
https://doi.org/10.1007/s11042-023-14333-0

Video question answering supported by a multi-task
learning objective

Alex Falcon1,2 ·Giuseppe Serra2 ·Oswald Lanz3

Received: 26 January 2022 / Revised: 30 June 2022 / Accepted: 2 January 2023 /

© The Author(s) 2023

Abstract
Video Question Answering (VideoQA) concerns the realization of models able to analyze
a video, and produce a meaningful answer to visual content-related questions. To encode
the given question, word embedding techniques are used to compute a representation of
the tokens suitable for neural networks. Yet almost all the works in the literature use the
same technique, although recent advancements in NLP brought better solutions. This lack
of analysis is a major shortcoming. To address it, in this paper we present a twofold contri-
bution about this inquiry and its relation with question encoding. First of all, we integrate
four of the most popular word embedding techniques in three recent VideoQA architec-
tures, and investigate how they influence the performance on two public datasets: EgoVQA
and PororoQA. Thanks to the learning process, we show that embeddings carry question
type-dependent characteristics. Secondly, to leverage this result, we propose a simple yet
effective multi-task learning protocol which uses an auxiliary task defined on the question
types. By using the proposed learning strategy, significant improvements are observed in
most of the combinations of network architecture and embedding under analysis.

Keywords Video question answering · Word embedding techniques ·
Vision and language · Multi-task learning

� Alex Falcon
afalcon@fbk.eu; falcon.alex@spes.uniud.it

Giuseppe Serra
giuseppe.serra@uniud.it

Oswald Lanz
lanz@inf.unibz.it

1 Technologies of Vision, Fondazione Bruno Kessler, Via Sommarive, 18, Povo, 38123, Trento, Italy
2 AILab, University of Udine, Via delle Scienze, 206, Udine, 33100, Udine, Italy
3 Faculty of Computer Science, Free University of Bozen-Bolzano, Piazza Domenicani 3, Bolzano,

39100, Italy

Published online: 24 March 2023

Multimedia Tools and Applications (2023) 82:38799–38826

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-14333-0&domain=pdf
http://orcid.org/0000-0002-6325-9066
mailto: afalcon@fbk.eu
mailto: falcon.alex@spes.uniud.it
mailto: giuseppe.serra@uniud.it
mailto: lanz@inf.unibz.it

1 Introduction

Video Question Answering (VideoQA) is a task that requires to analyze and jointly reason
on both the given video data and a visual content-related question, to produce a meaning-
ful and coherent answer to it [15]. By solving this task, a computational model could reach
human-level capabilities when dealing with both complex video and textual data, since it
would require learning to reason about the elements of interest in the video and their spatial
and temporal interactions related to the given question. VideoQA represents thus a challeng-
ing task at the interface between Computer Vision and Natural Language Processing (NLP)
[6, 8, 55].

Typically, a VideoQA architecture consists of a video encoder, a text encoder, a fusion
module, and a decoder to produce the final answer [7], as can be seen in Fig. 1a. These
components for VideoQA are often built from neural networks which are the outcome of
research work both from the NLP and Computer Vision communities. Deep convolutional
networks originally proposed for Computer Vision tasks, such as image classification or
action recognition, are usually employed as the backbone of the video encoder: as an exam-
ple, among the many proposed architectures, appearance features are computed by means
of VGG [41] in [5, 6], while [7, 13, 15, 16] adopt ResNet [11]; on the other hand, motion
features can be produced by using C3D [46] (e.g. in [5, 6, 15, 16]) or BN-Inception [14], as
in [7]. Similarly, text encoding involves the usage of word embedding techniques, which are
algorithms that transform natural language words into fixed-size representations. Consider-
ing that these representations are suitable for neural network training, these techniques are
responsible for the great developments in the NLP community in recent years, e.g. [31, 40]
for the task of named entity recognition, and [3, 29] for text question-answering. Although
several word embedding techniques with different characteristics have been proposed in the

Fig. 1 High level representation of a typical VideoQA architecture (shown in the upper part), consisting
of: Video encoder and Text encoder which transform the raw input data into fixed-size representations; a
Fusion module which combines the multimodal information; and the Answer decoder, which computes the
final answer. In the lower part, we present an augmented VideoQA architecture which leverages a multi-task
learning strategy in order to jointly classify and answer the input question

38800 Multimedia Tools and Applications (2023) 82:38799–38826

literature, VideoQA architectures rely on only a few of these techniques, such as GloVe pro-
posed by [35] and word2vec by [33, 44]. As a consequence this language component, which
provides the basis for the training process, is often underexplored in VideoQA architectures.
Moreover, to the best of our knowledge, there are no complete and in-depth studies about
the interaction between word embedding techniques and the VideoQA task. Hence, in this
paper we propose an in-depth and extensive analysis to address these shortcomings.

Moreover, a multi-task learning strategy for VideoQA is introduced. As explained in a
recent survey by [60], multi-task learning is a learning paradigm which aims at jointly learn-
ing multiple related tasks – in this way, the model needs to extract representations which are
useful for all the considered tasks, therefore possibly leading to better generalization. This
approach led to considerable improvements when applied to NLP (e.g. [37, 49]) and com-
puter vision (e.g. [43, 59]), but also at the intersection of the two domains, especially when
dealing with large scale visual-textual pretraining (e.g. [30, 56]). Few works in the literature
introduce auxiliary tasks designed for VideoQA, such as the one by [18], where the model
is trained to perform question answering, as well as video-subtitle alignment and temporal
localization. In our work, an auxiliary task is introduced and it is designed with reference to
the insights gathered from the aforementioned analysis of the word embedding techniques
in the VideoQA domain.

In this paper, we propose a twofold contribution to VideoQA: firstly, a detailed analysis
of word embedding techniques and of the final performance achieved by the model; sec-
ondly, a novel multi-task learning strategy to train a VideoQA architecture which aims at
improving its generalization capabilities. In particular, we consider four word embedding
techniques: GloVe, a popular technique which leverages co-occurrence statistics to compute
low-dimensional embeddings; ELMo [36], a technique which uses character-level convolu-
tions and LSTM networks; BERT [3] and XLM [24] which leverage Transformers [48] as
part of their encoding process. We integrate and evaluate these four techniques into three dif-
ferent VideoQA architectures, each of which adopts multiple state-of-the-art techniques. As
the main and most relevant result of our analysis, we observe that different word embedding
techniques perform differently when facing specific question types. With the term ‘ques-
tion type’ we refer to a categorization of the questions based on the target of the question
itself. As an example, the question type ‘Causality’ refers to questions that ask to identify
an event which happens in relation to another one. As can be seen in Fig. 1a, a question
of this type could involve a specific event such as “what happened when the egg broke?”,
to which the model may correctly answer by pointing out what happened next, e.g. “a
green little dinosaur popped out”. As detailed in the experimental analysis, we observe that
BERT and XLM exhibit a higher accuracy (with a sensible margin) than ELMo and GloVe
when dealing with ‘Causality’ questions. To investigate the relation occurring between word
embedding techniques and question types, we propose a solution involving multi-task learn-
ing (Fig. 1b) which, differently from traditional approaches to VideoQA, jointly optimizes
both the task-oriented loss and a novel classification loss related to the question types.

The main contributions of this paper can be summarized as follows:

• we integrate four of the most adopted word embedding techniques (GloVe, ELMo,
BERT, and XLM) in three recent VideoQA architectures, from an attention-based
encoder-decoder baseline [15] to more complex architectures involving memory [8]
and reasoning [6];

• by quantitatively analyzing all the 12 combinations of embedding techniques and
VideoQA architectures, we observe that word embedding techniques work better for
specific question types;

38801Multimedia Tools and Applications (2023) 82:38799–38826

• we propose a simple yet effective multi-task learning strategy which can help the con-
sidered models achieve better generalization, leading to considerable improvements on
two public datasets;

• we release code and pretrained models at https://github.com/aranciokov/MT-VideoQA
to support research in this important field, to ease the reproducibility of the results, and
to provide a codebase adaptable to different VideoQA datasets and models.

The rest of the paper is organized as follows. In Section 2 a comprehensive literature
review is performed in order to contextualize the proposed method. The proposed methodol-
ogy is presented in detail in Section 3. Several experimental results are shown and discussed
in Section 4, concerning both the analysis of multiple word embedding techniques and the
proposed multi-task learning strategy. Finally, Section 5 concludes the paper.

2 Related work

In this section we discuss the work related to the two main topics involved in our study, i.e.
Video Question Answering, and word embedding techniques.

2.1 Video question answering

Thanks to the recent availability of several large scale VideoQA datasets, such as TVQA
[25], How2VQA69M [58], TGIF-QA [15], MSRVTT-QA and MSVD-QA [55], this task
has gained more and more attention by researchers in both Computer Vision and NLP fields
[5, 6, 8, 13, 15, 34, 55, 57, 58]. In particular, two types of tasks are often linked to VideoQA:
the “open-ended” (e.g. in [5, 15, 55, 58]) and the “multiple choice” task (e.g. [5, 15, 19,
25, 45]). The former is usually treated as a classification problem where the correct answer
is identified in a predefined set of possible answers, although it can also be approached
through generative techniques by generating a free-form response word-by-word, e.g. in
[54, 61]; the latter (i.e. “multiple choice”, which is also the task that we tackle within this
work) involves the usage of a small pool of candidate answers (e.g. five choices in [5, 15])
which are possibly different for every question, and the model selects one of the candidates
based on a score computed through a regressor. Considering that in our paper we describe
and apply our approach in relation to the multiple choice task, in the following we focus on
this specific task.

