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Abstract
In recent years, researchers have been focusing on developing Human-Computer Inter-
faces that are fast, intuitive, and allow direct interaction with the computing environment.
One of the most natural ways of communication is hand gestures. In this context, many
systems were developed to recognize hand gestures using numerous vision-based tech-
niques, these systems are highly affected by acquisition constraints, such as resolution,
noise, lighting condition, hand shape, and pose. To enhance the performance under such
constraints, we propose a static and dynamic hand gesture recognition system, which
utilizes the Dual-Tree Complex Wavelet Transform to produce an approximation image
characterized by less noise and redundancy. Subsequently, the Histogram of Oriented
Gradients is applied to the resulting image to extract relevant information and produce a
compact features vector. For classification, we compare the performance of three Artifi-
cial Neural Networks, namely, MLP, PNN, and RBNN. Random Decision Forest and
SVM classifiers are also used to ameliorate the efficiency of our system. Experimental
evaluation is performed on four datasets composed of alphabet signs and dynamic
gestures. The obtained results demonstrate the efficiency of the combined features, for
which the achieved recognition rates were comparable to the state-of-the-art.
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1 Introduction

Hand gesture recognition has become a very active research area in machine learning and
computer vision [68], it allows natural and simple interaction with machines to make human-
computer interaction (HCI) very similar to human-to-human interaction [59]. In addition, hand
gesture recognition can be used in many applications, such as:

& Developing devices to help deaf people who use sign language as their normal and natural
way of communication [36].

& Robot navigation and robot control in an indoor environment by capturing hand gestures
from a camera placed on the robot, and processing the data on a computer [12].

& Game interfaces which allow controlling avatars and cars using gestures, for example, the
Kinect camera introduced by Microsoft [31].

& Interactive and teaching systems, for example, a multimedia system developed in [52]
teaches the user how to make Tortellini by imitating the instructions of a real cook. This
system is able to estimate the user’s accuracy in mimicking the correct actions and return
positive or negative feedback.

Hand gesture recognition depends on non-vision based or vision-based approaches, the first
category utilizes a set of sensors attached to a glove to analyze the position of the hand and the
flexion of the fingers, these methods usually provide better characterization of the hand shape
with few parameters, since they detect the correct coordinates of the palm and fingers.
Furthermore, the gesture is recognized regardless of the background clutter [5, 43]. However,
these methods are difficult to use and implement in real-life scenarios, as they require the user
to wear a glove, which may be uncomfortable for a long-time use [48].

The second category is based on the use of a camera to capture the gesture, collected data is
then transferred to a computer for further analysis such as hand detection and features
extraction [47]. Different types of cameras can be used, such as:

– Kinect camera, which is composed of a depth camera, Infrared Emitter (IR), and a color
sensor. Depth images are usually used, as they provide information about distances in the
scene allowing for better hand detection and tracking. However, the resulting images have
low resolution, poor texture and edge information [44, 57].

– Leap Motion Controller (LMC) which is composed of two IR cameras and three IR lights,
this sensor provides a precise skeletal representation of the hand. However, the palm
should be close and perpendicular to the sensor. Moreover, the IR camera’s field of view
is around 150°, which introduces strong distortions in the resulting image [32, 35].

– RGB cameras, which capture high resolution and colored images characterized by rich
texture and edge information. In addition, RGB cameras are widely available in
smartphones and laptops, which makes them suitable and easier to use as they do not
require any additional hardware cost. However, these sensors are highly affected by
illumination changes and background clutter. Therefore, robust, and invariant features
are required to characterize the acquired images [4, 40].

Vision-based gesture recognition is more natural and intuitive, as it does not require the use of
any additional hardware. Furthermore, during the current COVID-19 pandemic, where the
least interaction with devices and surfaces is necessary to prevent the spread of the virus.
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Researchers are developing vision-based recognition systems to reduce physical contact
between humans and commonly used devices, for example, implementing a gesture recogni-
tion system to control the computer wirelessly [60], or utilizing hand gestures to command an
elevator [23].

Gestures can be characterized in the spatial domain in their static form, also known as
posture, this form requires less computational complexity, as the gesture is only represented by
one image, whereas the dynamic form, called gesture, is characterized in the temporal domain,
since it represents a sequence of postures [26].

Different methods have been proposed to characterize and classify gestures in both forms.
In [46], authors used a hybrid algorithm with Discrete Wavelet Transform (DWT) and Local
Binary Pattern (LBP) to characterize a set of dynamic gestures representing the Indian sign
language, obtained results using Adaboost show good recognition rates for which 90.28%
accuracy was achieved. In [22], authors proposed a system capable of recognizing a set of
static gestures from the Persian sign language (PSL) based on the 7th decomposition level or
higher of DWT using Haar wavelet which results in a very compact feature vector, this system
achieves 83% accuracy rate using the Multilayer Perceptron (MLP). In [65], a combination of
DWT and MLP was used to recognize 24 alphabets from the American Sign Language
excluding letters J and Z, this system was able to recognize 97% of the test images. Authors
in [49] proposed a new method based on Wavelet Neural Network (WNN), which is an
Artificial Neural Network (ANN) with a wavelet-based function as the transfer function, the
proposed method gave very satisfying results. In [64], authors proposed a novel method to
recognize gestures from American Sign Language by applying edge detection technique using
Sobel filter followed by 2D DWT to each image from the dataset, the resulting 2D images
were transformed to 1D using the ring projection method followed by 1D DWT, resulting
vectors are concatenated to define the feature vector. Generalized Regression Neural Network
(GRNN) was used for classification and achieved an accuracy rate of 90.44% on the Massey
University dataset. Another gesture recognition system based on DWT and Fisher ratio for
feature extraction was proposed in [56], experiments were conducted on two different datasets,
first is Massey University dataset where the achieved accuracy rate was around 98%, and
second is Jochen Triesch dataset where the accuracy rate is around 95%.

In [17], authors developed a system to translate gestures from the Arabic Sign Language
(ArSL) to text using two methods for characterization, namely, Fast Wavelet Network
Classifier (FWNC) and Separator Wavelet Network Classifier (SWNC), results showed that
FWNC performed better than SWNC. In [7], authors used DWT decomposition for feature
extraction and Hidden Markov Model (HMM) or K-Nearest Neighbor (KNN) as classifiers,
results show that 2nd level decomposition combined with db5 wavelet provided better results
overall.

