tion performance.

5.1.6 Regression layers

The regression layer computes the Mean Squared Error (MSE) loss from the predicted to the
actual class response. Equation (15) is used for the regression process [6].

MSE Lrð Þ ¼ 1

N
∑
i¼1

Nl

OL
i −t

p
i

� �2 ð15Þ

where Nl is the number of class labels, ti denotes the target vector, actual output vector is
denoted by Oi, and input vector is denoted by p.

5.2 Recurrent Neural Networks (RNNs)

The RNN is the best neural network for dealing with continuous sequential data and embedded
internal memory cells. This memory helps to carry the past information from layer (l − 1) to
layer (l) for making the process to the layer (l + 1). The recurrence weights (W) in RNNs are
changed using a feedback loop between the output and hidden layers. The recurrent edges exist
connecting the output and hidden layer at t time step. Here, we assume that input x, hidden
layer h, output layer o, target layer y, loss l, softmax activation function, discrete output form,
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and negative log-likelihood loss. The node connected with the recurrent edge gets the value
from the current data point x(t) and values of the previously hidden node h(t − 1) at network

state. The value of output y
z}|{ tð Þ

is calculated at each time step t. Equations (16) and (17)
are used for calculating the forward pass in RNNs at each time [30].

h tð Þ ¼ σ Whxx tð Þ þWhhh t−1ð Þ þ bh
� �

ð16Þ

y
z}|{ tð Þ

¼ softmax Wyh:ht þ by
� � ð17Þ

where, Whx, Whh, and Wyh are denoted as a convolutional weighted matrix between input &
hidden layer, hidden layer & itself, and hidden & output layer at the adjacent time steps,
respectively with bias parameter bhand by. Figure 5 depicts the simple layered architecture of
the recurrent network.

6 Proposed Deep-HAR model

The proposed Deep-HAR model is an ensemble DL method (1D-CNN + RNN) for
recognizing the simple, complex, and heterogeneous activities. The basic idea behind
the Deep-HAR is to encapsulate the beneficial characteristics of DL models into a
single model. For instance, the convolutional layers are powerful to extract the
appropriate features from raw sensor data. However, the CNN model has no concept
of the memory cell and backward propagation. On the other hand, the RNNs are well
suited for handling the time series data sample and memory cell that remembers the
temporal dependencies.

In terms of different architecting layers, the ensemble Deep-HAR model is made up of
many convolutional and recurrent networks. There are three ensembled convolutional (Conv
Model 1, Conv Model 2, and Conv Model 3) and recurrent (Recur Model 1, Recur Model 2,

Fig. 5 Simple recurrent network with one input, hidden, and output layer
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and Recur Model 3) networks, as shown in Fig. 6. The diversity exists in the residency of
architecting layers in ensembled methods. Hence, there are a total of nine combinations of
possibilities (3 Convmodel × 3 Recurmodel) exists before finalizing the ensemble Deep-HAR
model. By analyzing the architectural behavior as a possible combination, we found that the
proposed model should be optimistic and lightweight. While ensembling the Deep-HAR
model, the convolutional networks with two layers have been used for feature learning and
extraction whereas for activity recognition, the recurrent networks with a single layer were
used.

The architectural view of the proposed Deep-HAR model has depicted in Fig. 7. Two
convolutional layers, one max-pooling layer, and dropout layers have been set up in the 1D-
CNN model. The first Convo_Layer 1 learns the effective features and followed the

Fig. 6 Ensemble Deep-HAR model
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Fig. 7 Architectural diagram of proposed Deep-HAR model
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Max_Pooling layer helps in feature dimension reduction. The Convo Layer 2 is then
added to extract the effective feature sets from the decreased dimensions. Finally, a
dropout layer is added to prevent overfitting. Furthermore, the outcomes of the 1D-
CNN model were given as input into the next RNN model. A single recurrent, ReLU
activation function, flattened, and dropout layer has been used in the RNN model.
When the model is trained, the recurrent layer memorize the dependencies among the
successive activities. Subsequently, the ReLU activation function (max (0, x) where x
− input parameters) decides the activation of neurons. Next, the values are flattened
into the 1D vector and given as input for the dropout layer. The dropout layer
randomly removes the neurons proportional to the overfitting issue. Finally, the
Deep-HAR model uses fully connected layer for clasification.

6.1 Algorithms for data preprocessing and proposed model designing

The data preprocessing and splitting procedure are described in algorithm 1. This
algorithm workes by taking the time-series raw sensor triaxial dataset D [(x1, y1, z1),
……, (xn, yn, zn)] as input and returns the split samples corresponding to the
specified train, validate, and test ratio. Our proposed model has an addiction to
quantitative data instead of string values. First of all, we need to check whether the
activity label is already encoded in numerical form or not. Furthermore, we need to
split the dataset D with the respect to the given train, validate, and test ratio. The
train samples are used for model training whereas the validation dataset used for
hyperparameter tuning which controls the behavior of our model. The performance of
the proposed model is evaluated on the testing dataset to derive the experimental
findings. The working procedure of our proposed Deep-HAR model is mentioned in
algorithm 2. This algorithm receives the data samples: training (Xs), validating (Ys),
and testing (Zs) and returns the gathered experimental result.