A prominent research direction for the multiple choice task consists in the usage of deep
neural networks to learn suitable temporal or spatio-temporal features, eventually adopting
attention mechanisms to filter out irrelevant features or redundant frames or frame regions,
e.g. [8, 15, 25, 28]. “ST-VQA” by [15] integrated a temporal attention module to attend
to the most important frames in the input clip, while leveraging LSTM networks to model
the sequential aspect of both the visual and textual data. Conversely, [28] proposed a Posi-
tional Self-Attention block based on [48] to replace recurrent networks, while also using
self-attention to learn self-attended single-modality features and a cross-modal attention
mechanism in order to compute rich representations for the available visual and textual
data. Although these methods led to considerable improvements on several public bench-
marks, an important drawback is that they relied on clip- or frame-level representations,
therefore missing out finer-grained details at the object-level. A recent research direction
which focused on this aspect explored local relations between the visible objects and their
natural language description. Huang et al. [13] built a complete graph using frame- and

38802 Multimedia Tools and Applications (2023) 82:38799–38826

https://github.com/aranciokov/MT-VideoQA

object-level features as node descriptors, making the graph location-aware by augmenting
the nodes by means of spatial and temporal position features, and then reasoned over this
structure with a Graph Convolutional Network [22]. Yet, only visual information are used to
build and reason on the graph structure. Jiang and Han [16] argued that visual and linguistic
factors have coordinated semantics which can be aligned to perform cross-modal reason-
ing, hence leading to the construction of an heterogeneous data structure. Although multiple
video modalities are used by Jiang and Han, the semantic relations between them are not
fully used. Therefore, [34] suggested to model both the visual-linguistic interactions as well
as the semantic relations between different video modalities (e.g. appearance, motion) by
using the question as a proxy. Differently from these works, a new research direction shifted
the attention to the training strategy. In particular, objective functions taken from the NLP
domain were adapted to the VideoQA task. Yang et al. [57] performed masked language
modeling (MLM) and next sentence prediction using object-level and question features as
one of the inputs, while the candidate answers are used as possible next sentences. Similarly,
[58] suggested using MLM and a contrastive objective in order to choose the correct answer
using similarity metrics. Several papers (e.g. [26, 27, 62]) have also achieved notable per-
formance on the target dataset by performing a large scale pretraining phase on large scale
multi-modal datasets such as VisualGenome [23], HowTo100M [32], or How2VQA69M
[58] by using language-only, vision-only, or language-vision proxy tasks. Yet, a major draw-
back of these pretraining procedures is the prohibitive computational cost, e.g. the training
procedure on How2VQA69M lasted 2 days while using 8 Tesla V100 GPUs, according to
[58]. Finally, given the sequential nature of the data involved in VideoQA, the usage of
memory layers has also been explored, raising the possibility to interact with a memory
made of multiple vectors, which is typically not possible in other neural networks which
have a memory consisting of a single vector. “CoMem” [8] used memory layers to gen-
erate attention cues starting from both motion and appearance features. “HME-VQA” [6]
introduced an heterogeneous memory layer while also proposing a multi-step LSTM-based
reasoning technique. In our work, among all the aforementioned solutions, we chose to
use ST-VQA, CoMem, and HME-VQA because they offer increasingly complex and rich
solutions which cover multiple state-of-the-art techniques, while also offering open source
code bases. In particular, ST-VQA offers an attention-based encoder-decoder, CoMem also
employs memory layers to support the generation of attention cues from both video modal-
ities, and finally HME-VQA integrates multi-step reasoning as well. Although these works
use advanced techniques to perform the video modeling or to fuse heterogeneous types of
information, they only explore one technique to embed the words into vectorial represen-
tations, that is GloVe, therefore ignoring recent advancements in NLP. To this end, given
that understanding the question is fundamental to predict the correct answer, in this paper
we analyze how four popular embedding techniques interact with the network architectures
used for VideoQA. Then, we propose a multi-task learning strategy to improve the general-
ization capabilities of a VideoQA system, by designing an auxiliary task based on the results
of the preliminary analysis.

2.2 Word embedding techniques

NLP has rapidly evolved during the past few years and one of the most investigated topics
is related to neural language models (LM). Before the introduction of BERT, GloVe and
ELMo were two of the most used techniques.

Pennington et al. [35] introduced GloVe, which is a static, non-contextual word embed-
ding technique which computes the word vectors by leveraging both local and global

38803Multimedia Tools and Applications (2023) 82:38799–38826

statistics (e.g. word co-occurrence), assigning the same embedding (i.e. a real-valued vec-
tor) to a word independently from the context in which such word is used. Differently from
GloVe, [36] proposed a contextual (i.e. each word receives an embedding depending on the
context) LSTM-based LM called ELMo. Moreover, the objective of ELMo is to estimate
the probability distribution of the training corpus using recurrence, and is thus classified as
an autoregressive LM.

Lately, the introduction of BERT by [3] and its variants (e.g., XLM by [24] and Distil-
BERT by [38]) showed that these models have strong transfer learning capabilities by simply
attaching and training a task-specific head over the pretrained backbone. Being based on
Transformers [48], they are solely based on attention mechanisms and do not use any recur-
rent neural network. Because of this they are classified as autoencoding LMs: instead of
estimating the probability distribution of the corpus, they learn a function to reconstruct the
input from masked versions of it.

With the introduction of BERT, several tasks in NLP reached new state-of-the-art results,
yet its predecessors are still used in many works, e.g. GloVe in [6, 13, 16, 34, 50]. As
mentioned before, to fairly analyze the influence of the most important word embedding
techniques in the VideoQA task, we propose a study to understand which one to use by
integrating each of them in three VideoQA models.

3 Methodology

In our study we explore the usage and integration of several word embedding techniques
into three different VideoQA architectures (i.e. ST-VQA, CoMem, and HME-VQA) which
involve multiple state-of-the-art techniques including attention mechanisms, memory lay-
ers, and multi-step reasoning. To treat them all in a shared but comprehensive manner,
we present in Fig. 2 a detailed overview of a VideoQA architecture: it comprises both the
common components, such as “Feature extraction” and “Word embedding”, as well as the
modules which are exclusive to only some of the architectures, such as the “Reasoning mod-
ule” which is only used by HME-VQA.Moreover, on the right we also outline the additional

Fig. 2 General architecture of the models considered in our study, which focuses on the Word Embedding
module and the Question type classifier (outlined in red). The former receives the question and the candidate
answers, and outputs L embeddings of size E. The latter is trained in a multi-task learning style and we show
it helps improving the performance

38804 Multimedia Tools and Applications (2023) 82:38799–38826

components related to the proposed multi-task learning strategy, including a module used
to classify the question type, and the joint loss function (built on LA and LC , described in
Section 3.1). As already mentioned, a VideoQA architecture can be seen as made of four
blocks, that is Video encoding, QA encoding, Fusion, and Decoding. Given the input data,
we extract a sequence of embeddings for both the video (in “Feature extraction”) and the
input question (in “Word embedding”), as well as for the candidate answers. For the video,
VGG is employed to extract appearance features, while C3D is used for motion features. For
the textual data, we use one of the word embedding techniques that we explore in this paper
(see Section 4.2 for more details). These two steps are done for all the architectures that we
consider, which are ST-VQA [15], CoMem [8], and HME-VQA [6]. Then, for both visual
and textual data, we employ an encoder made of two stacked LSTM networks to model the
evolution of the features. Note that ST-VQA concatenates appearance and motion features
before processing them by using the Video encoder; CoMem and HME-VQA independently
model the two sequences of features via two independent Video encoders which follow the
same structure. The Fusion block aims at computing a representation which takes both the
video and textual information into account. In ST-VQA, this is done through a Temporal
Attention module, which weighs each visual features vector based on the aggregated textual
representation; in CoMem, appearance and motion features are used to provide attention
cues to each other by employing a Memory module; finally, a Reasoning module is used
in HME-VQA to compute an aggregated representation of the output of the heterogeneous
memory layer, while also employing two temporal attention modules to compute modality-
independent attention-weighted vectors (see Section 3.2 for an in-depth explanation). The
fused features are then used in the decisional process to predict a regression score for the
candidate answer. Note that in the case of HME-VQA the input to the decoder uses both the
attended visual vectors and the output of the Reasoning module. To optimize the network
parameters, an hinge loss is used to enforce a margin (e.g. 1, as in (2)) between the score
computed for the correct answer and all the other candidate answers.

In Section 3.1 we thoroughly describe the proposed multi-task learning strategy. For
completeness, we also provide further details about the adopted methods in Section 3.2, by
focusing on their differences.

3.1 Multi-task learning strategy

When asking a question to a VideoQA model, we expect it to extract visual and textual
information which are related to the question itself. Furthermore, we expect questions of
the same category to share a similar visual and textual joint representation as computed
by the Fusion module. As an example, questions asking to identify an object may require
spatial features which are closely related to the objects shown in the video, while asking to
recognize an action may shift the focus on temporal aspects. For this reason, we propose to
incorporate the question type (as a classification objective) into the loss function we strive
to optimize.

The proposed multi-task learning strategy involves a joint loss function, comprising of a
pairwise hinge loss LA, which is used to train the model for the VideoQA multiple choice
task, as it is often done in the literature (e.g. in [5, 15]) and a classification loss LC which
we use to make the model able to categorize an input question into one of the predetermined
types. Such a joint loss can be described as:

L = LA + LC (1)

38805Multimedia Tools and Applications (2023) 82:38799–38826

For a given input sample, the pairwise hinge loss can be described as:

Lc,r =
{
0 if c = r

max(0, 1 + sc − sr) if c �= r
(2)

where sc and sr are the scores dr computed by the Decoder (see Section 3.2, (11) for more
details) for the candidate answer c and the right answer r . To compute Lc,r for each sample
in the minibatch, we use the following equation:

LA =
∑
q∈Q

∑
c∈Cq

Lc,r (3)

where Q represents the questions in the minibatch, while Cq and r are respectively the set
of candidate answers and the correct answer for q.