In [62], authors implemented a deep learning-based recognition system that could differ-
entiate between 10 digits, this system utilizes Haar features and Adaboost classifier to perform
hand segmentation in real-time and CamShift algorithm for hand tracking. Furthermore,
Convolutional Neural Network (CNN) was implemented for gesture characterization and
classification, this system achieved a 98.3% recognition rate. A similar gesture recognition
system was implemented in [50], where Haar features and CamShift were utilized for real-time
hand gesture segmentation and tracking. However, the recognition is performed by tracking
the number of defects generated by the hand, authors evaluated the efficiency of the system in
real-life scenarios and achieved satisfying results. In [58], the authors proposed a static hand
gesture recognition system based on pre-trained CNN for hand characterization and
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classification. To test the efficiency of this system, the authors recorded a user-independent
dataset composed of 1000 RGB images and 1000 depth maps collected using an Intel
RealSense camera, simulation results illustrate that a 99% recognition rate is achieved. Authors
in [33] explored multimodal fusion using Convolutional Recurrent Neural Network (CRNN),
to combine depth information with 2D skeleton coordinates, this system was tested on two
existing datasets and achieved comparable results to previous works.

In [69], authors proposed a new characterization approach that combined HOG and uniform
LBP descriptors, this new descriptor extracts the hand shape using HOG, then LBP is applied
on the resulting image to characterize the hand textures, this system was tested on NUS hand
posture dataset where 97.8% recognition rate was achieved using LIBSVM classifier. An
improved version of this descriptor was later developed in [42], where the LBP descriptor is
extended to use multi-blocks by calculating the average gray-scale value for each sub-block
before applying LBP, this system was tested on Jochen Triesch dataset where 98% recognition
rate was achieved using SVM classifier.

This paper introduces a vision-based hand gesture recognition system that is able to
recognize gestures in both forms, where static form represents Arabic and American sign
language alphabets, and dynamic form is represented by two datasets known as Cambridge
and Marcel, these datasets describe gestures with different shapes and motions. Gestures used
in our study were recorded in challenging conditions, such as different lighting, low quality,
and resolution. Furthermore, the proposed system is user-independent, meaning that the
gesture is recognized even when the user changes. Our work considers different architectures
to implement the gesture recognition system, where the first architecture applies individual
descriptors such as Discrete Wavelet Transform (DWT), Dual Tree Complex Wavelet Trans-
form (DT-CWT) as well as the Histogram of Oriented Gradients (HOG), to characterize the
gestures. Whereas, the second architecture combines two individual descriptors to form a new
feature vector, namely DWT + HOG and DT-CWT + HOG. The resulting individual and
combined features are fed to five classifiers to achieve better performance in terms of
recognition rate and processing time.

The rest of this paper is divided into 5 sections, where the architecture of the proposed hand
gesture recognition system is presented in section 2. Section 3 details the descriptors used for
features extraction; the classification phase is presented in section 4. Obtained results are
discussed in section 5. Finally, section 6 concludes the paper.

2 Proposed sign alphabet and hand gesture recognition system

2.1 Proposed approach

In this paper, we investigate the performance of two wavelet-based algorithms, as well as a
textural-based descriptor applied to hand images for the recognition of static postures and
dynamic gestures. The employed descriptors are:

– Discrete Wavelet Transform (DWT): allows image analysis at different resolutions and
reduces the size of an image without affecting the details and edges.

– Dual Tree Complex Wavelet Transform (DT-CWT): was initially developed to overcome
the DWT’s limitations. Although this descriptor has been implemented in previous works
for face recognition and image compression, it has never been used in gesture recognition.
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– Histogram of Oriented Gradients (HOG): is a widely known descriptor that is able to
characterize the shape of the articulated gestures successfully and efficiently.

For the classification task, we propose five classifiers: Multilayer Perceptron (MLP), Proba-
bilistic Neural Network (PNN), Radial Basis Neural Network (RBNN), Support Vector
Machine (SVM), and Random Forest.

Our main contributions consist of:

– Describing the benefits of DT-CWT such as shift-invariance, better directionality, and
noise reduction compared to the regular DWT for hand gesture characterization;

– Proposing a new descriptor known as the combination of HOG and DT-CWT, where
HOG is applied on the imaginary part of the approximation image obtained from DT-
CWT, so that the result vector is compact, more discriminant, and less redundant, which
allows for accurate and fast recognition for both static and dynamic gestures.

– Comparing the efficiency of several classifiers: MLP, PNN, RBNN, Random Forest, and
SVM for gesture recognition system, where we demonstrate the efficiency of the Conju-
gate gradient with Powell-Beale restarts for MLP classifier, as well as, the Extremely
randomized trees approach for Random Decision Forest.

The first step in our recognition system concerns the hand image characterization using various
descriptors, namely DWT, DT-CWT, HOG, and the combined DWT + HOG, and DT-CWT
+ HOG. Each descriptor is applied to each image from ASL and ArSL where the resulting
histogram represents the feature vector. Whereas for Marcel and Cambridge datasets, the
gestures are defined by video sequences, where each sequence is composed of numerous
frames. The descriptors are applied to each frame individually and the feature vector is defined
by the concatenation of all individual vectors.

The second step represents the classification phase, where extracted features from each
dataset are divided into two sets. Training data are learned by all classifiers (MLP, PNN,
RBNN, SVM, and Random Forest) to build the predicting models. Testing data are then used
to compute the performance of our proposed system in terms of recognition rate and time
processing. Figure 1 shows a block diagram describing the general architecture of the proposed
system:

2.2 Datasets description

To evaluate the performance of the proposed system, four different datasets were used, two
datasets contain static alphabet signs and the other two are composed of dynamic gestures. We
present, in this section, the different datasets used in our work.

– The first dataset is known as Arabic Sign Language dataset, it is composed of 30 Arabic
signs; each sign is recorded 60 times by a different person, each image from this dataset
has a different resolution, we choose to resize all images to the same resolution of 128 ×
128 pixels [3].

– The second dataset is Jochen Triesch’s dataset, it is composed of 10 American alphabet
signs recorded against uniform and complex backgrounds; these postures were realized by
24 persons, and all images have the same resolution of 128 × 128 pixels [66].
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– The third dataset is Marcel’s dynamic dataset which is composed of four dynamic gestures
(Rotate, Stop, No, Clic), each gesture is represented by 12 sequences, and each sequence
contains 55 frames with a resolution of 58 × 62 pixels (https://www.idiap.ch/resource/
gestures/).

– The fourth dataset consists of 9 dynamic gestures defined by three different hand shapes
(Flat, Spread, V-Shape) and three motions (Leftward, Rightward, Contract), each gesture
was repeated 10 times by 2 subjects using 5 different illumination conditions, which
results in a total of 100 video sequences for each class [27].

Table 1 shows a few images from the datasets used in this paper.

