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Abstract
Biometric recognition systems are frequently used in daily life although they are vulner-
able to attacks. Today, especially the increasing use of face authentication systems has
made these systems the target of face presentation attacks (FPA). This has increased the
need for sensitive systems detecting the FPAs. Recently surgical masks, frequently used
due to the pandemic, directly affect the performance of face recognition systems.
Researchers design face recognition systems only from the eye region. This motivated
us to evaluate the FPA detection performance of the eye region. Based on this, in cases
where the whole face is not visible, the FPA detection performance of other parts of the
face has also been examined. Therefore, in this study, FPA detection performances of
facial regions of wide face, cropped face, eyes, nose, and mouth was investigated. For this
purpose, the facial regions were determined and normalized, and texture features were
extracted using powerful texture descriptor local binary patterns (LBP) due to its easy
computability and low processing complexity. Multi-block LBP features are used to
obtain more detailed texture information. Generally uniform LBP patterns are used for
feature extraction in the literature. In this study, the FPA detection performances of both
uniform LBP patterns and all LBP patterns were investigated. The size of feature vector is
reduced by principal component analysis, and real/fake classification is performed with
support vector machines. Experimental results on NUAA, CASIA, REPLAY-ATTACK
and OULU-NPU datasets show that the use of all patterns increased the performance of
FPA detection.
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1 Introduction

Due to the rapid development in technology, today various biometric systems are widely used
in real-life applications such as online payment security, e-commerce security, smartphone-
based authentication, secure access control, passport, and border controls [30]. Although
variability in human-face appearances due to changes in the viewing direction [32], face
recognition systems have been among the most studied technologies since the 90s because of
their advantages over other biometric features [39]. Thanks to their ease of use, near-perfect
performance, and high-security levels, face recognition systems are among the most widely
used biometric systems in the market compared to iris and fingerprint recognition systems
[15]. However, the increasing use of face authentication systems has made these systems the
target of Face Presentation Attacks (FPA). FPA is the general name given to malicious
attempts to impersonate another person (impersonation attack) or avoid recognition by the
system (obfuscation attack).

The increase in face recognition-based access control systems has raised the need for
sensitive systems to detect FPAs. FPA is an attacker’s attempt to be authenticated in an
identification process by impersonating someone else. Today, it has become easier to access
images/videos or detailed information on how to create fake masks, which can be used to
spoof facial recognition systems [18]. This also causes an increase in the variety of attacks that
the existing systems may encounter. Attacks are no longer limited to theoretical or academic
fields but are often carried out against real applications. For example, Apple’s iPhone 5S
model smartphones with integrated fingerprint reader hardware are spoofed with fake finger-
print samples only one day after being put on the market [14]. Therefore, FPA detection has
now become a mandatory part of face recognition systems. Figure 1 shows the complexity of
FPA detection problem.

Fig. 1 Sample image with real and
fake face parts. Which part is real?
(The answer is left) [34]
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Surgical masks, which have recently become inseparable parts of our lives due to Covid-19,
directly affect the performance of face recognition systems. In cases where the use of masks is
mandatory today, and in the future, it is inevitable to develop face recognition systems over the
face area outside the mask. Systems that perform recognition over the eye region will be
spoofed through the eye region. For this reason, in this study, the FPA performances of various
facial regions (wide face region, cropped face region, eye region, nose region, mouth region)
were investigated. In the method, multi block uniform local binary pattern (MB-LBP) features
were extracted from facial regions and support vector machines (SVM) classifier was used for
real/fake classification. Then, principal component analysis (PCA) was used to reduce the size
of the features and classified with SVM. Finally, the effects of all LBP features (not only
uniform patterns) on FPA detection were investigated.

The main contributions of this study are:

& The FPA detection performances of the wide face, the cropped face and especially the
eyes, nose, and mouth regions were examined.

& Uniform patterns are generally used in feature extraction with LBP. In the study, the
effects of all LBP patterns on FPA detection were examined.

& In the study, 30 different attack scenarios in 4 datasets were evaluated separately.
Experiments were also carried out for the scenarios where all attack types are used
together.

& The effect of reducing the size of regional texture features with PCA on FPA detection
performance was investigated.

The remainder of the paper is organized as follows: FPA detection studies in the literature are
summarized in Section 2. The datasets and the applied method are explained in Section 3.
Experimental studies and results are given in Section 4, and the results are discussed in
Section 5.

2 Related work

Basically, there are two types of FPA. The increasing amount of face images/videos shared on
social media, makes it easier for malicious users to access face images and use them to spoof
face authentication systems. Such attacks are called impersonation attacks. In obfuscation
attacks, the attacker uses extreme makeup, plastic surgery, or hiding a specific part of the face
not to be recognized by the detection system. Since obfuscation attacks are more troublesome
and costly than impersonation attacks, they are used less frequently. For this reason, studies in
the literature mainly focused on impersonation attacks. FPA categories and the attack types are
shown in Fig. 2.

Widely used FPA’s can be grouped under photo attacks and video replay attacks. A photo
attack is defined as the presentation of a genuine user’s picture to the face authentication
system. Attackers usually use several strategies. A printed photo attack is carried out by
presenting an image printed on a piece of paper (A3/A4 paper, copper paper, or professional
photo paper) to the face recognition system (Fig. 3a). A warped photo attack presents printed
photos to the system by skewing them along the vertical and/or horizontal axis to add depth
information (Fig. 3b). In cut photo attacks, the mouth, eyes, and/or nose areas in the photo are
cut off, and the system is tried to be spoofed by liveness clues (Fig. 3c). In photo attacks, the
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picture can also be presented to the system by displaying it on the screen of a digital device
(Fig. 3d).