To deal with the additional classification objective LC , we augment all the considered
architectures by attaching a classifier head on top of the Text encoder:

lqt = sof tmax(εwWqt + bqt) (4)

where is the output of the Text encoder (see Section 3.2 for more details),
and are trainable parameters, H is twice the hidden size h, and

finally nqt is the amount of question types in the considered dataset. To train the model for
this additional task, we consider the following equations:

χ(x, y) = 1

nqt

nqt∑
i=1

−(yi · log(xi) + (1 − yi) · log(1 − xi)) (5)

LC = 1

|Q| · |Cq |
∑
q∈Q

∑
c∈Cq

χ(lqt , one-hot(t)) (6)

where t is the type of the question q, and one-hot(t) computes its one-hot representation.
By using lqt we consider the question as well as the candidate answer because both may
contain helpful and discriminative information while optimizing for this task.

As previously mentioned, we apply our multi-task learning strategy to several different
architectures, in order to show its general applicability. In the following section, we provide
a more detailed presentation of the considered VideoQA architectures.

3.2 VideoQA architectures

Here we describe three VideoQA models which can be seen as made of four blocks [7]:
Question-Answer (QA) Encoding, Video Encoding, Fusion, and Decoding. This can be
observed both in Fig. 1, where we depict it from a high level view, and in Fig. 2, which
shows a general framework to cover all the models used in this study. These three models
involve several state-of-the-art techniques, including attention mechanisms, memory layers,
and multi-step reasoning, offering an heterogeneous experimental setting. In Fig. 3 we also
include a more in-depth view on the three architectures in order to highlight the major dif-
ferences between them, which are also commented in the following subsections. The four
blocks previously identified in Fig. 2 are respectively colored in purple, blue, yellow, and
darker yellow. The proposed multi-task learning strategy (see Section 3.1) is highlighted
in red. As can be seen, the auxiliary task introduced in this paper, that is the prediction of
the question type, is performed by using the textual features computed by the LSTM-based

38806 Multimedia Tools and Applications (2023) 82:38799–38826

Fig. 3 Detailed diagram of the three models we selected from the literature, i.e. (left) ST-VQA by [15],
(middle) CoMem by [8], and (right) HME-VQA by [6]. Compared to Fig. 2, we color in blue the “Video
encoding”, in purple the “QA encoding”, in yellow the “Fusion”, in darker yellow the “Decoding”, and finally
we highlight in red the modification applied to the base algorithms in order to use the proposed multi-task
learning strategy. In the “Optimization” cloud we perform LA + LC

Text Encoder. The proposed multi-task learning strategy is easily extendable to heteroge-
neous architectures and, in fact, in Section 3.1 it is shown how to apply it to three different
techniques from the literature.

ST-VQA The first model we use is based on ST-VQA proposed by [15], an encoder-decoder
architecture supported by attention mechanisms. Since we deal with the multiple choice
task, the QA encoding module receives a question and a pool of candidate answers. Let
q1 . . . qm and a1 . . . an be the sequence of m tokens of the question and n tokens of (one of
the candidate) answer. As shown in Fig. 2, the encoding of question and candidate answer is
performed for each of the candidates, since they are (possibly) different for each question.
In Fig. 3 (left) this is shown as the “Textual question + candidate answer” block. To do so,
q1 . . . qm and a1 . . . an are concatenated into δ and used as input to the embedding technique
(shown as “Word embedding” in Fig. 3), eventually adding some special tokens (for more
details, see Section 4.2). Hence, the textual data are first embedded into , where
L is the number of tokens in question and answer, and E is the embedding size. Then, φw

is input to the Text Encoder, which consists of two stacked LSTM networks. The encoded
textual features εw are obtained by concatenating the last hidden state of both the LSTM
networks, thus forming a feature vector . In the Video Encoding block, both

38807Multimedia Tools and Applications (2023) 82:38799–38826

motion and appearance features are obtained from an input video clip made of N frames.
Both the feature extraction and the Video Encoder are depicted in Fig. 3 with the blue color.
To compute the appearance features, they use a frozen VGG-16, pretrained on ImageNet,
and extract the fc7 activations (). To compute the motion features, they use a
frozen C3D, pretrained on Sports1M [17] and fine-tuned on UCF101 [42], and extract the
fc7 activations (). In our work, we use VGG-16 and C3D because the feature
vectors are computed through a transformation of the feature maps computed by the convo-
lutional layers, and not by employing a global pooling layer. In fact, while the usage of the
latter operation (for example, employed in ResNet by [11]) greatly reduces the quantity of
parameters in the model, it also leads to a loss of the positional information available in the
activation tensors. The features extracted from VGG and C3D are concatenated obtaining

(with V = 8192) and then input to a Video Encoder made of two stacked
LSTM networks. Despite similar in structure to the Text Encoder, the output of the Video
Encoder consists of the full sequence of hidden states, i.e. .

ST-VQA features an attention-based [1, 12] Fusion block, shown in yellow in Fig. 3
(left), which lets the model learn which frames are more important based on the encoded
textual features. It receives in input the encoded video features εv and the textual features
εw , and can be described by the following equations:

ωs = tanh(εvWv + εwWw + bs)Ws (7)

αs = sof tmax(ωs) (8)

(9)

where , and are learnable parameters. Equation
(9) implements a sum-pool operation, where is a row of ones (11×N). ◦ represents the
element-wise multiplication operator.

Finally, the decoder we use is based on the one proposed in [5]. Decoding is done for
each QA pair, that is in our multiple choice setting, five times with different textual fea-
tures producing five different scores, one per candidate answer. It can be described by the
following equations:

df = tanh(ωaWa + ba) (10)

dr = (df ◦ εw)Wd + bd (11)

where , and are parameters, ,
is the score obtained by testing a specific candidate answer (out of the five possible choices
related to the given question). The Decoding step is shown with a darker shade of yellow in
Fig. 3.

CoMem The CoMemmodel is based on the work by [8]. As in ST-VQA the textual features
are computed by the word embedding technique and the Text Encoder. The visual features
are again extracted using VGG and C3D but, in this case, they are not concatenated and they
are encoded with two independent Video Encoders. Furthermore, hidden and cell state of the
Text Encoder are initialized with those of the Video Encoder. Yet, the main difference with
the ST-VQA approach is the usage of a Memory module within the Fusion block, shown
in yellow in Fig. 3 (middle), which is supported by a co-attention mechanism. That is, they
show appearance features are useful to guide the extraction of relevant motion features,
and vice versa. To capture these interactions, both attention and memories are exploited.
Moreover, the Memory module is used sequentially in the architecture as a fusion technique

38808 Multimedia Tools and Applications (2023) 82:38799–38826

by replacing the Temporal Attention. These operations are shown in Fig. 3 (middle) in
yellow.

In particular, CoMem uses and iteratively updates two memories called “appearance
memory” and “motion memory”: at every iteration, both are updated by an attention func-
tion which jointly attends to both motion and appearance encoded features, the memory,
and the question embedding. Then, appearance and motion features are used to update each
memory (shown with the

⊕
operator in Fig. 3). This operation is repeated a fixed amount

of times and is depicted with the “N x” block.

HME-VQA As in CoMem, HME-VQA [6] follows a similar overall flow: the visual fea-
tures computed by using VGG and C3D with independent Video Encoders, and the textual
features are computed with the Text Encoder applied on top of the word embeddings. Dif-
ferently from CoMem, HME-VQA uses two memories, a “visual memory” and a “question
memory”, as depicted in Fig. 3 (right). The former is updated by an attention function that
exploits three hidden states, which consider appearance and motion features both separately
and jointly. In the latter only one hidden state is used. A second novelty in HME-VQA is the
usage of an LSTM-based Reasoning module (colored with a dark yellow in Fig. 3), which
consists of three steps: first of all two context vectors, cv and cq , are created by attending to
the hidden states of the “visual memory” and the “question memory”, and the previous hid-
den state st−1; then cv , cq , and st−1 are used to separately compute attention weights, which
are used to compute the “fused knowledge”, i.e. a weighted sum of cv and cq ; finally, the
LSTM updates st using the fused knowledge and st−1. The last hidden state of the LSTM
is used as a distilled version of the given data. A Temporal attention module is separately
applied on the appearance and motion features, as shown in Fig. 3. Finally, the text-attended

Fig. 4 Samples of clips, questions, and candidate answers from EgoVQA

38809Multimedia Tools and Applications (2023) 82:38799–38826

visual features and the output of the Reasoning module are used in conjunction with the
Decoder to compute the score for the answer.

4 Results and discussions

To perform the analysis of the word embedding techniques and to validate our multi-task
learning strategy, we choose to use two public VideoQA datasets, PororoQA [19] and
EgoVQA [5], as they also briefly discuss question types. After presenting these datasets, we
thoroughly describe the word embedding techniques that we used, and we discuss both the
overall results and the per question type results.

4.1 The datasets

EgoVQA Presented in [5], it features more than 600 QA pairs and the same number of clips,
which are 20-100 seconds long and are obtained from 16 egocentric videos (5-10 minutes
long) based on 8 different scenarios. An example of these egocentric videos and QA pairs
can be seen in Fig. 4. The questions can be grouped in eight types, as described in Table 1.