Training phase

Testing phase

              Static gestures                                                                            Dynamic gestures

Gesture datasets

Features extraction Features extraction

Individual descriptors

DWT, DT-CWT, 

HOG

Combined descriptors

DWT+HOG, 

DT-CWT+HOG

Individual descriptors

DWT, DT-CWT, 

HOG

Combined descriptors

DWT+HOG, 

DT-CWT+HOG

Classification phase

Prediction models

MLP, PNN, RBNN, SVM, RDF

Frame-by-frame processing

Concatenation of all vectors to 
characterize one video sequence

Each feature vector 
characterizes one image

Split the feature vectors 
into train data and test data

Classification using test data

MLP, PNN, RBNN, SVM, RDF

Compare results
 Recognition rate, processing time

Fig. 1 Block diagram presenting different blocks of our hand gesture recognition system
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3 Hand gesture characterization

One of the most important operations in pattern recognition is feature extraction, which
reduces the size of the raw data by eliminating irrelevant or redundant information allowing
faster and better classification.

Three techniques are used in our work to characterize hand gesture images, DWT, DT-
CWT, and HOG descriptors. The main advantage of this parameterization phase is to generate
a feature vector that best describes our data with minimum redundancy. A combined descriptor
called DT-CWT + HOG is applied using HOG and DT-CWT techniques, where the HOG
descriptor is calculated from either the real part or the imaginary part resulting from DT-CWT.

Two architectures are proposed for our hand gesture recognition system, where the first
architecture employs individual descriptors, and the second combines two descriptors to define

Table 1 Images from each dataset

Dataset Resolution Images

Static 

gestures

Arabic Sign 

Language (Al-Jarrah 

dataset) [34]

128×128

Alef       أ Ba       ب Ta        ت Tha      ث

American Sign 

Language (Triesch 

dataset) [35]

128×128

A               B              C              D

Dynamic 

gestures

Marcel’s dataset
58×62

Clic gesture

No gesture

Cambridge dataset

[37]
320×240

Flat Leftward

V-Shape Contract

5 illumination conditions
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a final descriptor, the following paragraph describes the details of the mathematical back-
ground for each descriptor.

3.1 Discrete wavelet transform (DWT)

The 2D DWT is a very useful tool in image processing as it allows feature extraction and
analysis at different levels of resolution. Indeed, the 2D DWT filters noise and smooth areas
without affecting details and edges of the image [39].

The 2D DWT decomposition is performed by passing the input image through high-pass
and low-pass filters, the resulting images are downsampled with a factor of 2, then passed
through the same two filters generating four sub-images: one approximation and three details,
each sub-image has half the dimensions of the original. This approach is known as filter bank-
implementation of DWT [39] [34]:

& LL: This is the approximation image which resulted from passing the image through two
low-pass filters.

& HH: This image represents diagonal details of the input image, where both directions were
extracted using two high pass filters.

& LH:Horizontal details are extracted using the low-pass filter followed by a high-pass filter
meaning that the horizontal direction contains lower frequencies whereas the vertical
direction has high frequencies.

& HL: This image defines vertical details which are extracted using the high-pass filter
followed by the low-pass filter, in this case, the horizontal direction has high frequencies
and the vertical direction has low frequencies.

Figure 2 summarizes the steps described above. The approximation image (LL1) is then
decomposed to generate second level sub-images (LL2, LH2, HL2, and HH2); similarly, the
third level is obtained by decomposing the image (LL2) [45].

Figure 3 shows an example of three levels of decomposition using 2D DWT.
Figure 4 shows resulting images from applying 2D DWT to an image from the American

Sign Language dataset.
Figure 4 shows that the LL image has a smoother background than the input image without

affecting the hand shape and details. Moreover, processing the LL image is faster due to its
reduced resolution of 4096 pixels compared to 16,384 pixels for the input image. Consequent-
ly, the extracted features using the DWT descriptor are represented by the LL image.

Image

Low

High

Low

Low

High

High

2

2

2

2

2

2

LL

LH

HL

HH

Rows

Columns

Rows
Columns

Fig. 2 Generation of the first level approximation and details from an image using 2D DWT
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3.2 Dual tree complex wavelet transform (DT-CWT)

2D DWT provides a compact representation of the image with limited redundancy and very
good reconstruction, but it suffers mainly from two major drawbacks [1]:

& Lack of shift invariance: implies that a small translation in the input signal results in
major changes in the amplitude of wavelet coefficients at different scales. This lack of shift
invariance occurs from the downsampling by a factor of two [29].

& Poor directional selectivity: The HH image defines the details of both diagonals, this
means that DWT cannot distinguish between opposing orientations [1], because the filters
used are real and separable [29].

To overcome these limitations, Kingsbury introduced Dual-Tree Complex Wavelet Transform
(DT-CWT) [29]. To solve the problem of shift invariance, the downsampling is removed after
the first level which means that two trees are obtained, where one tree is one sample offset
from the other as shown in Fig. 5. Also, Kingsbury found that using odd-length filters in the
first tree and even-length in the second provides uniform intervals between trees, the filters
used are usually chosen from the biorthogonal set because their impulse responses are similar
to the real and imaginary parts of a complex wavelet [29].

To perform DT-CWT in 2D, the image is filtered along columns followed by rows, the
filter used for rows is the complex conjugate of the first filter [29]. Starting at the first level of
decomposition, the 2D DT-CWT transform produces four trees (A, B, C, and D) as shown in

LL3 HL3
HL2

HL1LH3 HH3

LH2 HH2

LH1 HH1

Fig. 3 Three levels decomposition
using 2D DWT

 LH           HH

                                                          LL       HL

   Input image

Fig. 4 First level decomposition using 2D DWT
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(1), where a0 represents the input image, h0 and g0 are the odd-length filters, a defines the
approximation image and d defines the detail image [20]:

Tree T A B C D
a1T
� �

x;y a°*h°h°
� �

2x; 2y
a°*h°h°
� �

2xþ1; 2y a°*h°h°
� �

2xþ1; 2y a°*h°h°
� �

2xþ1; 2yþ1

d1;1T

� �
x;y

a°*g°h°
� �

2x; 2y
a°*g°h°
� �

2xþ1; 2y a°*g°h°
� �

2xþ1; 2y a°*g°h°
� �

2xþ1; 2yþ1

d1;2T

� �
x;y

a°*h°g°
� �

2x; 2y
a°*h°g°
� �

2xþ1; 2y a°*h°g°
� �

2xþ1; 2y a°*h°g°
� �

2xþ1; 2yþ1

d1;3T

� �
x;y

a°*g°g°
� �

2x; 2y
a°*g°g°
� �

2xþ1; 2y a°*g°g°
� �

2xþ1; 2y a°*g°g°
� �

2xþ1; 2yþ1

ð1Þ
For other levels (m > 1), even-length filters are added to the transform, to achieve shift
invariance, odd-length filters (h0, g0) are used in one tree, whereas even-length (he, ge) are used
in the other tree giving us 4 possible combinations each one defines a different tree. Complex
coefficients of 2D DT-CWT are formed from combining detail coefficients of different trees as
shown in (2) [20]:

z j;kþ ¼ d j;k
A −d j;k

D

� �
þ j d j;k

B þ d j;k
C

� �
z j;k− ¼ d j;k

A þ d j;k
D

� �
þ j d j;k

B −d j;k
C

� � ð2Þ

Where j represents the scale, k = 1,2,3 are the detail coefficients following three different
directions, and A, B, C, D are the trees.