Video replay attacks are performed by presenting the person’s video to the face authenti-
cation system by playing it on smartphones, tablets, or laptops. Compared to static photo
attacks, video replay attacks are more complex as they present dynamic information such as
eye blinking, mouth movements, and changes in facial expressions [29]. The most significant
disadvantage of photo and video replay attacks except warped photo attacks is that they are
two-dimensional. On the contrary, 3D masks attacks aim to spoof the system by using low-
quality 3D masks made from printed photographs or high-quality 3D masks made of silicon.
The high quality of face-like 3D structure and its ability to imitate human skin make these
attack types more difficult to detect with traditional FPA detection methods [38]. Producing
high-quality 3D mask is quite expensive and complex. In addition, this method usually

Fig. 2 Face presentation attacks

Fig. 3 Types of photo attacks: a) print photo attack, b) warped photo attack, c) photo attack with eye regions cut
off, d) digital photo attack
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requires user cooperation [17]. For this reason, 3D mask attacks are performed much less
frequently than photo or video replay attacks. However, with the proliferation of 3D acquisi-
tion sensors, 3D mask attacks are expected to become more common in coming years.

Current FPA detection systems can be divided into four groups: 1) motion analysis, 2)
liveness detection, 3) image quality analysis, and 4) texture analysis-based methods.

Motion analysis-based methods depend on optical flow calculated from video sequences.
These methods are difficult to emulate and require low user collaboration. However, the need
for video sequences with high motion efficiency and high computational complexity are the
main disadvantages of these approaches. Anjos et al. proposed a method based on foreground/
background motion correlation using optical flow: i) The direction of movement for each pixel
was obtained by using the horizontal and vertical directions. ii) Normalized histograms for the
face and background regions were generated, and the distances between the angle histograms
of the face and background regions were calculated. iii) The average of these values in N-
frames was used to determine FPA attempts [4].

Liveness detection-based methods try to detect physiological signs of life in videos such as
eye blinks, facial expressions. However, these methods require high user collaboration,
different devices, and video sequences. They are also time-consuming and computationally
complex. Alotaibi and Mahmood proposed a face liveness detection method that uses nonlin-
ear diffusion to obtain depth information and preserve boundary locations. Then, the
convolutional neural network is used to extract the distinctive and high-level features of
images [2].

Since the image quality characteristics of real accesses and illegal attacks are different, the
methods based on image quality analysis use attributes such as color diversity, blur, edge
information and chromatic moment. These methods are easy to implement, have low compu-
tational costs, and do not require user collaboration. However, their performance mostly
depends on the quality of images. Weng et al. proposed FPA detection method based on
Image Distortion Analysis (IDA). In the method, four different IDA features (mirror reflection,
blur, color moment, and color diversity) were obtained from face images, and the real/fake
decision was made by using SVM classifier [40]. Galbally et al. used 25 image quality features
(mean frame error, peak signal to noise ratio, maximum difference, average difference, etc.) to
distinguish between real and fake faces. Images were classified as real or fake by linear and
second-order discriminant analysis [19].

Texture analysis-based methods use the differences between texture patterns (print errors,
image blur, etc.) of real and fake faces to identify FPA interferences. These approaches are
easy to implement and do not require user collaboration. However, they need suitable feature
vectors to distinguish between real and fake faces. Also, low-quality images or videos that
produce low texture information may reduce the performance. Tan et al. used the Lambertian
reflection model to distinguish between real and fake faces [36]. Määttä et al. used LBP
features to analyze facial texture in FPA detection. The features extracted with multiscale LBP
operators were classified with SVM to capture the differences between real and fake faces [27].
In another study, the FPA detection performances of both texture-based (LBP, Gabor) and
gradient-based (Histogram of Gradients-HoG) face descriptors were examined [28]. Agarwal
et al. applied discrete wavelet transform to image sequences, extracted block based Haralick
texture features (correlation, contrast, entropy, difference variance, total mean, etc.) and FPA
detection is performed using SVM classifier [1]. Zhao et al. proposed a new texture descriptor
(Volume Local Binary Count- VLBC) to represent dynamic features. In the method, for a
center pixel in any t frame, P neighboring pixels equally positioned at radius distance R in t-1,
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t, and t + 1 frames are used together to extract features [46]. Boulkenafet et al. extracted
SURF (Speeded-Up Robust Features) features from different color spaces (HSV, YCbCr) and
used Fisher vector coding to embed the feature vectors in a high-dimensional space more
suitable for linear classification [9]. In another study, Boulkenafet et al. proposed a color
texture analysis based FPA prevention technique. To calculate texture features from luminance
and chromaticity channels of multiple color spaces (HSV and YCbCr), multiple texture
descriptors (LBP, LPQ, BSIF, and SID) were utilized [8]. Arashloo and Kittler proposed an
anomaly based FPA detection approach. In this approach, training data comes only from
positive classes, while test data comes from both positive and negative classes. Dynamic
features were extracted from video sequences using different texture descriptors (LBP-TOP,
LPQ-TOP) [5].