For each video and question five candidate answers are provided, of which only one
is correct. The wrong answers are randomly sampled from a candidate pool based on the
question type, i.e. if the question requires to recognize an action, the five candidates (the
right one and the four wrong) are actions.

PororoQA Introduced by [19], it features around 8,800 QA pairs over 6,160 clips, which
are 3.5 seconds long (on average) and are obtained from 166 episodes of the Korean car-
toon “Pororo”. PororoQA follows the multiple choice setting with five candidates, and the
question types are shown in Table 2. Although this dataset also offers scene descriptions
and subtitles, we choose not to use them because it would be a different task (Video Story
Question Answering, see [9, 25, 45] as well), and thus out of the scope of this paper. For
this reason, we are only using RGB frames, hence why we are not comparing the perfor-
mance results we obtain with [19, 20] and [57], where scene descriptions and subtitles are
exploited as well.

Table 1 Description of the question types available in the EgoVQA dataset

Code Description Example

Act1st action performed by camera wearer “what am I doing”

Act3rd action performed by different actor “what is the man in red clothes doing”

Obj1st object the camera wearer is interacting with “what am I holding in my hands”

Obj3rd object a different actor is interacting with “what is placed on the desk”

Who1st who the camera wearer is interacting with “who am I talking with”

Who3rd who is performing a certain action “who is eating salad”

Cnt number of persons or objects in the scenes “how many people am I talking with”

Col identify the color of an object “what is the color of the toy in my hands”

38810 Multimedia Tools and Applications (2023) 82:38799–38826

Table 2 Description of the question types available in the PororoQA dataset

Code Description Example

Abs questions about abstract concepts “what is the weather like in the forest”

Act recognize the action performed “what are Pororo and Crong doing”

Caus describe which event follows another one “what happened when the egg broke”

Det detail of something in the clip “what kind of bird is Pororo”

Loc describe where an event takes place “where did Pororo take the egg”

Met describe how something is done “how did Pororo introduce himself”

Per identify who did a specific action “who was sliding on the ice”

Reas motivate a specific event “why is Pororo running away”

Stmt questions about the content of a speech “what did the baby dinosaur say first”

T ime describe when an event takes place in the clip “when does Pororo find an egg”

Y/N yes/no questions with an explanation “are Pororo’s friends scared of the dinosaur”

4.2 Word embeddings

In our experiments, we choose to use GloVe, ELMo, BERT, and XLM because of their
popularity and because they provide both contextual and non-contextual embeddings. Note
that they use different tokenizers: in particular we use full words for GloVe and ELMo,
WordPiece [53] for BERT, and Byte-Pair Encoding [39] for XLM.

GloVe By using GloVe, pretrained on the Common Crawl dataset , a vector of sizeE = 300
is computed for each word in both question and answer. Since GloVe is not contextual,
question and answer can be given in input to it either jointly or separately obtaining the
same embedding. In the former case, the input to GloVe is a simple concatenation of the
tokens, i.e. δ = q1 . . . qma1 . . . an, whereas the output is . In the latter case,
two embedded representations are computed by separately using GloVe on q1 . . . qm and
a1 . . . an, which are then concatenated to obtain φw .

ELMo ELMo is a contextual word embedding technique based on LSTMs which computes
for each word multiple representations, derived from its hidden states. In our setting, we
extract the topmost representation of size E = 1024. Since ELMo is contextual, as opposed
to GloVe which is not, the word embeddings for question and answer need to be jointly
computed, i.e. the input to ELMo is δ = q1 . . . qma1 . . . an, with |δ| = L.

BERT Similarly to ELMo, BERT computes multiple representations for each word. We use
the base version consisting of 12 attention heads and 12 layers, each of which produces a

Table 3 Average accuracy over EgoVQA using the frozen embeddings

GloVe ELMo BERT XLM

ST-VQA 35.7±4.2 34.9±4.5 36.1±6.0 24.0±3.3

CoMem 34.1±3.8 33.6±4.8 31.6±5.3 25.7±3.9

HME-VQA 35.4±3.1 35.5±3.8 33.6±4.5 26.8±3.2

38811Multimedia Tools and Applications (2023) 82:38799–38826

Table 4 Average accuracy over PororoQA using the frozen embeddings

GloVe ELMo BERT XLM

ST-VQA 36.8±0.5 35.7±0.9 39.7±0.9 27.4±1.2

CoMem 33.3±1.1 35.4±1.0 36.1±0.8 22.2±0.7

HME-VQA 36.8±1.8 34.5±1.1 39.2±0.7 27.8±0.9

different embedding of sizeE = 768. We use the embeddings from the last layer. For BERT,
δ = αq1 . . . qmσa1 . . . anσ , where α is the token ‘[CLS]’, and σ is the separator ‘[SEP]’.

Note that although BERT already provides an aggregated output in the representation of
the ‘[CLS]’ token, we chose to also adopt the LSTM-based Text Encoder (see Section 3.2)
on top of it because of two reasons: firstly, to have an overall similar structure across all
four embedding techniques; secondly, because it can provide further context while also
improving the final performance [9].

XLM XLM is a variant of BERT which uses a different training technique and also uses
BERT as an initialization step for machine translation models. In particular, we adopt the
base version of XLM, which uses 12 layers and 16 attention heads. The word embeddings
computed using this method have size E = 2048. δ is defined in the same way as for BERT.

4.3 Evaluation protocol

In our setting, we fix H = 512 and h = 256. To optimize the parameters we use Adam [21]
with a fixed learning rate of 10−3 and a batch size of 8.

To implement our solution we use Python 3.6, Numpy 1.18, and PyTorch 1.7. We use
AllenNLP [10] to test ELMo1, and the ‘transformers’ library 3.5.1 [52] to test BERT2 and
XLM.3

To evaluate the performance of the multiple combinations explored in this paper, we
train for 20 epochs, then we select the model with the best validation accuracy and use it
for testing. This is done five times (fixed seeds, 0 to 4), in order to obtain more stable and
reliable results. It is particularly important for EgoVQA, where the amount of available data
is relatively low and thus susceptible to highly variable results over multiple runs.

4.4 Results using the frozen embeddings

The first set of results analyze how different embedding techniques affect the final perfor-
mance, while using them pretrained and frozen. We start from this experiment because word
embeddings are often kept frozen and not trained, e.g. in [51], since they are learned on big
text corpora from which the embeddings gather semantics which can transfer well to down-
stream tasks. Tables 3 and 4 present the overall accuracy for EgoVQA and PororoQA, and
show that BERT provides the best embeddings for the task: in particular, adopting BERT in
the ST-VQA architecture leads to an average accuracy of 36.1% in EgoVQA (Table 3) and

1pretrained: ‘elmo 2x4096 512 2048cnn 2xhighway weights’
2pretrained: ‘bert-base-uncased’
3pretrained: ‘xlm-mlm-en-2048’

38812 Multimedia Tools and Applications (2023) 82:38799–38826

Table 5 Accuracy per question type over EgoVQA using the frozen embeddings

Met;Emb Question type accuracy (%)

Act1st Act3rd Obj1st Obj3rd Who1st Who3rd Cnt Col

S; G 29.2±2.2 33.9±2.2 42.6±4.1 37.0±4.9 52.3±3.1 40.3±5.4 38.8±2.5 20.0±4.3

S; E 29.2±1.8 32.6±3.4 41.1±4.6 35.6±2.2 49.2±3.8 41.6±2.1 38.4±3.6 18.1±4.4

S; B 28.9±2.8 35.9±1.8 39.6±3.2 35.6±2.8 52.3±3.1 45.4±2.1 33.1±5.0 20.0±5.9

S; X 24.8±4.1 26.8±3.4 31.5±5.6 31.4±5.9 12.3±6.2 9.5±2.8 22.8±5.8 21.3±4.8

C; G 30.7±3.2 33.0±4.4 45.5±4.0 35.1±1.4 40.0±7.5 27.6±13.8 40.3±0.6 23.2±6.6

C; E 28.4±2.1 34.4±1.9 43.3±4.5 35.1±2.9 50.8±3.8 31.7±3.9 35.6±4.6 17.4±7.8

C; B 26.3±2.8 32.8±1.5 38.5±3.2 35.1±2.5 50.8±3.8 22.9±4.1 32.8±7.0 21.9±3.8

C; X 21.8±4.1 32.2±3.1 35.2±5.2 29.8±3.3 23.1±8.4 16.2±2.7 19.4±4.7 23.2±7.7

H; G 35.8±3.1 41.5±4.0 37.4±4.4 33.5±2.3 44.6±5.8 35.5±10.1 33.1±5.4 19.3±3.5

H; E 37.6±4.0 39.8±1.3 37.4±5.9 34.4±5.2 47.7±5.8 36.8±7.2 31.9±6.5 20.6±8.3

H; B 32.8±3.0 35.2±3.3 33.3±3.7 39.5±3.0 49.2±6.2 29.8±8.0 31.6±7.3 19.4±8.4

H; X 25.7±4.3 30.7±3.3 37.0±4.5 29.5±1.6 23.1±10.9 14.3±5.9 26.6±4.4 19.3±5.4

S, C, H, G, E, B, X represent respectively ST-VQA, CoMem, HME-VQA, GloVe, ELMo, BERT, and XLM

We introduce “Act1st”, etc. in Table 1 to identify the question types

39.7% in PororoQA (Table 4). But, especially for EgoVQA, Table 3 shows that other tech-
niques can provide useful embeddings depending on the architecture chosen: as an example,
ST-VQA with GloVe achieves 35.7%, while HME-VQA with ELMo obtains 35.5%.