For a given scale, the 2D DT-CWT transform produces six images of complex coefficients
oriented at ±15°, ±45°, and ± 75°. Figure 6 shows a comparison between the details produced
by this transform and details obtained using the real 2D DWT [29].

We notice that DT-CWT is able to separate 6 directions compared to 3 for DWT, which
allows for better selectivity and representation for the oriented textures. Figure 7 shows the

Fig. 5 Four levels decomposition of a 1D signal using DT-CWT [29]
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improvement in directional selectivity provided by 2D DT-CWT compared to real 2D DWT;
we notice that the DWT was unable to distinguish between opposing diagonals of the image
whereas the 2D DT-CWT can detect both diagonal directions separately.

The odd/even filter implementation of the DT-CWT suffers from a few problems such as a
non-symmetric sub-sampling structure, different frequency responses between trees and the
used filters must be bi-orthogonal. To overcome these limitations, a new approach was
proposed in [30] known as the Q-shift implementation of DT-CWT, which uses odd-length
filters in the first level, and even-length for remaining levels. The delay of half sample is
reached using the time reverse of the first tree filters in the second tree [30].

The filters of the first tree are designed using a low pass FIR filter HL2(z) of length 4n:

HL2 zð Þ ¼ HL z2
� �þ z−1HL z−2

� � ð3Þ
Where HL(z) contains coefficients from zn − 1 to z−n.

The obtained filters for different values of n are shown in Table 2.
Figure 8 shows the result of applying 2D DT-CWT to the same image used for the 2D

DWT example in Fig. 4, we notice that 2D DT-CWT extracts more information compared to
the 2D DWT.

When comparing Figs. 4 and 8, we notice that DT-CWT provides a real and imaginary
approximations per tree, whereas the regular DWT only provides a single approximation. In
addition, DWT only produces three detail images oriented at (0°, 45°, and 90°), which is
limited compared to DT-CWT that produces 6 real and imaginary details, this results in a
smoother approximation image when using DT-CWT while keeping the same resolution as the
approximation image using DWT.

Fig. 6 2D impulse responses of the DTCWT at level 4 (upper part) and equivalent responses of real DWT (lower
part) [29]
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3.3 Histogram of oriented gradients (HOG)

HOG descriptor was first presented in 2005 by Dalal and Triggs. The HOG descriptor
characterizes the local structure or the shape of an object by extracting the magnitude and
direction of edges without having additional information on edge positions [11].

The first step when calculating HOG descriptor is to compute the gradient of the image, this
is done by convolving the input image with a derivative mask in both horizontal and vertical
directions, the mask is either a 1D kernel such as [−1,1] or a 2D kernel such as Sobel filter [11].

Gx ¼ Kernel * Image
Gy ¼ KernelT * Image

�
ð4Þ

The resulting horizontal and vertical gradients are then combined to define the magnitude ‘G’
and orientation ‘θ’ of the gradient, as shown in (5):

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y

q
θ ¼ arctan Gy=Gx

� �
(

ð5Þ

Original image

2D DWT 2D DT-CWT
Fig. 7 Directional selectivity of the real 2D DWT compared to 2D DT-CWT
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The gradient image is divided into N × N regions called “cells”, all pixels are weighted by the
magnitude and orientation of the gradient, for each cell, a histogram is computed as follow [11]:

H αð Þ ¼ H αð Þ þ NG x; yð Þ ð6Þ

Table 2 Odd-Length filters for n = 5, 7, and 9 [30]

n=5 n=7 n=9

0.03516384
0
−0.08832942
0.23389032
0.76027237
0.5875183
0
−0.11430184
0
0

0.003253142763653
−0.003883211999158
0.034660346844853
−0.038872801268828
−0.117203887699115
0.275295384668882
0.756145643892522
0.568810420712123
0.011866092033797
−0.106711804686665
0.02382538479492
0.017025223881554
−0.005439475937274
−0.004556895628475

−0.002284127440271
0.001209894163073
−0.011834794515431
0.001283456999344
0.044365221606617
−0.053276108803047
−0.113305886362143
0.280902863222186
0.752816038087856
0.565808067396459
0.024550152433667
−0.120188544710795
0.018156493945546
0.031526377122085
−0.00662879461243
−0.00257617430660
0.001277558653807
0.002411869456666

Input image

Real Approximation         +15°           +45°           +75°

Imaginary 
Approximation               +15°           +45°           +75°

Fig. 8 First level decomposition using 2D DT-CWT
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Where NG is the pixel’s intensity and α defines the number of bins in each histogram, this
parameter is used to compute the angle step which is uniformly distributed in the range [−180°,
180° [, the angle step is defined as 360°/α.

The HOG feature vector represents the concatenation of the histograms extracted from all
cells since there are N × N cells, and each cell is defined by a histogram, therefore, the size of
the final vector is N × N × α.

Finally, the L2-norm is used to normalize the HOG vector, this step is crucial as it allows better
invariance to illumination changes. Normalization using the L2-norm is defined as follow:

V ¼ H=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hk k2 þ ε2

q
ð7Þ

Where V represents the normalized HOG descriptor, H is the HOG vector without normali-
zation and ε is a small constant used to avoid division by zero.

Figure 9 summarizes the computation steps of the HOG descriptor applied to a sequence of
55 frames of Clic gesture from the dynamic dataset (https://www.idiap.ch/resource/gestures/),
HOG descriptor is applied to each frame of the video sequence following the steps described
above, then, all 55 histograms are concatenated to build HOG descriptor of the video sequence.

The resulting concatenated vector HOGi (i = 1: M), where M is the total number of frames in
the video sequence, will describe and reduce the amount of information contained in the hand
gesture. We note that the concatenated histogram is designed as the total descriptor for the
whole video sequence and its size is N × N × α × M.

4 Classification phase

The classification task consists of finding the appropriate class for each posture or gesture. For
this purpose, five different classifiers were used: three variants of the Artificial Neural
Network, which are Probabilistic Neural Network (PNN), Radial Basis Neural Network
(RBNN), and Multilayer Perceptron (MLP), as well as, Support Vector Machine (SVM)
classifier and Random Forest. In this section, we will briefly present each one of these
classifiers.