Algorithm 1 Data Preprocessing
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Algorithm 2 Deep-HAR Model

We have used the forwarding propagation algorithm (1D-CNN) for feature extraction
and the backward propagation algorithm (RNN) for model training and classification. In
the forward propagation algorithm, the outcomes of the first convolutional layer,
calculated using the given equations, are fetched to the max-pooling layer to learn
the effective features and reproduce the convolutional dimension. Subsequently, the
reproduced convolutional dimension is fetched to the second convolutional layer for
extracting the suitable feature. For resolving the overfitting issue, the dropout layer is
used. Then, the outcome of forwarding propagation networks is fetched to the backward
propagation network (RNN). The RNN calculates the value for hidden states using the
given expression and is followed by the ReLU activation function. Furthermore, batch
normalization is used for optimizing the performance of hidden states and generates the
1D-vector using a flattened layer. Again, the dropout layer is used for the above-
mentioned purpose. Finally, the output of the proposed model is determined to report
the experimental outcomes.

6.2 Configuration of the Deep-HAR model

The importance of hyperparameters in influencing the behavior of the Deep-HAR model
is highlighted in this section. First and foremost, we must comprehend the link between
model performance and hyperparameters. When there is a performance disparity be-
tween training and testing error, hyperparameter optimization becomes crucial. The
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primary goal behind the hyperparameters tuning is to enhance the model capacity for
handling the complexity of tasks. After parameter tuning, the optimized values for the
Deep-HAR model have shown in Table 4.

7 Experimental results and discussion

The activities recognition performance of the Deep-HAR model have been evaluated on
simple (WISDM), complex (PAMAP2), and heterogeneous (KU-HAR) datasets. For assess-
ment purpose, we employed the accuracy, recall, precision, and F1 score. The experimental
dataset has been divided into three parts: 80% for training, 10% for validating, and 10% for
evaluating the performance of the proposed model. The number of samples available in
the experimental datasets are shown in Table 5.

The setup of the experimental environment has explained as follows. We have used the
Google Colab for the implementation of the proposed model using the python code. The
TensorFlow, Scikit-Learn, Keras, pandas, NumPy, and matplotlib packages have been
imported to accomplish the task of data preprocessing, splitting, model architecting, training,
validating, testing, and plotting the experimental outcomes. We shall examine the model
authenticity, classification quality using the confusion matrix, experimental results, compara-
tive study with recent papers, and architecting behavior in this section.

7.1 The authenticity of the Deep-HAR model

Overfitting and underfitting conditions were used to assess the legitimacy of the proposed
model. Whenever the proposed model has suffered either an overfitting or underfitting
circumstance, the classification performance is always skewed.

Table 4 Optimized parameters values of Deep-HAR model

Deep HAR Model Tuning Parameters Values

CNN Architecture Convo_Layer 1 Input Shape #
Kernel Size 3
Filters 512
Padding Same

Max Pooling Layer 2
Convo_Layer 2 Kernel Size 1

Filters 256
Dropout Layer 00.25

RNN Architecture Recurrent Layer Units 128
Activation Function ReLU
Dropout Layer 00.20
Dense #
Activation Function Softmax

Model Training Loss Sparse Categorical Crossentropy
Learning Rate 0.0001
Optimizer Adam
Batch Size 128
Epochs 10

Note: The Hash (#) shows that the initialized value varies according to given experimental datasets
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First of all, we need to authenticate the Deep-HAR model. With an epoch rate of 10,
the proposed model was trained on the full training dataset, yielding results for training
accuracy, validation accuracy, train loss, and validation loss, respectively. The training
accuracy, validation accuracy, training loss and validation loss are shown in Fig. 8. The
primary objective behind plotting these values against the epoch rates is to observe
whether our proposed model has fallen in overfitting/underfitting conditions or not.
Here, the accuracy and loss lines are much close to each other which implies that the
proposed model has been designed and hyperparameters are tuned perfectly to meet the
predefined goal. With the increasing rate of the epoch, the train and validation accuracy
is covering the maximum defined score (1.0). Similarly, the train and validation loss
turned out to be 0.0, which should be as low as much possible. From this, we conclude
that our proposed model has been designed perfectly without any overfitting and
underfitting conditions.

7.2 Confusion matrix of the Deep-HAR model

The classification results of the simple, complex, and heterogeneous activities using the
confusion matrix has shown in Fig. 9 including the number of activities samples.