Sthevanie and Ramadhani used LBP and GLCM (Gray-Level Co-Occurrence Matrix)
features together in FPA detection. Four different test scenarios were used in the study. The
best results were obtained by applying LBP and GLCM matrices to the eye and nose regions
[35]. Khurshid et al. developed a system that detects real-time FPA over textural features. First
RGB images were converted to gray level and YCbCr color space. Then LBP features were
generated from these images, and CoALBP (Co-occurrence of the Adjacent Local Binary
Patterns) features were generated from only the gray level image. Finally, the feature set was
classified by SVM [23].

Zhang and Xiang used a combination of DWT (Discrete Wavelet Transform), LBP,
and DCT (Discrete Cosine Transform) features to evaluate whether a video is real or not.
DWT-LBP attributes were obtained from LBP histograms of DWT blocks in each frame.
DWT-LBP-DCT features were produced by performing vertical DCT operation on
DWT-LBP features. These features were used to train a SVM classifier for FPA
detection [43]. Shu et al. proposed FPA detection method based on the chromatic ED-
LBP texture feature. In the study, neighbor pixel mismatches in a face image were
considered and coded with LBP. The feature histograms in different color channels were
calculated separately on each image band. Then, with the help of chromatic ED-LBP
histograms and a two-level spatial pyramid, the local structure information of face region
in the input image was extracted. Finally, ED-LBP histograms from different color
spaces were classified using SVM [33].

3 Material and method

In this section, the datasets, detection and normalization of facial regions, feature extraction,
dimensionality reduction and classification techniques are explained in detail.

3.1 Datasets

3.1.1 NUAA

The NUAA [36] is the first dataset for print photo attacks and consists of images obtained from
15 subjects using a webcam. During the taking of these images, the subjects were asked not to
blink and to pose from the front with neutral facial expressions. The attacks were carried out
using photographs. The dataset is divided into two separate subsets for training and testing.
Example images from NUAA dataset are given in Fig. 4.
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3.1.2 CASIA-FASD

CASIA-FASD [44] is a FPA detection dataset that includes printed photo and video replay
attacks. CASIA-FASD consists of three types of attacks: i) Warped photo attack (imitates
paper mask attacks), ii) Printed photo attack with cropped eye areas, and iii) Video replay
attacks (includes signs of liveness such as blinking, mouth, and head movements).

The data was collected for three different imaging quality for all attack types: low, normal,
and high. High-quality videos have a resolution of 1280 × 720 pixels, and normal/low-quality
videos have a resolution of 640 × 480 pixels. The dataset is divided into two subgroups as
training and testing. The training and test sets include real and fake images taken from 20 and
30 subjects, respectively. Sample images from CASIA-FASD dataset are given in Fig. 5.

3.1.3 REPLAY-ATTACK

The REPLAY-ATTACK dataset [12] consists of real and fake access videos of 50 subjects.
The videos were taken with the MacBook Air 13″ built-in camera in two distinct lighting
conditions: i) Controlled: images that use fluorescent lamps for illumination and have a
uniform background; ii) Uncontrolled: images that use daylight for illumination and have a
non-uniform background. High-resolution photos and videos were obtained under the same
conditions with the iPhone 3GS, and Canon PowerShot SX150 IS devices. These recordings

Fig. 4 Attack examples of the NUAA dataset

Fig. 5 Attack examples of the CASIA dataset
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were used to create three different types of attacks: i) Print Photo Attack (showing the high-
resolution photos printed on A4 paper to the camera), ii) Mobile Attack (showing the high-
resolution photos and videos to the camera using the iPhone 3GS screen), iii) High-Resolution
Attack (showing the high-resolution photos and videos to the camera using the iPad screen).

Attack types are divided into two subgroups according to the presentation method of the
images/videos to the camera: i) Hand: Attacks carried out by holding the input device, ii)
Fixed: Attacks performed by positioning the input device on a fixed support. The dataset
divided into three separate subgroups for training, development, and testing. Sample images
from REPLAY-ATTACK dataset are given in Fig. 6.

3.1.4 OULU-NPU

The OULU-NPU face presentation attack detection database [10] of 5940 real access and
attack videos of 55 subjects. The videos were recorded using the front cameras of six mobile
devices (Samsung Galaxy S6 edge, HTC Desire EYE, MEIZU X5, ASUS Zenfone Selfie,
Sony XPERIA C5 Ultra Dual and OPPO N3) in three sessions with different illumination
conditions and background scenes. In the database print and video-replay presentation attack
types are considered. The attacks were created using two printers and two display devices. The
videos were divided into three subject-disjoint subsets for training (20 subjects), development
(15 subjects) and testing (20 subjects). There are 4 test protocols for the evaluation of the
generalization capability of FPA detection methods. The first protocol evaluates the general-
ization of the methods under previously unseen illumination conditions and background scene.
The second protocol evaluates the effect of input sensors (printers, displays) on the perfor-
mance of the method. To study the effect of the input camera variation, the third protocol is
used. And finally in the last protocol, generalization of the methods is evaluated across
previously unseen environmental conditions, attacks, and input sensors. Sample images from
OULU-NPU dataset are given in Fig. 7.