Table 6 Accuracy per question type over PororoQA using the frozen embeddings

M;E Question type accuracy (%)

Abs Act Caus Det Loc Met Per Reas Stmt Time Y/N

S;G 38.5±1.7 39.8±2.0 33.2±3.9 37.5±3.7 28.7±4.6 45.4±1.9 30.3±0.9 39.5±4.3 37.9±2.8 37.1±4.1 32.9±3.3

S;E 40.2±2.2 39.3±1.6 33.3±5.2 34.8±4.1 29.9±5.7 43.7±2.5 30.8±1.1 31.0±5.5 40.2±1.9 28.6±5.4 39.3±3.0

S;B 45.9±2.7 44.5±1.7 37.7±5.7 44.7±7.0 30.5±4.1 45.8±1.7 32.0±0.5 35.7±2.5 40.7±2.9 29.7±4.7 44.8±1.8

S;X 30.3±1.8 30.9±1.5 39.1±4.5 29.7±4.7 26.5±4.2 22.7±2.2 23.3±1.7 30.3±2.6 28.9±1.3 15.9±2.9 27.4±2.2

C;G 34.0±2.4 36.7±1.5 28.8±1.8 35.3±6.3 25.9±2.6 44.8±3.5 25.7±2.4 34.1±3.5 32.3±4.7 33.5±5.1 25.3±2.8

C;E 37.9±5.9 38.6±1.3 28.4±7.1 32.3±3.7 29.2±2.4 44.8±2.2 29.4±1.0 31.6±6.6 36.2±4.6 37.3±6.7 31.9±2.6

C;B 41.4±1.4 41.5±1.7 43.7±2.7 37.4±7.0 28.3±2.3 48.0±4.2 26.6±0.4 34.6±3.8 33.4±1.1 38.5±5.6 33.6±5.1

C;X 23.0±3.4 25.2±1.1 29.3±6.9 21.2±3.5 20.5±2.5 20.2±2.6 21.8±1.9 21.0±2.8 23.3±1.8 16.3±1.9 17.6±4.6

H;G 39.5±4.2 38.5±1.8 29.0±4.6 43.2±3.6 26.4±3.9 45.2±3.5 30.7±1.5 39.3±4.0 37.8±2.2 36.2±8.3 39.6±4.2

H;E 36.6±3.7 39.9±1.0 34.5±11.4 31.8±4.4 36.2±6.2 43.4±2.5 28.3±1.5 33.0±1.4 36.2±3.1 32.7±6.6 34.2±6.9

H;B 44.7±2.9 43.1±1.7 46.2±2.8 44.6±6.2 27.2±3.2 44.2±2.0 30.9±2.1 38.2±2.4 38.7±2.1 38.4±6.2 36.7±1.3

H;X 30.0±1.4 30.7±1.9 40.0±6.6 27.7±4.7 24.8±4.4 21.1±2.4 24.5±1.9 33.2±2.3 29.5±2.3 17.8±1.3 16.9±4.5

Note that “Abs”, etc. are introduced in Table 2 to identify the question types

38813Multimedia Tools and Applications (2023) 82:38799–38826

To perform a finer-grained analysis, we present in Tables 5 and 6 the accuracy values
based on the question type for EgoVQA and PororoQA. We perform this analysis because,
as previously mentioned, question types may represent a key element when trying to answer
a question. As an example, Table 5 shows that, when dealing with Act3rd questions, HME-
VQA with GloVe (row identified with “H;G”) achieves 41.5% average accuracy, yet when
using BERT loses around 6% (row “H;B” shows 35.2%). Similarly, CoMem with GloVe
(row “C;G”) has an accuracy of 40.3% when answering Cnt questions, yet it only obtains
32.8% when using BERT. Similar differences can be also observed on PororoQA in Table 6,
e.g. when faced with Reas questions, ST-VQA obtains 39.5% and 31.0% when adopting,
respectively, GloVe (row “S;G”) or ELMo (row “S;E”). Thus, by analyzing the results while
also taking the question type into account can lead to some insights which we detail in the
next subsections.

Fig. 5 We report for each question type the average accuracy (setting the minimum to the random chance,
i.e. 20%) obtained by using a specific word embedding technique. It is possible to see that different question
types are best dealt with by using different embeddings. Best viewed in color

38814 Multimedia Tools and Applications (2023) 82:38799–38826

4.4.1 EgoVQA

In Fig. 5 we propose two plots where we present the accuracy obtained when averaging
with respect to the architecture used. For example, in Fig. 5a the blue column (related to
GloVe) over Obj1st shows 41.85, which is the mean value of the average accuracy obtained
by ST-VQA, CoMem, and HME-VQA for that type of question. We do this in order to have
a simplified view of the detailed results shown in Tables 5 and 6.

In the case of EgoVQA, Fig. 5a shows that on average GloVe and ELMo achieve better
performance than BERT and XLM.

Moreover, we can also observe that ELMo obtains a 2.2% margin over GloVe when try-
ing to identify who is performing a given action in front of the camera wearer (Who3rd).
Considering that the questions of this type, Who3rd , are longer with respect to other types
(11.5 words versus an average of 9.6), this may be due to ELMo having the memory capa-
bilities provided by the LSTMs while also exploiting the bidirectional context. A similar
reasoning could be applied to BERT as well: in fact, as shown in Table 5, when coupled
with ST-VQA (row “S;B”) it achieves the best result for this question type (45.4%), yet the
mean value shown in Fig. 5a is lowered due to the low average and high variance obtained
by the other two architectures (with CoMem, i.e. row “C;B”, it obtains 22.9% while with
HME-VQA, i.e. row “H;B”, 29.8%).

Similarly, the question type Obj1st is best tackled with GloVe embeddings (Fig. 5a
reports 41.8% accuracy). In this case, around 78% of the questions are of the form “what am
I holding”, thus the long-term state provided by the LSTMs or by the Transformer encoder
may be too complex to capture some of the information which, on the other hand, synergize
well with the simplicity of GloVe.

4.4.2 PororoQA

Differently from EgoVQA, Fig. 5b shows that BERT is the overall best choice when deal-
ing with PororoQA, although there are situations in which GloVe and ELMo perform
comparably (Stmt , T ime) or even better (Loc, Reas).

In this case, Table 6 is fundamental to detail some differences. HME-VQA coupled
with ELMo performs better than all the other combinations for Loc questions: it achieves
36.2% accuracy (row “H;E”), while the second best is given by ST-VQA with BERT (row
“S;B”) which obtains 30.5% (hence, a 6% margin). Since the answers mainly differ due to
nouns related to sceneries (e.g. “forest”, “sea”), ELMo may be more effective at providing
embeddings which cope better with these visual features. This proves extremely benefi-
cial when coupled with the heterogeneous memory and the gating mechanisms exploited
in HME-VQA, which help the model picking the correct association between the available
multimodal features.

Obtaining “more than random” performance for Stmt questions is also noteworthy
because these questions involve the contents of a speech. Given that GloVe, ELMo, and
BERT obtain around 37% accuracy as shown in Fig. 5b, several of these questions can be
correctly answered to by only looking at the RGB frames, the question text, and the answer
text. As an example of this, the possible answers for the question “what did Poby and his
friend say” are permutations of “paper rock scissor”: the models thus learn how to correctly
answer by extracting spatio-temporal visual features which lead them to correctly identify
the three hand gestures in the clip.

Another interesting detail can be seen in the Caus question type, which involves ques-
tions asking to identify an event which happened in relation to another one (e.g. “what

38815Multimedia Tools and Applications (2023) 82:38799–38826

Table 7 Average accuracy (with absolute and average changes wrt Table 3) over EgoVQA after the
finetuning of the embeddings

GloVe* ELMo* BERT* XLM* avg

ST-VQA 35.7±4.1(+0.0) 34.0±4.7(− 0.9) 34.9±4.9(− 1.2) 25.1±4.2(+1.1) − 0.2

CoMem 33.9±3.7(− 0.2) 32.4±5.0(− 1.2) 33.1±4.7(+1.5) 22.3±4.2(− 3.4) − 0.8

HME-VQA 35.6±3.2(+0.2) 34.9±3.8(-0.6) 36.4±4.4(+2.8) 25.9±4.0(-0.9) +0.4

avg +0.0 − 0.9 +1.0 − 1.1 − 0.2

happened when the egg broke?”, “a green little dinosaur popped out”). The best result is
obtained by BERT (Fig. 5b reports around 42.5% accuracy), but XLM manages to shine as
well (36.1%) obtaining a margin of at least 4% over ELMo (32.1%) and GloVe (30.3%).
This is likely due to two facts: Transformer-based embeddings, and bidirectionality. The
first point could be due to both the depth of the network and the attention mechanisms
exploited in the Transformer, which are not used in GloVe nor in ELMo. The second point
is supported by noticing that these questions are likely better understood when read both
directions (the event described in the answer might have happened before the one described
in the question, or vice versa), and by the fact that ELMo exhibits this property as well,
leading it to be more accurate (around +2%) than GloVe.

4.5 Finetuning the embeddings

As a second set of experiments, we focus on the finetuning step of the embedding modules.
This is usually performed because it helps the model gain a considerable boost, since it
helps rearranging the embedding space in a way to make the features more related to the
task at hand. As an example, GloVe embeddings are finetuned in [6].

Instead of starting the training from scratch, we restart from the weights learned during
the previous step. The procedure we follow can be described as such: first of all, we select
the model with the best validation accuracy and use it to set the initial weights; then, we
freeze all the components (but the embedding module) and perform the training for 20
epochs using a fixed learning rate of 5e-5. We repeat this procedure five times and we also
use the same seed, i.e. when performing the i-th iteration of this procedure, we fix seed i

and use the weights that were computed using seed i.