4.1 Multilayer perceptron (MLP)

The MLP is a feed-forward Artificial Neural Network that consists of three layers, an input
layer containing a fixed number of neurons, one or multiple hidden layers containing a variable
number of neurons where each represents a nonlinear activation function, and an output layer
where the number of its neurons is equal to the number of classes.

The training of MLP starts with initializing the weights of neurons with random values,
then, the input data is propagated throughout the network, the output layer computes the mean
squared error (MSE) between desired results and the outputs given by the network [19]:

E nð Þ ¼ 1

2
∑
m

j¼1
d j nð Þ−yj nð Þ

� �2
ð8Þ

where m represents the total number of output neurons, n is the current training sample, d and
y are, respectively, the desired output and the actual output.

26392 Multimedia Tools and Applications (2023) 82:26379–26409

https://www.idiap.ch/resource/gestures/


The backpropagation approach is used to minimize this error by readjusting weights and
biases, each neuron sums the inputs with new weights to give a new output that is closer to the
desired output.

4.2 Radial basis neural network (RBNN)

RBNN is also a feed-forward neural network, but unlike MLP, RBNN consists of a single
hidden layer composed of nonlinear radial basis functions (RBF) such as a Gaussian function.

  Frame 1   Frame 25   Frame 55

  …   …

Frame by frame processing
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Fig. 9 HOG feature vector computation
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Each neuron computes the distance between the center of the function and input data, the
output value of the neuron is bigger for smaller distances [13].

Training of RBNN consists generally of two steps, in the first one, the width and center of
the Gaussian kernel are determined using unsupervised methods. In the second step, the
weights are computed using a supervised approach [13].

4.3 Probabilistic neural network (PNN)

PNN classifier represents an implementation of the kernel discriminate analysis and the
Bayesian network, which devises a family of probability density function estimators [38]
[61]. The PNN has four layers, where the input and output layers are similar to the previous
ANN [61]. The second layer is called the pattern layer, it contains one neuron for each training
sample, each neuron computes the distance between the input data, and its dedicated pattern,
then, a nonlinear activation function is applied to the distance; pattern units will pass these
results to the third layer known as the summation layer. Each class has a dedicated neuron that
averages results coming from the pattern layer; the neuron with the largest result defines the
class of the input vector [38].

4.4 Support vector machine (SVM)

The main idea of the SVM is to design an optimal hyperplane that classifies data in two
classes, but when working with complex problems such as pattern recognition, a linear
separation is usually hard or even impossible to achieve. Therefore, a kernel is adopted
to map the data in a higher dimensional space [8]. In this paper, the Radial Basis
Function (RBF) kernel was used since it provides good performance in terms of accuracy
and processing time.

The One-against-all approach was employed to solve multi-class problems with SVM, this
method consists of using M-binary classifiers for M-class problems, meaning that, one binary
SVM classifier is constructed per class, each SVM classifier is trained to distinguish one class
samples from the remaining samples [18].

4.5 Random decision Forest

Random Decision Forest is widely used in classification and regression tasks due to
its simplicity and speed; the forest includes a multitude of decision tree classifiers
where the training of each classifier starts at the root and is done on randomly
selected samples from training data. When the tree grows, each leaf node at its end
will represent a class [6].

When training is complete, each tree assigns a class to the new observation from test data,
the predicted class given by Random Forest is then determined using a majority vote [6].

An extension to this method known as Extremely Randomized trees or Extra-Trees was
later proposed in [16], and it has been demonstrated that this method outperforms other
randomized algorithms in both accuracy and efficiency [14]. The main difference between
Random Forest and Extra-Trees lies in the fact that the features and splits are selected at
random, which leads to many diversified trees [16].
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5 Simulation results

We present in this section the simulation results of our hand gesture recognition system for
static and dynamic forms, for this purpose, we investigate two architectures. The first
architecture consists of characterizing each posture from the static and dynamic datasets using
DWT, DT-CWT, and HOG descriptors separately with different classifiers such as MLP,
PNN, RBNN, Random Forest, or SVM classifiers to demonstrate the efficiency of our hand
gesture recognition system. Whereas, the second architecture investigates a technique known
as feature fusion, which consists of combining individual descriptors by applying HOG
descriptor to the approximation image from DWT or DT-CWT to ameliorate the recognition
rate, namely: DWT + HOG and DTCWT+HOG. For DWT, the approximation image is
extracted as shown in Fig. 4, and for DT-CWT, two approximation images are produced
representing the real and imaginary parts as shown in Fig. 8. Then, the HOG descriptor is
applied to these images as illustrated in Fig. 9.

5.1 The implemented technique

We described in section 3 the techniques used for feature extraction, namely DWT, DT-CWT,
and HOG. These descriptors were applied to all datasets, then 50% of the resulting features
were used for training the classifiers and the remaining 50% were used to test their efficiency.
We note that the percentage of training and testing varied from one researcher to another.
Consequently, building a real comparison is a challenging task.

The parameters of all descriptors were tuned to optimize their configuration, where:

– For the DWT, we adopted two wavelet families, which are Daubechies wavelets (db1, db2,
db4, db8, db10) and Biorthogonal wavelets (bior1.1, bior1.3, bior2.2, bior2.4, bior3.5), for each
wavelet, we investigated decompositions up to the third level, and the feature vector
represents the approximation image.

– For the DT-CWT, we used the filters described in Table 2 with three level decomposi-
tions, the resulting feature vector is either the real part or the imaginary part. Several tests
were carried out to demonstrate the efficiency of each component, i.e., the real and the
imaginary parts according to recognition results obtained.

– For the HOG descriptor, different values of cells (1:10) and bins (1:20) were investigated
to find the combination that provides the best recognition rate and classification speed.

Once the best topology for each descriptor is determined, different parameters for each
classifier are investigated to improve the performance of our system, for the MLP, different
training functions, as well as different numbers of neurons, were investigated. For the RBNN,
PNN, and SVM, we varied the spread of radial function. Moreover, for Random Decision
Forest, we explored multiple numbers of Decision Trees so that accuracy can be improved.

5.2 Descriptors parametrization

In this section, we investigate the best topology for each descriptor. For this purpose, we
applied each descriptor to the ASL dataset with black background, and we used MLP as a
classifier. We use the black background for parametrization due to its low resolution and noisy
background.
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For the DWT descriptor, we use different wavelets and 3 decomposition levels as shown in
Fig. 10.

Figure 10 shows that the third level decomposition computed for either db1 or bior1.1
wavelets performs better in terms of recognition rate where 57% was achieved. Moreover,
the classification time is reduced significantly when using the third level decomposition since
the resulting image, in this case, has been down sampled by a factor of 23.