In the confusion matrix, each row corresponds to the actual class label and each column
corresponds to the predicted class label. From the confusion matrix, it is clear that the proposed
model performs well in activity recognition. Furthermore, the proposed Deep-HAR model
may be accepted as a universal model for the recognition of simple, complex, and heteroge-
neous activities.

7.3 Experimental results of the Deep-HAR model

The total recognition rates of the Deep-HAR model for each type of activities are shown in
Table 6. The accuracy, precision, recall, and F1-score of the Deep HAR model are high
enough to recognize the simple, complex, and heterogeneous activities.

For simple activities, the proposed model achieved the recognition rate with an
accuracy of 99.98%, precision of 90.57%, recall of 100.00%, and F1-score of 95.13%,
respectively. A collection of temporal activities has often been found in each form of
complex activities. The classification performance of the Deep-HAR model was
99.64% accurate, the precision of 91.86%, recall of 100.00%, and F1 score of
96.61%, respectively for the complex activities. Recognizing the heterogeneous activ-
ities was considerably more challenging. But, our proposed model, on the other hand,
fearlessly acknowledged this forms of activities. The accuracy rate was 99.98%, the
precision was 97.38%, the recall was 100.00%, and the F1 score was 98.96% for
heterogeneous activities. Figure 10 illustrates the graphical depiction of the experi-
mental findings.

Table 5 Data samples distribution of the experimental datasets

Experimental Dataset Training (#) Validating (#) Testing (#) Total Samples

WISDM 02,74,732 34,342 34,342 03,43,416
PAMAP2 15,54,297 1,94,288 1,94,288 19,42,873
KU-HAR 49,77,471 6,22,184 6,22,184 62,21,839
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Fig. 8 Accuracy and loss score
during the training and validating
of the proposed model on (A)
simple, (B) complex, and (C)
heterogeneous activities
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Fig. 9 Confusion matrix of (A) Simple, (B) Complex, and (C) Heterogeneous activities
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7.4 Comparison with recently published research works

The experimental result of recently published research works and our proposed model has
comparatively shown in Table 7. The authors in [1, 5, 8, 12, 13, 15, 17, 22, 24, 33, 47] have
applied their proposed model on the WISDM, PAMAP2, and KU-HAR datasets, respectively.
Moreover, we have also used the same experimental datasets but in the context of different
activity types.

In the study of [1, 12, 13, 22, 47], the authors have used various models namely UDR-RC,
1D-CNN, Att-based Residual Network, RNN-LSTM, and AFFNet on the WISDM dataset.
The best recognition performance was obtained by the Att-based Residual Network with an
accuracy of 98.85% and followed by UDR-RC with 97.50% accuracy. The authors in [5, 12,
15, 17, 24] have used the one-shot learning methods, DELAPAR, Att-based Residual Net-
work, ResNet+HC, and float CNN on PAMAP2 experimental dataset. In [15], the DELAPAR

Table 6 Recognition rates of the Deep-HAR model for each activity type

Deep-HAR model

Activities Type Dataset Evaluation Matrix

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Simple WISDM 99.98 90.57 100.00 95.13
Complex PAMAP2 99.64 91.86 100.00 96.61
Heterogeneous KU-HAR 99.98 97.38 100.00 98.96

Fig. 10 Graphical view of experimental results of the Deep-HAR model
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achieved the highest accuracy rate of 96.62%, followed by the Att-based Residual Network
[12] with an accuracy rate of 96.62%. On the KU-HAR dataset, the authors have applied
the RF classifier [33] and Adapted transformer model [8] that achieved the accuracy rate of 90.
00% and 99.20%, respectively. Finally, our proposed Deep-HAR model achieved the best
prediction performance on WISDM, PAMAP2, and KU-HAR datasets with an accuracy rate
of 99.98%, 99.64%, and 99.98%, respectively. Moreover, we can state that our proposed
model can be globally acceptable and most recommended for recognizing the simple, com-
plex, and heterogeneous type activities.

7.5 Comparison with architectural behavior of different past models

This section presents the comparative study on the architectural behavior of previous models to
our model.

The UDR-RC [22] model has mainly focused on optimizing the data during pre-processing,
minimizing the computational time, and improving the recognition rates. This approach has
followed the fixed-size window strategy. The Reconstructed Coder (RC) has used the concept
of encoder-decoder for minimizing the reconstruction errors. Hence, our proposed model has
achieved higher robustness against the class imbalancing issue (solved using F1-score) and
conflicting behavior attributes in HAR datasets such as the number of sensors, subjects,
activities, sampling rates, sensing devices, and more. So, we need not require to make more
emphasis during the pre-processing phase.