3.2 Detection and normalization of face and facial regions

For developing a fully automatic FPA detection system, the facial region should be detected
first. The alignment and normalization of input images are essential for improving the
classification accuracy. In this study, the general-purpose Dlib library [25] was used to align
the input images and identify the facial regions. Dlib is a free library that provides effective
solutions for aligning input images (Fig. 8a) with the help of pre-trained 5-point face mask as
shown in Fig. 8b. By calculating the angles between these control points, the image was
rotated, the head tilts were removed, and frontal faces were obtained (Fig. 8c). Finally, a pre-
trained 68-point face mask was applied to frontal faces (Fig. 8d). In the study, these points

Fig. 6 Attack examples of the REPLAY-ATTACK dataset

Multimedia Tools and Applications (2023) 82:40039–4006340046



used to detect the facial regions: wide face, cropped face, eye, nose, and mouth. The regions of
which FPA detection performances were examined are shown in Fig. 9.

3.3 Feature extraction

3.3.1 Local binary patterns

LBP is a powerful method for describing texture information in digital images [31]. The LBP
texture analysis operator is a gray-level independent texture extraction method. Its main goal is
to label the pixel in the center of the 3 × 3 mask by thresholding the neighboring pixel values
according to it. LBP codes are generated using eq. (1).

LBPP;R xcð Þ ¼ ∑P−1
p¼0u xp−xc

� �
2p

u yð Þ ¼ 1; if y≥0
0; if y < 0

� ð1Þ

In the equation xc is the center pixel, xp represents the neighbors of xc, R is the distance of the
neighbors from the center pixel, and P represents the number of neighbors.

Generally, the uniform LBP patterns (LBPU2) are used in FPA detection systems [11, 27,
38, 42, 43]. Uniform patterns describe those with at most two bitwise 0/1 transitions
between adjacent bits. For example, while the code “00111100” is uniform, the code
“10110101” is not. According to this method, each uniform pattern represents a bin in
the histogram, while all non-uniform patterns are collected in one bin. The number of
uniform LBP patterns created this way is 2 + P(P-1) [45]. For the input image I(x,y), the
LBP8,1U2 histogram for P = 8 neighbors at a distance of R = 1 pixel, is generated by eq. (2)
below.

Fig. 7 Attack examples of the OULU-NPU dataset

Fig. 8 Aligning the input images

Multimedia Tools and Applications (2023) 82:40039–40063 40047



Hi ¼ ∑xc∈I x;yð Þ f LBP8;1 xcð Þ ¼ U ið Þ� �

i ¼ 0; 1;…; n−1 f yð Þ ¼ 1; if y is true
0; if y is false

� ð2Þ

U(i) is the array holding 58 uniform patterns produced in (8,1) neighborhood. This histogram
carries information about micro-patterns such as edges, spots, flat areas on the whole image
[20]. In the first stage of this study, uniform patterns were used for FPA detection. In the
second stage, all patterns were used as the input set, and the FPA detection performance was
examined.

3.3.2 Multi-block local binary pattern

The Multi-Block LBP (MB-LBP) is an improved model of the original LBP algorithm
proposed for detailed examination of edges, spots, and flat areas on the image. In this model,
the image is firstly divided into n blocks. Then, the original LBP operator is applied to all
blocks, and regional histograms are obtained. Finally, the histograms of n regions are
concatenated, and a feature vector is produced for the input image [6]. Figure 10 shows the
feature extraction process with MB-LBP algorithm on the sub-blocks of a given input image.

3.4 Dimensionality reduction

It is essential to minimize costs such as computational complexity, computation
time, and storage in a classification process. Reducing the size of the feature vector

Fig. 9 Facial regions

Fig. 10 Generating the MB-LBP feature vector
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is one of the essential phases of this process. The dimensionality reduction aims to
determine the subsets that will best represent the dataset and achieve the best
classification accuracy.

3.4.1 Principal components analysis

PCA is a method of projecting the data in a multidimensional space to a lower-dimensional
space in a way that maximizes the variance [3]. The main goal is to find linear combinations of
variables, called principal components, which best represent the dataset. These principal
components correspond to eigenvectors that maximize the variance of the data projected onto
them [13]. The eigenvectors of the data covariance matrix (S) are obtained by the equation
Wopt = argmax‖W‖ = 1WTSW. When the equation is solved, the eigenvectors (W) of S
corresponding to the largest d (d ≤ D) eigenvalues are obtained. Then, dimensionality
reduction is performed using yi = WTxi (yiϵRd) [20]. Principal components with 95% eigen-
values were used in the study.

3.5 Classification

3.5.1 Support vector machines

SVM is a supervised classification algorithm based on statistical learning theory. The math-
ematical algorithms of SVM were initially designed for the linear classification of two-class
data and then generalized for the classification of multi-class and non-linear data. SVM is
based on finding the hyperplane that can best separate two classes from each other [22]. SVM
model separating two classes is given in Fig. 11.

In Fig. 11a, H1 plane cannot separate the classes correctly. H2 plane successfully separated
the classes, but the distance between the samples and the hyperplane are minimal. H3 plane, on
the other hand, separated the class samples with maximum distance. The plane passing
between the closest instances of two classes in Fig. 11b is the optimum solution for separating
these classes. The samples that intersect the imaginary points equidistant from the plane are

Fig. 11 SVM hyperplane detection
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called support vectors. In the study, SVM with Radial Basis Function (RBF) kernel is used to
classify the input image as real/fake.