For the DT-CWT, recognition rates are compared when applying filters shown in Table 2;
two even-length filters are included to show that results given by odd-length filters are better.
Moreover, using either the real part or imaginary part of approximation image resulting from
the third level decomposition is investigated, obtained recognition rates are presented in
Fig. 11.

Figure 11 shows that odd-length filters perform better than even-length, in addition, the
third set of filters (n = 7) achieves the highest recognition rates of 56% and 57% for the real
and imaginary parts.

For the HOG descriptor, the image is divided into N-by-N cells and each cell is character-
ized by an α bins histogram, providing a final vector of N × N × α, the purpose is to find the
smallest values of N and α that allow the best characterization of the image. Experiments show
that good recognition rates were obtained when using 4 × 4 cells and at least 10 bins, where
80% recognition rate was achieved.

Finally, we investigate the effectiveness of our gesture recognition system using the HOG
technique applied for the approximation image given by DWT and imaginary part of DT-CWT
transforms as indicated above. Since the size of the approximation image is reduced by a
quarter at each level, we expect the HOG descriptor to require less time and fewer parameters
to characterize the images. Experiments show that the combined DWT + HOG and DT-CWT
+ HOG improve significantly the recognition rate. Furthermore, the HOG descriptor param-
eters are reduced to 3 × 3 cells and 7 bins, this allows for a faster classification due to the
smaller size of the descriptor vector. The best topology for each descriptor is presented in
Table 3.

Fig. 10 Recognition rates for different wavelets and decomposition levels
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5.3 Classifiers parametrization

We conducted several experiments to determine the best configuration for each classifier, for this
purpose, we used the third level decomposition of DWT on the ASL dataset with a black
background; the obtained results for theMLP classifier withMSE as a loss function were as follow.

Where the training functions adopted are:

GDX: Gradient Descent with momentum and adaptive learning rate.
OSS: One-Step Secant.
RP: Resilient Backpropagation.
SCG: Scaled Conjugate Gradient.
CGF: Conjugate Gradient with Fletcher-Reeves updates.

Fig. 11 Recognition rates for DT-CWT using MLP classifier

Table 3 Best topology for each descriptor

Descriptor Parameter Value Feature vector size

DWT Wavelet
Decomposition level

db1
3rd level

256

DT-CWT Decomposition filter
Decomposition level
Approximation

N=7
3rd level
Imaginary part

256

HOG Cells
Bins

16
10

160

DWT+HOG Wavelet
Decomposition level
Cells
Bins

db1
3rd level
9
7

63

DT-CWT+HOG Decomposition filter
Decomposition level
Approximation
Cells
Bins

N=7
3rd level
Imaginary part
9
7

63
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CGP: Conjugate Gradient with Polak-Ribiére updates
CGB: Conjugate Gradient with Powell-Beale restarts.

From Fig. 12, we notice that the CGB training function gave better recognition rates compared to
other functions, this is due to Powell-Beale approach, which consists of restarting the search
direction when orthogonality between consecutive gradients is lost. Therefore, the CGB function
is used in the remaining tests for MLP, we also investigated different numbers of hidden layers,
we found that using more than two hidden layers increases the processing time significantly
without necessarily improving on recognition rate. Consequently, two hidden layers are used.
Cross-entropy will also be used to compare the performance with MSE loss function.

The same procedure was applied for the remaining classifiers where, for the RBNN
classifier, both spread and number of neurons in the hidden layer were varied, respectively,
in the ranges [0.1 to 10] and [1 to 50]. For the PNN classifier, the spread was varied in the
range [0.1 to 10].

For SVM classifier, the spread was varied in the range [0.1 to 200], whereas the regular-
ization parameter C was fixed to 200 to avoid any misclassification in the training stage.

And finally, for Random Forest, the number of decision trees was varied from [1 to 100].
Table 4 presents the best topology of each classifier.

5.4 Simulation results for each dataset

Once the best configuration for each classifier and descriptor is defined, the performance of
each configuration in terms of recognition rate and processing time is computed for each
dataset, obtained results are presented in this section.

5.4.1 American sign language (Jochen Triesch’s dataset)

For this dataset, 120 postures are used for training each classifier (50% of the dataset), and the
remaining 120 postures are used to test the performance of each descriptor, obtained recog-
nition rates, and are shown in Table 5.

Fig. 12 Recognition rates for different training functions
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Simulation results show that the highest recognition rate of 99.17% was obtained for the
combination of DT-CWT and HOG descriptor where 119 out of 120 samples of test data were
correctly classified for the white background dataset using Random Forest classifier, in
comparison, the combined DWT + HOG achieved 94.17% for the white background using
Random Forest classifier.

For the black background, the highest RR of 97.5% was achieved using DT-CWT + HOG
and Random Forest classifier, in comparison, DWT + HOG only achieves 90.83% RR for the
same classifier and 94.17% using RBNN classifier.

Finally, we investigate the inter-class similarities by studying the confusion matrix of DT-
CWT + HOG with Random Forest classifier applied to ASL dataset, we chose this specific
combination since it provides an accuracy rate of 97.5% meaning that 117 of test samples were
correctly characterized, and since ASL dataset is composed of 10 postures, it is easier to spot
similarities between different classes, the corresponding confusion matrix is shown in Table 6.

We notice from Table 6 that 8 out of 10 postures were correctly classified, and the
confusion occurs only between the letters G and H because these letters have similar
corresponding gestures. As we can notice from Fig. 13, both postures are identical in hand
shape and orientation, the only difference is the number of fingers, where G posture uses one
finger and H posture uses two fingers.

Table 4 Best topology for each classifier

Classifier Parameter Value

MLP Training function
Transfer function
Number of hidden layers
Number of neurons in each hidden layer
Performance function
Number of epochs

Conjugate Gradient with Powell-Beale restarts
Hyperbolic tangent sigmoid
2
1 to 200
MSE or Cross-Entropy
500

RBNN Number of neurons in hidden layer
Spread of RBF

1 to 50
0.1 to 10

PNN Spread σ 0.1 to 10
SVM Spread σ

Regularization parameter C
0.1 to 200
200

Random Forest Number of decision trees 1 to 100

Table 5 Recognition rates for ASL dataset

Black background White background

DWT DT-CWT HOG DWT
+HOG

DTCWT
+HOG

DWT DT-CWT HOG DWT
+HOG

DTCWT
+HOG

MLPMSE 45 47.5 82.5 85 85 42.5 56.67 85 78.33 81.67
MLPCross-Entropy 61.67 61.67 85.83 88.33 86.67 65.83 65 87.5 83.33 85
RBNN 62.5 65 87.5 94.17 95.83 72.5 75.83 88.33 87.5 94.17
PNN 58.33 65 85.83 88.33 88.33 65.83 68.33 87.5 83.33 83.33
SVM 67.5 68.33 85.83 90.83 92.5 57.5 67.5 88.33 85.83 88.33
Random Forest 58.33 70 88.33 90.83 97.5 65.83 67.5 90 94.17 99.17
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5.4.2 Arabic sign language

We conducted the same experiments shown previously on ArSL dataset where 50% of the
total postures (900 postures) were used for training and the remaining 50% was employed to
test the efficiency of each classifier, best recognition rates for each architecture are summarized
in Table 7.