Table 8 Average accuracy (with absolute and average changes wrt Table 4) over PororoQA after the
finetuning of the embeddings

GloVe* ELMo* BERT* XLM* avg

ST-VQA 36.5±0.5(− 0.3) 38.2±1.0(+2.5) 41.2±1.0(+1.5) 28.7±0.8(+1.3) +1.2

CoMem 35.3±0.8(+2.0) 37.0±1.5(+1.6) 33.0±7.2(− 3.1) 29.1±0.4(+6.9) +1.9

HME-VQA 37.6±1.0(+0.8) 39.1±1.9(+4.6) 43.5±2.0(+4.3) 29.3±0.7(+1.5) +2.8

avg +0.8 +2.9 +0.9 +3.2 +2.6

38816 Multimedia Tools and Applications (2023) 82:38799–38826

4.5.1 EgoVQA

From Table 7 it can be noted that, although the best result has improved, the finetuning
procedure often does not help, e.g. with ELMo (on average, it loses around 0.9%). This is
likely due to the dataset being too small to benefit from the finetuning, leading almost all the
models to overfit. Yet, it can be seen that BERT benefits the most from this procedure (on
average +1.0%) and, in particular, HME-VQA with BERT obtains a +2.8% improvement
(+3.1% wrt the best result published in [5]).

4.5.2 PororoQA

Differently from EgoVQA, finetuning is particularly helpful and beneficial over PororoQA.
Table 8 reports an average improvement of 2.6%, with a peak of +6.9% when finetuning
XLM using CoMem. Table 9 shows a less varied situation than Table 6, with BERT being
the overall best choice. Yet, some interesting results may be distilled from it.

First of all, after the finetuning step XLM achieves the best accuracy when dealing with
the question type Caus (obtaining 45.2% when using CoMem). Although BERT obtains a
lower average accuracy with respect to the previous performance (likely due to the learning
rate being too high), BERT and XLM achieve 37.3% and 41.4% (Table 8), when averaging
with respect to the architecture. Considering that GloVe and ELMo achieve 26.9% and
31.3%, this may confirm the previous hypothesis involving bidirectionality and network
depth.

Secondly, ELMo receives on average a 5.3% improvement (from an average of 32.8%
in Table 6 to 38.1% in Table 8, computed with respect to the three architectures) when
tackling T ime questions. Considering that these questions often involve reasoning about
temporally-related events, the bidirectionality of ELMo coupled with the LSTM gating
and memory capabilities may be the key point which helps understanding these relations.

Table 9 Accuracy per question type over PororoQA after the finetuning of the embeddings

M;E Question type accuracy (%)

Abs Act Caus Det Loc Met Per Reas Stmt Time Y/N

S;G* 37.2±1.2 42.5±1.5 27.4±3.7 35.7±1.9 24.7±3.4 45.4±1.7 34.6±3.0 36.8±5.7 40.7±2.1 38.6±3.5 30.2±2.0

S;E* 39.3±4.8 41.1±1.9 35.8±5.9 38.8±6.3 30.8±1.4 46.2±3.2 34.1±3.8 35.0±3.2 44.4±1.9 34.0±5.6 42.7±2.5

S;B* 43.3±4.4 43.3±1.7 36.5±7.7 43.0±7.1 33.1±4.7 52.9±3.2 33.9±2.4 40.7±3.1 43.0±3.1 31.9±6.3 48.6±4.7

S;X* 28.8±0.9 34.8±1.8 37.4±3.0 30.2±4.2 23.9±2.1 20.9±2.9 25.0±1.6 34.4±0.4 28.4±1.6 22.3±7.7 17.1±2.4

C;G* 34.1±2.9 39.0±2.1 25.7±2.3 40.4±5.7 23.2±4.7 43.0±3.4 27.2±2.5 34.9±2.8 39.2±4.6 37.8±6.4 33.8±2.8

C;E* 38.0±2.1 38.2±2.4 26.0±4.3 36.2±5.1 32.5±6.2 41.1±5.0 32.0±2.4 35.5±4.4 42.0±3.1 38.9±4.3 37.7±2.1

C;B* 34.0±7.5 35.6±8.6 39.1±3.4 34.1±5.9 30.5±7.0 31.8±10.2 27.9±6.7 36.3±8.2 33.6±5.9 27.0±7.1 28.3±14.8

C;X* 33.4±2.9 33.5±1.6 45.2±2.6 32.1±1.6 25.2±3.7 21.5±1.6 26.1±2.3 33.5±2.2 29.7±1.3 18.5±2.5 21.5±1.5

H;G* 38.3±2.9 37.8±0.8 27.8±3.1 43.1±2.3 26.0±3.4 41.1±2.7 33.7±1.4 42.4±2.3 39.3±2.2 38.1±7.5 38.4±1.5

H;E* 40.4±4.1 39.9±2.4 32.0±4.1 38.5±3.8 34.4±3.5 49.1±4.2 32.5±1.8 36.6±2.6 41.8±1.3 41.4±3.5 39.7±2.6

H;B* 43.6±3.6 43.6±2.1 36.4±1.4 49.7±5.5 34.9±4.8 50.9±3.8 34.6±2.3 45.1±3.4 45.8±2.1 33.8±8.1 46.4±5.5

H;X* 32.7±0.6 33.4±1.3 41.5±5.3 31.6±3.8 27.0±2.7 19.3±1.9 22.8±2.9 36.6±1.4 29.5±1.8 26.5±4.6 17.4±1.8

38817Multimedia Tools and Applications (2023) 82:38799–38826

Table 10 Average accuracy (with absolute and average changes wrt Table 3) over EgoVQA after the adoption
of the multi-task learning strategy (frozen embeddings)

GloVe ELMo BERT XLM avg

ST-VQA 36.5±4.7(+0.8) 33.7±5.0(− 1.2) 36.2±6.9(+0.1) 25.2±3.1(+1.2) +0.2

CoMem 32.9±3.2(− 1.2) 33.8±4.3(+0.2) 31.2±4.5(− 0.4) 24.0±3.1(− 1.7) − 0.8

HME-VQA 34.5±3.4(− 0.9) 35.1±4.0(− 0.4) 35.0±5.5(+1.4) 27.2±3.9(+0.4) +0.1

avg − 0.4 − 0.6 +0.3 − 0.5 − 0.2

Although generally smaller, an improvement over T ime questions is also observed with
XLM and BERT.

Finally, HME-VQA coupled with BERT achieves both the best overall result (43.5% in
Table 8) and also the best result over several question types. While this is partially due to
BERT and its abilities to compute semantically rich embeddings, it surely confirms that
HME-VQA is a powerful model able to capture multimodal cues which makes it great for
VideoQA [6].

4.6 Adoption of multi-task learning strategy

As can be seen from the previous experiments, different word embedding techniques per-
form differently depending on the question type under analysis. This result is likely related
to the different embedding techniques being able to capture some patterns in the question
which depend on the type and are helpful to localize the answer within the video. To prove
this surmise, we propose to adopt a multi-task learning strategy (detailed in Section 3.1),
and show that it helps the models achieve a better generalization.

4.6.1 EgoVQA

Table 10 shows that HME-VQA coupled with BERT is the combination which benefits the
most from the adoption of the multi-task strategy, gaining on average 1.4% accuracy. Yet,
several of the other combinations gain only marginal improvements or even obtain a lower
accuracy. This is likely due to the models overfitting even more than before, due to the
added parameters.

Nonetheless, there are also other combinations which benefit from the added parameters
as well. In particular, it can be noted that ST-VQA synergizes the best with the proposed
technique, since it improves its performance when coupled with GloVe (+0.8%) and XLM

Table 11 Average accuracy (with absolute and average changes wrt Table 4) over PororoQA after the
adoption of the multi-task learning strategy (frozen embeddings)

GloVe ELMo BERT XLM avg

ST-VQA 37.3±1.4(+0.5) 36.6±1.1(+0.9) 40.6±1.5(+0.9) 28.7±1.5(+1.3) +0.9

CoMem 35.0±1.1(+1.7) 36.1±0.8(+0.7) 37.0±1.6(+0.9) 24.0±0.7(+1.8) +1.3

HME-VQA 35.8±1.2(− 1.0) 36.8±0.5(+2.3) 38.7±1.3(− 0.5) 27.9±1.1(+0.1) +0.2

avg +0.4 +1.3 +0.4 +1.1 +1.0

38818 Multimedia Tools and Applications (2023) 82:38799–38826

Table 12 Accuracy per question type over PororoQA after the adoption of the multi-task learning strategy
(frozen embeddings)

M;E Question type accuracy (%)