4 Experimental results

In NUAA and CASIA datasets, all frames in which the facial regions detected were used in
the experiments. Due to the large number of samples and/or test scenarios in REPLAY-
ATTACK and OULU-NPU datasets, the images are collected by taking frames at 125 ms
intervals from the videos to reduce processing time and complexity. The frames in which
the facial regions detected correctly were used to evaluate the performance of the proposed
method.

NUAA and CASIA datasets consist of only training and test sets. REPLAY-ATTACK and
OULU-NPU dataset has a development set except the training and test sets. For this reason, 5-
fold cross-validation was performed on the training sets of NUAA and CASIA datasets to
produce the development sets. The training set was divided into five equal parts, four parts
were used as the training set and one part as the development set. This process was repeated
five times, and the average of the results was calculated.

The NUAA dataset contains 3459 training and 9067 test examples for a single attack
type (printed photo). There are seven test scenarios in the CASIA dataset; three scenarios
for different image qualities (low-quality, normal-quality, high-quality), three different
scenarios for attack types (warped photo, cut photo, video replay), and a general test
scenario where all data are used together. In the study, FPA detection results were obtained
for all the seven test scenarios. On the other hand, REPLAY-ATTACK dataset includes six
different attack types: high-definition attack, mobile attack, printed photo attack, digital+
printed photo attack, video replay attack and all attacks. The attacks were carried out both
by holding the device in hand and positioning the device in a fixed place. Considering three
scenarios according to the positioning type (hand, fixed, all), 6 × 3 = 18 different test
scenarios were evaluated for REPLAY-ATTACK dataset. Finally, experiments were car-
ried out for the 4 test protocols in the OULU-NPU dataset. The test scenarios and the
numbers of real and fake images used in the experiments for these datasets are given in
Table 1.

FPA detection systems are subject to two types of errors. These errors are denial of real
accesses (false reject) and acceptance of attacks (false accept). The performance of these
systems is usually measured by Half Total Error Rate (HTER) metric. HTER is half of the sum
of False Acceptance Rate (FAR) and False Rejection Rate (FRR) and is calculated by eq. (3)
below.

HTER τð Þ ¼ FAR τð Þ þ FRR τð Þ
2

ð3Þ

Since FAR and FRR depend on the threshold value τ, increasing FAR causes FRR to decrease.
Therefore, results are often represented by graphs showing the variation of FAR concerning
FRR for different τ threshold values. Equal Error Rate (EER), another criterion used in FPA
detection, is the value at the point where FAR and FRR are equal as shown in Fig. 12. The
threshold τ corresponding to the EER is obtained from the development set and HTER is
calculated from the test set using this threshold value.
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Table 1 The number of samples used in the experiments (H_: attacks carried out by holding the input device in
hand, F_: attacks carried out by positioning the input device on a fixed support, A_: the combination of these two
sets)

Dataset # of Train
Sample

# of Development
Sample

# of Test Sample Attack Type

Real Fake Real Fake Real Fake

NUAA 1743 1746 – 3356 5711 Printed Photo
CASIA 3140 11,015 – 5297 16,088 Low Quality

3197 11,231 4830 16,085 Normal Quality
4577 11,846 5782 17,291 High Quality
10,914 12,859 15,909 19,165 Warped Photo

9499 14,731 Cut Photo
11,734 15,568 Video
34,092 49,464 Overall

REPLAY- ATTACK 7185 4761 7197 4633 9596 6106 H_ Highdef
4757 4651 6173 F_ Highdef
9518 9284 12,279 A_Highdef
4703 4706 6084 H_Mobile
4717 4462 5731 F_Mobile
9420 9168 11,815 A_Mobile
7137 7104 9218 H_Printed_Photo
7170 6927 9142 F_Printed_Photo
14,307 14,031 18,360 A_Printed_Photo
2395 2396 3114 H_Digital+Printed Photo
2370 2342 3122 F_Digital+Printed Photo
4765 4738 6236 A_Digital+Printed Photo
4722 4631 6086 H_Video
4674 4528 5884 F_Video
9396 9159 11,970 A_Video
11,859 11,735 15,304 H_Grandtest
11,844 11,455 15,026 F_Grandtest
23,703 23,190 30,330 A_Grandtest

OULU-NPU 3812 15,284 2743 11,067 1353 7833 Protocol I
5782 11,799 4150 8445 5371 10,538 Protocol II
4840 19,618 3590 14,618 928 3768 Protocol III
3256 6622 2444 4916 255 600 Protocol IV

Fig. 12 Obtaining EER value from FAR and FRR graph
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In the study, Area Under Curve (AUC) metric was also used to evaluate the system
performance. AUC represents the area under the ROC probability curve. The ROC curve
shows the false positive rate (FPR) change versus the true positive rate (TPR). These values are
obtained by the following eqs. (4).

TPR ¼ TP
TP þ FN

FPR ¼ FP
TN þ FP

ð4Þ

In the equation, TP, FP, TN, and FN represents the true positives, false positives, true
negatives, and false negatives, respectively. The AUC criterion expresses how well the model
can distinguish between classes. So, the higher the AUC, the better the model predicts.