We notice that the combined features performed better than the individual descriptors, the
best recognition rate of 94.89% was achieved using the combination of the descriptors DT-
CWT + HOG for feature extraction and SVM as classifier. The Random Forest classifier did
not perform well for this dataset due to the limited number of trees equal to 100. Therefore,
increasing the number of trees would improve the recognition rates but it would result in a
much slower model.

Table 6 Confusion matrix for DT-CWT + HOG applied to ASL dataset

A B C D G H I L V Y

A 12 0 0 0 0 0 0 0 0 0
B 0 12 0 0 0 0 0 0 0 0
C 0 0 12 0 0 0 0 0 0 0
D 0 0 0 12 0 0 0 0 0 0
G 0 0 0 0 11 2 0 0 0 0
H 0 0 0 0 1 10 0 0 0 0
I 0 0 0 0 0 0 12 0 0 0
L 0 0 0 0 0 0 0 12 0 0
V 0 0 0 0 0 0 0 0 12 0
Y 0 0 0 0 0 0 0 0 0 12

G                      H

Fig. 13 Letters G and H from
Triesch’s dataset

Table 7 Recognition rates for ArSL dataset

DWT DT-CWT HOG DWT
+HOG

DTCWT
+HOG

MLPMSE 61 67 85.88 88 89.11
MLPCross-Entropy 74.22 75.66 89.11 88.77 89.44
RBNN 79.55 82.22 90.88 86.33 93.11
PNN 75.44 76 82.55 84.55 88.66
SVM 78.22 80.78 90.22 85.11 94.89
Random Forest 75.44 79.55 88.77 86.77 90.44
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5.4.3 Dynamic hand gesture dataset

From previous results, we conclude that the combination of each wavelet transform with HOG
descriptor improved recognition rates for static postures, but since these algorithms were
designed to characterize 2D images, we evaluate their performance for dynamic gestures
where each sequence is defined by a set of continuous postures. The obtained results for
Marcel gesture dataset are presented in Table 8, where 24 sequences were used for training and
24 sequences were used for testing.

Obtained results show that the Random Forest provided higher results than other classifiers,
moreover, the combined features performed better than individual descriptors, where the
combination of DT-CWT + HOG with Random Forest classifier performed best by recog-
nizing all 24 test sequences.

5.4.4 Cambridge hand gesture dataset

For this dataset, we used the same experimental protocol described in [27], meaning that the
training of all classifiers was performed on 20 sequences acquired from the first illumination
setting, whereas testing was done on the 80 sequences from the remaining illumination
settings. The obtained recognition rates are presented in Table 9.

Table 9 shows similar results to other datasets, where the DT-CWT + HOG performed best
achieving an average recognition rate of 76.25% using RBNN classifier and 81.11% using
Random Forest. Furthermore, we notice that the combined features greatly improved the
recognition rates which increased from 32.11% to 69.30 for DWT and DWT + HOG, and
from 36.66 to 81.11 for DT-CWT and DT-CWT + HOG.

Table 8 Recognition rates for dynamic gestures dataset

DWT DT-CWT HOG DWT
+HOG

DTCWT
+HOG

MLPMSE 75 75 79.16 87.5 87.5
MLPCross-Entropy 79.16 83.33 83.33 91.66 95.83
RBNN 83.33 83.33 87.5 95.83 95.83
PNN 70.83 75 75 79.16 83.33
SVM 83.33 83.33 87.5 91.67 95.83
Random Forest 83.33 87.5 91.67 95.83 100

Table 9 Recognition rates for Cambridge dataset

DWT DT-CWT HOG DWT
+HOG

DTCWT
+HOG

MLPMSE 15.55 19.44 61.38 62.77 66.11
MLPCross-Entropy 27.77 34.72 63.19 65.27 74.30
RBNN 29.86 31.11 74.31 64.72 76.25
PNN 27.77 33.88 52.22 66.66 72.91
SVM 32.11 36.66 59.44 64.72 69.58
Random Forest 29.58 29.30 65.28 69.30 81.11
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5.5 Time processing

Our proposed system is composed of three main phases:

– Applying DWT or DT-CWT to the input image.
– Features extraction using HOG descriptor to create a compact vector.
– Training and gesture classification using different classifiers. For this phase, we only

present the obtained results for DT-CWT + HOG since this combination provides the
best recognition rates for all datasets.

Time processing for each phase was computed separately, we note that our system was
implemented using MATLAB R2019b on a laptop equipped with an I3-4030u processor
and 4GB of RAM. Obtained results were as follow:

– The average time required to apply DWT or DT-CWT to one image is about 0.7 s.
– Features extraction phase using HOG descriptor takes 0.5 s per image
– Processing times for gesture classification and training are summarized in Fig. 14.

Figure 14 shows that the training times obtained for SVM classifier are considerably faster than
the other techniques, where for the Cambridge dataset, training SVM takes 1.17 s compared to 17 s
for the Random Forest. In addition, after the training phase, the system takes 1.28 s to characterize
and classify one image using SVM classifier, compared to 1.62 s for Random Forest.

5.6 Discussions

In this section, we present and discuss the best results achieved by our system based on
recognition rates and processing times, which include training and testing. Figure 15 summa-
rizes the highest RR as well as the lowest processing times achieved by the proposed system.

Simulation results show that the combined features DT-CWT + HOG with Random Forest
classifier provide the highest overall RR, where 97.5% and 99.17% were achieved for

Fig. 14 Processing times for all classifiers
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Triesch’s ASL dataset with white and black backgrounds. Similarly, a 100% RR was reached
for Marcel’s dynamic dataset and 81.11% for Cambridge dataset. However, when considering
processing times, we notice that SVM classifier has better recognition timings, for Triesch’s
dataset, the classification phase using SVM takes 0.53 s which is 5 times faster than Random
Forest classifier. For Marcel’s dataset SVM classifier takes 0.48 s while Random Forest spends
1.7 s. Moreover, for Cambridge dataset, SVM classifier takes 3.52 s which is significantly
faster than the 21.53 s spent by Random Forest.