Abs Act Caus Det Loc Met Per Reas Stmt Time Y/N

S;G 38.8±2.8 39.9±2.8 33.3±5.7 39.3±3.6 31.2±3.9 47.9±3.0 30.0±1.6 38.5±2.5 42.4±2.9 39.5±4.9 30.3±5.1

S;E 38.0±1.0 39.7±2.0 24.3±4.0 34.7±0.7 30.6±4.4 49.3±2.6 31.0±1.5 34.9±5.4 41.6±3.9 38.5±6.2 39.6±5.3

S;B 43.6±1.6 42.2±0.9 39.0±7.1 43.6±5.2 30.3±2.8 46.3±2.9 35.3±1.7 34.0±4.5 41.2±3.3 33.5±4.0 42.9±4.0

S;X 28.9±2.3 30.5±2.0 45.0±2.2 34.7±3.5 22.5±4.6 21.6±1.6 24.9±1.2 33.7±2.1 29.9±2.1 20.0±4.7 21.0±1.5

C;G 36.9±2.6 38.6±1.9 33.6±5.6 41.0±4.7 26.3±2.4 41.7±3.2 28.3±3.9 34.5±4.3 34.8±3.2 36.9±4.1 34.8±3.3

C;E 40.0±2.1 40.2±1.9 29.7±7.9 32.2±2.7 29.2±3.9 45.5±2.2 29.9±1.8 36.9±3.1 39.8±3.5 28.6±7.3 36.5±4.3

C;B 42.8±1.9 39.3±2.2 38.0±8.8 39.5±4.4 29.8±3.9 46.0±2.8 26.2±2.4 36.2±1.8 37.5±3.5 34.4±5.0 34.9±3.8

C;X 23.5±4.2 24.3±3.8 31.4±2.6 23.6±4.2 22.1±2.3 24.2±2.6 23.3±1.5 22.4±4.0 23.3±2.4 11.5±2.5 23.0±4.6

H;G 38.8±2.5 39.2±0.9 36.7±4.7 41.6±4.6 27.6±2.5 45.4±3.6 29.1±2.4 37.7±6.1 41.8±1.3 23.9±5.6 32.7±3.4

H;E 38.9±2.1 41.2±0.9 26.2±6.2 36.1±5.0 34.3±4.2 44.9±4.1 32.1±1.1 30.2±4.6 42.2±3.6 35.0±4.7 40.0±5.7

H;B 44.4±1.2 42.0±3.1 41.5±8.3 40.3±2.0 26.4±1.0 45.7±4.7 32.1±2.9 36.9±4.3 43.7±4.9 31.0±3.8 38.4±4.6

H;X 29.5±2.5 32.3±1.3 43.6±7.7 26.2±1.7 19.7±2.5 22.4±1.0 25.9±2.2 34.8±2.8 31.1±2.3 20.0±6.4 25.2±1.9

(+1.2%) embeddings. This may be due to its simplicity and lower amount of parameters
with respect to CoMem and HME-VQA.

To understand whether the difference in performance before and after the addition of
the proposed multi-task learning strategy is significant, we use the Almost Stochastic Order
(ASO) test [2, 4], as implemented by [47]. This test operates on the cumulative distri-
bution function of the two models (before and after training with the proposed strategy)
and estimates the amount of violation of the stochastic order. It formulates the following
null hypothesis: H0 : εmin ≥ τ , which can be interpreted as the standard training being
stochastically dominant in more cases than the training performed with the proposed strat-
egy. To reject this hypothesis, εmin < τ where τ = 0.5. Using ASO with a confidence level
α = 0.05 it was possible to confirm some of the results we observed. In particular we found
that, based on five random seeds, ST-VQAwith ELMo, CoMem paired with GloVe or XLM,
and HME-VQA paired with GloVe are stochastically dominant (in particular, εmin ≥ 0.80)
if trained without the proposed strategy; in the cases of HME-VQA with ELMo or XLM,
CoMem with ELMo or BERT, and ST-VQA with BERT the εmin is close to the threshold
τ , so the difference is not as significant. In the other cases, the addition of the multi-task
learning strategy leads to stochastically dominant solutions, with εmin ≤ 0.40 in most cases.

4.6.2 PororoQA

As can be seen in Table 11, almost all the different combinations of architectures and
embeddings benefit from the adoption of the multi-task learning strategy: overall, if we com-
pare to the results obtained before the finetuning of the embeddings (Table 4, changes are
reported in Table 11), the improvement obtained by adopting the proposed strategy amounts
to around +1.0% with a peak of +2.3% when using HME-VQA with ELMo. This shows
that such simple addition helps the models both generalize better and understand what they
should focus on based on the type of the question.

38819Multimedia Tools and Applications (2023) 82:38799–38826

Fig. 6 Average accuracy over PororoQA, averaged with respect to the three architectures, before (◦) and
after (♦) the adoption of the proposed multi-task learning strategy. Best viewed in color

To ease the comparison of Tables 6 and 12, we propose in Fig. 6 a simplified view of the
results per question type, where we visualize the average accuracy obtained by the embed-
ding techniques (mean values with respect to the three architectures) before and after the
adoption of the multi-task learning strategy. While it shows an overall improvement, such
a figure also shows there are situations in which the proposed technique is beneficial or
not based on the embedding technique used. As an example, for Caus questions, GloVe
and XLM benefit greatly from the additional task, whereas BERT and ELMo do not. More
in detail, Table 12 shows that a considerable boost (+9.9%) is obtained by ST-VQA cou-
pled with ELMo when dealing with T ime questions, where the accuracy goes from 28.6%
(in Table 6, row “S;E”) to 38.5%. Since a similar improvement was also obtained when
finetuning ELMo for this question type, this further strengthens the hypothesis previously
formulated.

As in the previous case, we use ASO to determine the significance of the results. With a
confidence level α = 0.05, we found that the addition of the proposed multi-task learning
strategy leads to solutions which are stochastically dominant over the model trained without

Table 13 The average time (in seconds) spent per sample at inference time for each of the 12 combinations
considered in this manuscript

Embedding technique

Architecture GloVe ELMo BERT XLM avg

ST-VQA 0.005 0.039 0.015 0.026 0.021

CoMem 0.064 0.101 0.074 0.095 0.083

HME-VQA 0.050 0.085 0.062 0.081 0.069

avg 0.040 0.075 0.050 0.067 -

38820 Multimedia Tools and Applications (2023) 82:38799–38826

Table 14 Average accuracy (with absolute and average changes wrt Table 11) over PororoQA after the
adoption of the multi-task learning strategy and the finetuning of the embeddings

GloVe* ELMo* BERT* XLM* avg

ST-VQA 37.8±1.2(+0.5) 38.8±0.9(+2.2) 42.7±1.4(+2.1) 30.0±0.6(+1.3) +1.5

CoMem 35.6±0.6(+0.6) 37.8±1.2(+1.7) 42.7±1.8(+5.7) 28.7±1.2(+4.7) +3.2

HME-VQA 37.3±0.9(+1.5) 38.2±1.2(+1.4) 42.6±1.1(+3.9) 28.9±0.6(+1.0) +1.9

avg +0.9 +1.8 +3.9 +2.3 +2.9

the proposed strategy in most of the cases (with εmin < 0.40). In the case of HME-VQA,
the addition of the proposed strategy leads to a stochastically dominant solution only when
paired with ELMo (εmin < 0.10) whereas, according to the statistical test, the model trained
without the proposed strategy is either stochastically dominant (with GloVe and BERT,
εmin ≥ 0.85) or the same as the model trained with the proposed strategy (with XLM,
εmin = 0.5) (Table 13).

4.7 Embeddings finetune after themulti-task learning

As we did previously, we start from the weights obtained during the training with the multi-
task learning strategy and proceed with the finetuning of the embeddings alone. Overall, a
greatly positive outcome is achieved for PororoQA (Table 14), whereas over EgoVQA it
does not help at all.

Fig. 7 Accuracy over PororoQA obtained by the embedding techniques (average wrt models trained with the
proposed multi-task learning strategy) before (◦) and after (♦) finetuning. Best viewed in color

38821Multimedia Tools and Applications (2023) 82:38799–38826

4.7.1 PororoQA

Table 14 reports on average a +2.9% improvement, with even higher peaks when using
CoMem (+5.7%). Also in this case we propose a simplified view of the comparison between
Tables 12 and 14 in Fig. 7, where we visualize the accuracy obtained before and after
finetuning. From the Figure it can be seen that BERT and ELMo always benefit from the
finetuning procedure. In particular, from Table 14 it can be seen that the average improve-
ment amounts to 1.8% for ELMo and 3.9% for BERT. It follows that, generally speaking,
it is a wise choice to finetune the embeddings, especially when there is a decent amount of
available data.

4.8 About inference times

In this section, we analyze the time taken to predict the answer during the inference phase.
In particular, the total time required by the pipeline analyzed by isolating the feature extrac-
tion of the video from all the other operations. This is done because the visual feature
extraction is performed in the same way for all the considered solutions. In fact, all of them,
as previously described in Section. 3, use VGG and C3D which, on average, take less than
150 ms per video clip. Therefore, the time taken by this step can be removed from the
total time in order to make it clear the overhead taken by the specific architecture or word
embedding techniques. Conversely, the extraction of the textual features is tightly linked to
the word embedding technique used. In Table 13 we report the average time taken by all
the combinations of overall model (ST-VQA, CoMem, or HME-VQA) and word embed-
ding technique considered in this study. According to this analysis, ST-VQA combined with
GloVe represents the fastest solution taking only 5 ms on average. In particular, GloVe rep-
resents the fastest word embedding approach since it only needs to map tokens to vectors
through a table, whereas BERT, ELMo, and XLM have additional layers which slow down
the process, leading respectively to 50, 75, and 67 ms on average. Moreover, since it is the
simplest architecture considered in this study, ST-VQA is also the fastest among the three
(on average, 21 ms compared to 83 and 69 ms taken by CoMem and HME-VQA).

4.9 Take-homemessages

Word embeddings Each of the analyzed embedding techniques deals better with spe-
cific question types, likely implying questions have characteristics which are encoded
differently (and possibly ignored) by each technique. Over EgoVQA, ELMo works bet-
ter when identifying an actor (Who3rd), and GloVe is effective when identifying objects
(Obj1st); over PororoQA, ELMo performs significantly better than GloVe, XLM, and BERT
when identifying locations (Loc), and the synergy between the bidirectionality and the
Transformer-based encoder, used by XLM and BERT, is beneficial when guessing which
event happened in relation to another one (Caus).