In the study, regional LBP features were used for FPA detection from facial regions. Input
images (wide face, cropped face, eye, nose, and mouth) were separated into various sub-
regions, and regional features were extracted. In a previous study, it was seen that the features
extracted using 8 × 8 regional decomposition process, did not increase the FPA detection
performance but caused the vector size to increase significantly [21]. For this reason, feature
vectors obtained from 1 × 1, 2 × 2, and 4 × 4 subregions of the input images were used in the
study. After the images were divided into subregions, the LBP8,1U2 operator was applied. The
histograms obtained from each subregion were concatenated, and the feature vector was
obtained for the input image. Then these feature vectors are classified as real/fake using
SVM. After that, the size of the feature vectors was reduced by PCA, and reclassification
was performed.

The best HTER results obtained in FPA detection experiments on NUAA, CASIA,
REPLAY-ATTACK and OULU-NPU datasets are given in Table 2. Due to the different test
scenarios and the face parts used, the number of results obtained is quite large. For example,
only REPLAY-ATTACK dataset contains 5 × 3 × 18 × 2 = 540 classification results for 5
different face regions (wide face, cropped face, eye, mouth, nose), 3 different regional parsing
(1 × 1, 2 × 2, 4 × 4), 18 different test scenarios and 2 different feature sets (LBP8,1U2,
LBP8,1U2 + PCA). Therefore, only the best results are shared in Table 2.

When the results in the table are examined, the performance of FPA detection is evaluated
for five different face regions and 30 different test scenarios on 4 datasets. According to the
results, in 24 of the 30 test scenarios, FPA detection of the wide face region is higher than the
other regions (cropped face, eyes, nose, and mouth). In the remaining 6 test scenarios, the
cropped face area is more successful. On the other hand, reducing the size of MB-LBP8,1U2

features with PCA (LBP8,1U2 + PCA) improves the FPA detection performance in 20 test
scenarios.

For the only attack type in NUAA dataset, the MB-LBP8,1U2 features obtained from the
cropped face region have 0.0353 HTER performance in FPA detection. In CASIA dataset, the
highest performance of 0.0466 HTER was obtained with the MB-LBP8,1U2 features obtained
from wide face region for video replay attack. The MB-LBP8,1U2 features obtained from wide
face region are better in FPA detection in 4 of the 7 test scenarios defined in the dataset (low
quality, normal quality, printed photo, video, and replay attacks). On the other hand, MB-
LBP8,1U2 and MB-LBP8,1U2 + PCA features obtained from the cropped face region are more
successful in high quality and cut photo attacks, respectively. When all attack types in this
dataset are evaluated together, MB-LBP8,1U2 + PCA features produced from the cropped face
region have the best performance with 0.1275 HTER. MB-LBP8,1U2 + PCA features have
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better results for cut photo attack and the test scenario where all attacks are evaluated together
in CASIA dataset.

In REPLAY-ATTACK dataset, which has more samples, attack types, and test
scenarios, the highest performance was obtained as 0.0076 HTER with the MB-LBP8,1U2

features generated from wide face region in mobile attack performed over a fixed source
(F_Mobile). In all mobile attacks (fixed + hand), 0.0244 HTER success was achieved
with MB-LBP8,1U2 + PCA features. MB-LBP8,1

U2 + PCA features generated from the
cropped face region increased the performance of FPA detection in only 2 of the 18 test
scenarios in this dataset (H_Video and A_Video). While MB-LBP8,1

U2 features produced
from the wide face region had better performance in 4 of the remaining 16 test scenarios,
MB-LBP8,1U2 + PCA features produced from the wide face region in 12 test scenarios
perform better FPA detection. When all attacks in the REPLAY-ATTACK dataset are
evaluated together, 0.0709 HTER is obtained. This value decreases to 0.0414 HTER only
for the fixed source attacks.

According to the results on OULU-NPU dataset, the highest performance of 0.0842 HTER
was obtained with the MB-LBP8,1U2 + PCA features obtained from wide face region for
Protocol II which evaluates the effect of input sensors (printers, displays) on the performance
of the method. According to the results, the proposed method is robust to the different input
sensors used to create the attacks. In protocol 4, where all factors (different lighting, back-
ground scene, input sensor and camera variation) are evaluated together, MB-LBP8,1U2 + PCA
features produced from wide face region gives the best FPA detection performance of 0.2462
HTER. The MB-LBP8,1U2 + PCA features obtained from wide face region are better in FPA
detection in all the test protocols defined in this dataset.

When the FPA detection performances of eye, nose, and mouth regions were examined, the
best results are, 0.0952 HTER (nose region) for NUAA dataset, 0.1020 HTER (nose region)
for low-quality attack in CASIA dataset, 0.0676 HTER (nose region) for F_Mobile attack in
REPLAY-ATTACK dataset and 0.1933 HTER (nose region) for Protocol II in OULU-NPU
dataset. In CASIA dataset, the mouth region succeeds in 4 test scenarios, the nose region in 2
test scenarios and the eye region in 1 test scenario (cut photo attack). When all attacks were
evaluated together, MB-LBP8,1U2 + PCA attributes extracted from the nose region showed
0.2351 HTER performance.