These results illustrate that there is a trade-off between speed and performance between the
two classifiers, Random Forest performs better in terms of RR, in contrast, SVM is faster but
provides lower RR.

However, for ArSL dataset, SVM demonstrates better performance in both RR and processing
times, where 94.89% RR is achieved compared to 90% for Random Forest, and the classification
time is about 1 s for SVMcompared to 4.84 s for RandomForest. Therefore, SVMclassifier is better
suited for this specific dataset, since it provides higher RR with less processing time.

Despite the satisfying results and advantages provided by the proposed system, such as the
compact feature vector, feature analysis on different resolutions, noise resistance, hand shape
characterization, and user independence. However, it presents some limitations, namely:

– The system robustness to illumination changes could be enhanced.
– The HOG descriptor efficiently captures the hand structure if there is no background

clutter. Therefore, an accurate segmentation is required for real-life applications.
– The characterization time of 1.2 s is slow for real-time applications.
– Random Forest classifier requires many trees to achieve good performance, this results in

a slower model overall.
– Our system should be improved to achieve good accuracy, especially against a complex

background.

5.7 Comparison with previous works

To showcase the efficiency of the proposed method which is the combination of DT-
CWT and HOG descriptors, we compared obtained recognition rates of each dataset

Fig. 15 Recognition rates and processing times for all datasets
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with previous works that used different techniques to characterize and classify the
gestures.

We clarify that the percentage of training and testing data are different for the majority of
works in gesture recognition while using the same dataset. Table 10 shows a comparison of the
obtained results in terms of recognition rate for previous works using the same datasets while
precising the employed training and testing percentages.

It is clear from Table 10, when comparing recognition rates obtained for each architecture,
that our proposed method applied on Triesch’s dataset, achieved a better score varying from
97.5 to 99.17%, which is motivating and encouraging compared to those obtained in [24, 35],
we also notice that better results were achieved in [54] for the black background by increasing
the training percentage to 75%.

For Arabic Sign language dataset, the combined DT-CWT + HOG achieved a 94.89%
recognition rate which is better than the results cited in [3, 9, 53]. However, better a
recognition rate of 95.83% was achieved in [54] due to employing a training percentage of
75%. Besides, a score of 100% was obtained for the dynamic dataset using the combined
descriptor DT-CWT + HOG and the Random Forest classifier, which is better than the results
obtained in [2, 41].

In addition, 81.11% RR was achieved for Cambridge dataset, which is slightly lower than
the score obtained in [27], but superior to one cited in [28]. Furthermore, increasing the
training percentage to 50% greatly improves the RR of our system from 81.11% to 92.89%.
The achieved RR exceeds the performance of HMM used in [55], yet the methods used in [63]
achieved a higher RR of 98.23%.

From our overall analysis, our proposed method achieved significant improvement in terms
of recognition rate where 97.5 to 99.17% was obtained using DT-CWT + HOG combined
with Random Forest classifier for American Sign Language, and 100% RR for the same
architecture applied for Marcel dataset and 81.11% for Cambridge dataset. We can say that
there is no universal descriptor or classifier that could be the best for any data with complex or
uniform background.

Table 11 Comparison of ASL results to previous works

Protocol Reference Method RR (%)

P1 Triesch et al. 2002 [67] Elastic Graph Matching 93.8
Kelly et al. 2010 [25] Eigenspace Size Function + Hu moments 85.1
Moghaddam et al. 2011 [37] Kernel Principle Component Analysis + SVM 89.5
Dahmani et al. 2014 [9] Tchebichef moments + Hu moments

+ Geometric features
85.33

Reddy et al. 2018 [51] Local Histogram Feature Descriptor + SVM 91.9
Proposed Method DT-CWT+HOG+Random Forest 89.76

P2 Just et al. 2006 [21] Modified Census Transform 89.9
Kelly et al. 2010 [25] Eigenspace Size Function + Hu moments 91.8
Moghaddam et al. 2011 [37] Kernel Principle Component Analysis + SVM 95.3
Dahmani et al. 2019 [10] Size Functions based moments 94.58
Dahmani et al. 2014 [9] Tchebichef moments + Hu moments

+ Geometric features
96.88

Reddy et al. 2018 [51] Local Histogram Feature Descriptor + SVM 95
Proposed Method DT-CWT+HOG+Random Forest 96.56
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Moreover, for the ASL dataset, two benchmark protocols are, usually, employed in
literature to facilitate the comparison between different techniques. The first protocol, P1, uses
only 3 images for training and 21 images for testing, whereas, the second protocol, P2, uses 8
images for training and the remaining 16 images are used for testing, protocol P1 was first
introduced in [67] and P2 in [21]. Table 11 shows a comparison between our proposed system
and previous works using protocols P1 and P2.

Table 11 shows that the proposed method performed well using both protocols, for protocol P2,
obtained results are better than previous works, where 309 test images were correctly classified from
a total of 320 images. However, for protocol P1, the Elastic Graph Matching method used in [67]
performed better than ourmethod achieving 93.8%, where our system achieved 89.76% recognition
rate, this is due to the reduced number of training images (3 per class).

6 Conclusion

In this paper, we have presented an alphabet sign and a gesture recognition system using DWT,
DT-CWT, and HOG descriptors for gesture parametrization and MLP, RBNN, PNN, SVM, as
well as Random Forest classifiers to recognize the correct gestures and illustrate the efficiency
of our system.We have demonstrated that the combined features DT-CWT + HOG performed
much better in terms of both accuracy rate and execution times than the individual descriptors.
To evaluate these performances, we have used several datasets composed of static and dynamic
gestures. For the static form, two sign language datasets with simple background were used, the
first contains 10 alphabets from the American Sign Language, and the second contains 30
alphabets from theArabic Sign Language, for the dynamic form, we used two different datasets,
the first contains 4 different classes, where each class is defined by 12 video sequences with 55
frames each, the second contains 3 different gestures, each gesture is repeated in 3 different
motions, which provides 9 classes recorded with 5 different illumination settings.

From simulation results, we conclude that applying the HOG descriptor to the imaginary
part of the approximation image computed by DT-CWT provides much better results than
using the individual features. Furthermore, for the classification task, SVM and Random
Forest classifiers provided better results overall when compared with other classifiers, where
for ASL, Marcel, and Cambridge datasets, Random Forest achieved higher recognition rates
than all other classifiers, whereas SVM provided lower processing times. However, for ArSL
dataset, the SVM classifier achieved better results in terms of recognition rates and processing
time. The comparison with some previous works shows the efficiency of the proposed method,
where comparable performance was achieved by our proposed system.

For future work, we can investigate improving this system by adding segmentation and
hand tracking steps for real-time acquisition and recognition.
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