The activity recognition model has been elaborated using distance matrics of recurrence
plot with CNN in [13]. Recurrent plotting is an visualizing method to represent the recurrent
state of the dynamic system. Furthermore, this approach converted the raw acceleration data
into an image formation of a recurrent state, which was then used to train the CNN model. The
CNN model began with the input layer, which was followed by two convolutional layers,
single max-pooling, and dropout layer. Before, data sending for flatting and fully connected
layer, again passed to the two successive convolutional layers, single max-pooling, and
dropout layer. Hence, as compared to this model, our proposed model has been designed
more lightweight and interactive as we have directly used the sensory data in the model.

Table 7 Comparative study on experimental results of our model with recently published research works

Activities Type Dataset Methods Accuracy (%) Year Reference

Simple WISDM UDR-RC 97.50 2020 [22]
1D-CNN 94.20 2018 [13]
Att-based Residual Network 98.85 2021 [12]
RNN-LSTM 95.78 2020 [1]
AFFNet 94.60 2022 [47]
Deep-HAR (Our Model) 99.98 – –

Complex PAMAP2 One-shot learning methods 84.41 2021 [24]
DELAPAR 96.62 2020 [15]
Att-based Residual Network 93.16 2021 [12]
ResNet+HC 92.97 2022 [17]
float CNN 85.23 2021 [5]
Deep-HAR (Our Model) 99.64 – –

Heterogeneous KU-HAR Random Forest 90.00 2020 [33]
Adapted transformer model 99.20 2022 [8]
Deep-HAR (Our Model) 99.98 – –
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In [24], the authors have used the one-shot learning technique. This technique needs a
strong and high-level feature extraction technique for better recognition rates. The one-shot
learning technique has achieved considerable performance in recognition of the similar type of
activities where few instances of activity classes are available. This approach faced difficulties
while dealing with complex activities rather than similar type activity. However, our proposed
model has used the convolutional layers for extracting the features and need not require a
strong feature extraction technique. The proposed DeepHAR model can perform more reliably
in recognizing simple, complex, and heterogeneous activities.

In [15], the authors have proposed the three window-based modules for activity recognition
and post-processing technique. The first module used the overlapped window of data segments
and extract the feature in the frequency domain. In the second module, the deep learning model
detects the activity in each window. The third module expands the window-level choice over

Fig. 11 Overall (A) Accuracy (%)
and (B) Loss (%) of the proposed
model

30458 Multimedia Tools and Applications (2023) 82:30435–30462



longer periods, resulting in considerable performance gains. Further, the post-processing
techniques, median filter and HMMs, are used for improving the activity recognition rates.
However, the proposed DeepHAR model has used the complete sensory data to learn and
extract the efficient features. Moreover, the proposed model declined the need for a post-
processing technique for improving the performance of activity recognition rates.

In [33], the authors have used the classical supervised learning algorithm i.e. RF for
recognizing the heterogeneous type activities. The RF is a widely used ensemble learning
algorithm that produces the outcomes of the best decision tree, selected from various decision
trees. The activity recognition performance of classical learning algorithms is completely
dependent on the quality of feature engineering. This limitation can be overcome by using
our proposed model that used automatic feature extraction techniques.

8 Conclusion and future works

In this paper, we have proposed the Deep-HAR model as a one-stop solution for recognizing
the simple, complex, and heterogeneous human activities. The proposed model extracts the
effective features set from raw sensor data and then learns the activity patterns using
convolutional and recurrent layers for recognizing the simple, complex, and heterogeneous
activities. The classification performance of the proposed model has been evaluated experi-
mentally on three different representative datasets i.e. WISDM, PAMAP2, and KU-HAR.
Figure 11 shows the accuracy and loss value of the model while training and testing with a 10-
epoch value. From the figure, it is clear that the train and test accuracy are close to each other
and the train and test loss are also to each other. This signifies that the proposed model has
good generalization and neither fell in overfitting nor underfitting condition.

For evaluating the performance of the Deep-HAR model, we have used the accuracy,
precision, recall, and F1-Score. The summarized experimental results of the proposed model is
given in Fig. 12 for different activity types. The proposed model holds an average accuracy of

Fig. 12 Overall accuracy, precision, recall, and F1-score of the proposed model
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99.86%, a precision of 93.27%, a recall of 100.00%, and an F1 score of 96.90%, respectively
for all activity types. The experimental results prove that the Deep-HAR model works well as a
single platform for recognizing the simple, complex, and heterogeneous type activities instead
of different models for recognizing each activity type, separately.

Furthermore, the proposed solution can easily be extended to recognize activities specific to
a particular domain such as gym, yoga, and sports. To train deep ensemble models for
recognizing more specialized domain-specific activities, large amounts of training data must
be collected. The issue of scarcity of labeled quality datasets can be addressed by exploiting
the concept of a transfer learning approach to cope with more complex, specialized tasks.
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