In REPLAY-ATTACK dataset, the eye region is more successful in detecting FPA in 10 of
the 18 test scenarios. This creates a prediction about the detection performance of attacks
which are carried out only in the eye region due to mask usage in current and future pandemic
conditions. In the remaining 8 test scenarios, it is understood that the performance of the nose
area is high. For this reason, it is presumed that evaluating the eye and nose regions together
will improve the FPA detection performance. The mouth region did not show any superiority
over the eye and nose regions on the test scenarios in this dataset. When all attack types are
included, FPA detection can be performed with the MB-LBP8,1U2 + PCA features obtained
from the eye region with a HTER success of 0.2088.

In the OULU-NPU dataset, the nose region shows better FPA detection performance in all
of the 4 protocols. In the most challenging test scenario, Protocol 4, MB-LBP8,1U2 features
produced from nose region have the highest FPA detection performance of 0.2666 HTER.

The regional FPA detection results showed that the performances of nose and eye regions
are generally better than that of mouth region. The performance of the nose region is due to the
smaller variation compared to the eye and mouth regions when aligning the face. Since the eye
region has a more dynamic structure, texture differences in real/fake images in this region are
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more evident. The mouth area is generally unsuccessful in FPA detection. This is because the
mouth region may not contain attack patterns.

As one can see from the whole table, the information around the face region (wide face)
makes positive contributions to the performance of FPA detection system. Therefore, subse-
quent experiments were performed only on the wide facial region. On the other hand, uniform
LBP features are generally used in texture recognition studies. In this study, all the MB-LBP8,1
feature extracted from the wide face region were used to examine the effect of all LBP features
on the FPA detection performance.

Figure 13 shows the performance of MB-LBP8,1U2, MB-LBP8,1
U2 + PCA, and MB-

LBP8,1 + PCA features extracted from the wide face region, according to test scenarios in
NUAA, CASIA, and REPLAY-ATTACK and OULU-NPU datasets. Using all the LBP
patterns for printed photo which is the only attack type in the NUAA dataset, increased the
performance by 48.8% (Fig. 13a). It can be seen from the figure that the real/fake detection
in the NUAA dataset is performed with 0.0406 HTER. The AUC value for this test scenario
is 0.9594, and the classification accuracy is 95.88%.

The results produced for the test scenarios of CASIA dataset are given in Fig. 13b. It can be
seen from the figure that the performance of the FPA detection system decreases as the picture
quality increases. One of the discriminating factors between the real accesses and attacks is the
high frequency content of images. In spoofing attacks this content is likely to be attenuated.
However, increasing the device quality strengthened the high frequency content of attacks so
the ability to distinguish them from real accesses is diminished. As can be also seen from the
graph, the use of all LBP patterns increases the performance of FPA detection in 4 of 7 test
scenarios (normal quality, cut photo, video replay, and overall). It is essential to improve
16.9% in the test scenario where all attack types are evaluated together. In the experiment
performed on all images in the CASIA dataset, real/fake detection can be made with 0.1130
HTER. The obtained AUC value and classification accuracy were 0.8870 and 89.91%,
respectively.

The results in REPLAY-ATTACK dataset shows that, the use of all LBP patterns
increases the performance of FPA detection, especially in types of attacks where the device
is hold in hand (Fig. 13c). These are H_Highdef, H_Digital+Printed Photo, H_Video, and
H_Grandtest. Additionally, performance has been increased in the A_Video (video replay
attacks from both fixed and hand-held source) attack. FPA detection performance was
improved by 10.38% in the H_Grandtest test scenario, which encompasses all sorts of
attacks in which the device is hold in hand. As the attacks are generally made from hand-
held devices, this improvement is quite significant. The HTER value obtained in this
scenario is 0.0682, the AUC value is 0.9318, and the classification accuracy is 92.73%.
In addition, in the A_Grandtest test scenario, which was created by evaluating all attack
types in the REPLAY-ATTACK dataset together, all LBP patterns provided a 1.5%
improvement in the performance of FPA detection. The results are 0.0698 HTER, 0.9285
AUC value, and 92.19% classification accuracy.

The FPA detection performance of the proposed method on OULU-NPU dataset is shown
in Fig. 13d. The use of all LBP patterns increases the PFA detection performance for all test
protocols. OULU-NPU has much more complex and challenging test scenarios than other
datasets. Despite this, an adequate level of FPA detection performance has been achieved in
Protocol I and II with the proposed method. For Protocol I and II the use of all LBP patterns
improves the FPA detection performance by %41.3 and %18.2, respectively. The results for
Protocol I are 0.0946 HTER, 0.9053 AUC value, and 92.24% classification accuracy. For
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Protocol II 0.0688 HTER, 0.9312 AUC value, and 93.93% classification accuracy are
achieved. As the third and fourth protocol are more complex, the FPA detection performance
is slightly lower. However, when evaluated in general, it is an important result in terms of the
generality of the proposed method that the use of all LBP patterns in all protocols increases the
performance. All these results reveal that the patterns other than the uniform LBP patterns
contain information in the FPA detection problem.

The comparison of the proposed method with the studies using LBP features in the
literature is given in Table 3. Since the studies in the literature perform FPA detection on
the entire face image, the comparison is made according to the results obtained with the wide
face region. Therefore, it was not possible to compare the results related to the performance of
the facial regions in FPA detection. On the other hand, when the previous studies are
examined, generally the results produced on the whole dataset are given. Various test scenarios
as in the study were not studied. In this respect, the analysis of FPA detection performance
according to 30 different test scenarios and five different face regions in this study will shed
light on relevant studies on this subject.

As shown in Table 3 the FPA detection performances on NUAA and CASIA datasets are
better than the other studies. In previous studies, EER results were mostly reported on NUAA
and CASIA datasets. In this study, HTER results were calculated by generating development
sets from the training sets of these datasets using 5-fold cross-validation method. For NUAA
dataset 0.17% EER and 4.06% HTER performance were obtained. The results for the CASIA
dataset were 0.22% EER and 11.30% HTER. The HTER result obtained from the REPLAY-
ATTACK dataset is 6.98%, which is better than some studies in the literature.

R Fig. 13 FPA detection performances of MB-LBP8,1 U2, MB-LBP8,1 U2 + PCA and MB-LBP8,1 + PCA
attributes extracted from the wide face region, according to test scenarios a) NUAA b) CASIA c) REPLAY-
ATTACK d) OULU datasets

Table 3 Comparison of the proposed method with other methods presented in the literature

Method NUAA CASIA REPLAY-ATTACK

EER (%) HTER (%) EER (%) HTER (%) EER (%) HTER (%)

Jukka Määttä et al., 2011 [27] 2.9 – – – – –
Chingovska et al., 2012 [12] – 19.03 – 18.17 – 15.16
J. Määttä et al., 2012 [28] 1.1 – – – – –
Yang et al., 2013 [41] 1.9 – 11.8 – – –
Komulainen et al., 2013 [26] – – – – 5.11 –
Tirunagari et al., 2015 [38] – – – 21.75 – 3.75
Boulkenafet et al., 2015 [7] – – 6.2 – 0.4 2.9
Tian & Xiang, 2016 [37] – – – 18.06 – 0.0
Kim et al., 2017 [24] – – 4.89 – – 5.5
De Souza et al., 2017 [16] 1.8 1.7 – – – –
W. Zhang & Xiang, 2020 [43] – – 5.56 – 0.0 0.0
Shu et al., 2021 [33] – – 1.11 – 0.0 0.0
Proposed Method 0.17 4.06 0.22 11.30 9.28 6.98

Successful results obtained with the proposed method compared to other studies are shown in bold
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5 Discussion

In this study it is aimed i) to examine the FPA detection performance of facial regions (wide
face, cropped face, eye, nose, and mouth), ii) to determine how much information LBP
features carry about FPA detection (the uniform patterns and all patterns) and iii) to create a
simple, interpretable, and effective face spoofing detection system with low computational
complexity.

The printed photo (printed, warped, cut, digital) and video replay (mobile, tablet)
attacks, which are frequently used in the real-world scenarios are emphasized in the study.
Production of high-quality 3D masks is quite expensive and complex. Also, there is no
high-quality 3D mask attack videos in the CASIA, REPLAY-ATTACK and OULU-NPU
datasets which are the frequently used datasets in the literature. But in the CASIA dataset,
warped photo and cut photo attacks can be included in the class of low-quality 3D mask
attacks.

In the study, the performances of facial regions (wide face, cropped face, eye, nose, mouth)
in FPA detection were investigated. In the first stage of the study, FPA detection was
performed with MB-LBP8,1U2 patterns obtained from 5 different face regions for 4 datasets
and a total of 30 different test scenarios. The results show that the wide face region is more
successful in detecting FPA than other facial regions in 24 test scenarios. In the remaining 6
test scenarios, the cropped face region was successful. This indicates that the entire facial
region provides essential information for FPA detection. On the other hand, it is understood
that the background information contained in the input images positively affects the
performance.

When the FPA detection performances of the eye, nose, and mouth regions are evaluated,
different regions perform better according to the datasets and test scenarios. In 10 test scenarios
on the REPLAY-ATTACK dataset and 1 test scenario on the CASIA dataset, the eye region
was more successful than the nose and mouth region. This situation creates a prediction about
the detection performance of attacks to be made only from the eye region due to the use of
masks in current and future pandemic conditions. On the other hand, the nose region gives the
best FPA detection performance for the 15 test scenarios (1 NUAA, 2 CASIA, 8 REPLAY-
ATTACK, 4 OULU-NPU) on all datasets. From these results it can be concluded that the
hybrid use of eye+nose regions can increase FPA detection performance.

In the second stage of the study, the FPA detection performance of the MB-LBP8,1 +
PCA features obtained from the wide face region was examined. The results have showed
that these features increase the FPA detection performance in 22 test scenarios. The
obtained results have revealed that all the LBP patterns carry significant information in
the FPA detection problem.

All videos in the CASIA dataset were taken under the same lighting conditions. In the
REPLAY-ATTACK dataset, the attack videos were taken under two different lighting
conditions. In the first environment, there is a fixed background and fluorescent lighting,
while there is a non-uniform background in daylight in the second environment. The
OULU dataset is designed to evaluate the generalization of FPA detection methods.
Especially in the first protocol, it is tested how the methods behave in the previously
unseen illumination conditions and background scene. Also, LBP texture descriptor
extracts local features from local areas, so it is less affected by various lighting condi-
tions. According to our experimental results, the proposed method obtained good results
under different lighting conditions.
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In future studies, the effects of these patterns on facial regions and the hybrid use of eye+
nose regions on FPA detection can be examined. In addition, FPA detection performances of
the regions can be examined with deep learning-based approaches.
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