Importance of the embedding choice In relation to the previous message, we thoroughly
showed that the choice of the embedding technique to use should take into account which
question type (and the properties of its questions) is the most prevalent in the considered
dataset.

38822 Multimedia Tools and Applications (2023) 82:38799–38826

Bidirectionality We provide evidence showing that bidirectionality is convenient when
both Q and A are rich and complex sentences (e.g. Caus, T ime questions). Although for
the latter it becomes clearer when finetuning, for the former it is noticeable also when using
the frozen embeddings.

Finetuning Although the improvements due to finetuning are harder to see with EgoVQA
due to its smaller size, it is diaphanous for PororoQA: finetuning helps rearranging the
embedding space, making it easier for the models to understand and link the textual and the
visual concepts.

Multi-task learning Question types raise the possibility to perform finer-grained analysis,
but they can also be exploited to achieve improved generalization. We show this is possible
by proposing a multi-task learning strategy which takes question types into account.

5 Conclusion

VideoQA has recently seen a surge of interest thanks to the release of several rich and pub-
lic datasets. In VideoQA, to provide a meaningful answer, the model needs to understand
both the visual and the textual content. Given the multitude of word embedding techniques
and considering that the computed representations influence the final performance of the
VideoQA model, we explore the use of several of them on two public datasets: EgoVQA
and PororoQA. We find that the embeddings computed by BERT are the best overall solu-
tion, but we also find that depending on the question type different embeddings should be
preferred.

Moreover, we showed this result can be further exploited by introducing a multi-task
learning approach where the models are also asked to classify the given questions: a sim-
ple yet effective technique which greatly helps the overall performance of the considered
solutions.

Finally, we show that more accurate predictions can be obtained by finetuning the
embeddings, both with and without the proposed multi-task learning strategy. BERT is the
technique benefiting the most from it, but there are situations in which the improvement
can be substantially large when taking into account specific question types, e.g. the synergy
between ELMo and T ime questions. At the end of the experimental section we also collect
some “take-home messages” (Section 4.9) where we summarize the main results observed
in this study.

As a future work, several other word embedding techniques can be tested, such as Dis-
tilBERT [38] and RoBERTa [29]. Moreover, we focused on EgoVQA and PororoQA, but
these results should help obtaining improved performance in several other datasets, such as
TGIF-QA [15] or MovieQA [45], where it is possible to define the type of the questions. In
particular, automatically identifying the type of the question may be an interesting research
direction. The types may be defined by a rule-based system (e.g. inspired by the “five Ws”),
or by using clustering techniques to automatically discover clusters of semantically related
questions. Furthermore, in our multi-task learning approach we focused on a single auxiliary
task designed on the concept of question type, but additional tasks may be used to extend
it and help the model extracting more general features. Finally, the VideoQA community is
mostly focusing on defining new methods to achieve better performance. Nonetheless, pre-
dicting the correct answer with a lower time delay may have important consequences on
several applications, therefore it may become an interesting research direction.

38823Multimedia Tools and Applications (2023) 82:38799–38826

Acknowledgements We gratefully acknowledge the support from Amazon AWS Machine Learning
Research Awards (MLRA) and NVIDIA AI Technology Centre (NVAITC), EMEA. We acknowledge the
CINECA award under the ISCRA initiative, which provided computing resources for this work.

Funding Open access funding provided by Università degli Studi di Udine within the CRUI-CARE
Agreement. No funding was received for conducting this study.

Data Availability The datasets analyzed during the current study are publicly available, and are also
available from the corresponding author on reasonable request.

Declarations

Competing interests The authors have no competing interests to declare that are relevant to the content of
this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and
translate. In: ICLR

2. Del Barrio E, Cuesta-Albertos JA, Matrán C (2018) An optimal transportation approach for assessing
almost stochastic order. In: The mathematics of the uncertain. Springer, p 33–44

3. Devlin J, Chang MW, Lee K et al (2019) Bert: pre-training of deep bidirectional transformers for
language understanding. In: NAACL-HLT

4. Dror R, Shlomov S, Reichart R (2019) Deep dominance - how to properly compare deep neural models.
In: Korhonen A, Traum DR, Màrquez L (eds) Proceedings of the 57th conference of the association for
computational linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1 : Long Papers.
Association for Computational Linguistics, pp 2773–2785. https://doi.org/10.18653/v1/p19-1266

5. Fan C (2019) Egovqa - an egocentric video question answering benchmark dataset. In: ICCV Workshop
6. Fan C, Zhang X, Zhang S et al (2019) Heterogeneous memory enhanced multimodal attention model for

video question answering. In: CVPR
7. Fang Z, Liu J, Li Y et al (2019) Improving visual question answering using dropout and enhanced

question encoder. Pattern Recogn 90:404–414
8. Gao J, Ge R, Chen K et al (2018) Motion-appearance co-memory networks for video question answering.

In: CVPR
9. Garcia N, Otani M, Chu C et al (2020) Knowit vqa: answering knowledge-based questions about videos.

In: Proceedings of the AAAI conference on artificial intelligence, pp 10,826–10,834
10. Gardner M, Grus J, Neumann M et al (2017) Allennlp: a deep semantic natural language processing

platform. arXiv:180307640
11. He K, Zhang X, Ren S et al (2016) Deep residual learning for image recognition. In: CVPR
12. Hori C, Hori T, Lee TY et al (2017) Attention-based multimodal fusion for video description. In: ICCV
13. Huang D, Chen P, Zeng R et al (2020) Location-aware graph convolutional networks for video question

answering. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 11,021–11,028
14. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal

covariate shift. In: International conference on machine learning, PMLR, pp 448–456
15. Jang Y, Song Y, Yu Y et al (2017) Tgif-qa: toward spatio-temporal reasoning in visual question

answering. In: CVPR
16. Jiang P, Han Y (2020) Reasoning with heterogeneous graph alignment for video question answering. In:

Proceedings of the AAAI Conference on Artificial Intelligence, pp 11,109–11,116
17. Karpathy A, Toderici G, Shetty S et al (2014) Large-scale video classification with convolutional neural

networks. In: CVPR

38824 Multimedia Tools and Applications (2023) 82:38799–38826

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.18653/v1/p19-1266
http://arxiv.org/abs/180307640

18. Kim J, Ma M, Kim K et al (2019) Gaining extra supervision via multi-task learning for multi-modal
video question answering. In: International Joint Conference on Neural Networks (IJCNN). IEEE, pp 1-8

19. Kim KM, Heo MO, Choi SH et al (2017) Deepstory: video story qa by deep embedded memory
networks. In: IJCAI

20. Kim KM, Choi SH, Kim JH et al (2018) Multimodal dual attention memory for video story question
answering. In: ECCV

21. Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: ICLR
22. Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. ICLR
23. Krishna R, Zhu Y, Groth O et al (2017) Visual genome: connecting language and vision using

crowdsourced dense image annotations. Int J Comput Vis 123(1):32–73
24. Lample G, Conneau A (2019) Cross-lingual language model pretraining. In: NeurIPS
25. Lei J, Yu L, Bansal M et al (2018) Tvqa: localized, compositional video question answering. In:

Proceedings of the 2018 conference on empirical methods in natural language processing, pp 1369–1379
26. Lei J, Li L, Zhou L et al (2021) Less is more: clipbert for video-and-language learning via sparse

sampling. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp 7331–7341

27. Li L, Chen YC, Cheng Y et al (2020) Hero: hierarchical encoder for video+ language omni-
representation pre-training. In: Proceedings of the 2020 conference on empirical methods in natural
language processing (EMNLP), pp 2046–2065

28. Li X, Song J, Gao L et al (2019) Beyond rnns: positional self-attention with co-attention for video
question answering. In: Proceedings of the AAAI conference on artificial intelligence, pp 8658–8665

29. Liu Y, Ott M, Goyal N et al (2019) Roberta: a robustly optimized bert pretraining approach.
arXiv:190711692

30. Lu J, Goswami V, Rohrbach M et al (2020) 12-in-1: multi-task vision and language representation
learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp 10,437–10,446

31. Luo Y, Zhao H, Zhan J (2020) Named entity recognition only from word embeddings. EMNLP
32. Miech A, Zhukov D, Alayrac JB et al (2019) Howto100m: learning a text-video embedding by watching

hundred million narrated video clips. In: Proceedings of the IEEE/CVF international conference on
computer vision, pp 2630–2640

33. Mikolov T, Sutskever I, Chen K et al (2013) Distributed representations of words and phrases and their
compositionality. In: NeurIPS

34. Park J, Lee J, Sohn K (2021) Bridge to answer: structure-aware graph interaction network for video ques-
tion answering. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp 15,526–15,535

35. Pennington J, Socher R, Manning CD (2014) Glove: global vectors for word representation. In: EMNLP
36. Peters ME, Neumann M, Iyyer M et al (2018) Deep contextualized word representations. In: NAACL
37. Pfeiffer J, Vulić I, Gurevych I et al (2020) Mad-x: an adapter-based framework for multi-task cross-

lingual transfer. In: Proceedings of the 2020 conference on empirical methods in natural language
processing (EMNLP), pp 7654–7673

38. Sanh V, Debut L, Chaumond J et al (2019) Distilbert, a distilled version of bert: smaller, faster cheaper
and lighter. In: NeurIPS Workshop

39. Sennrich R, Haddow B, Birch A (2016) Neural machine translation of rare words with subword units.
In: Proceedings of the 54th annual meeting of the association for computational linguistics (Volume 1 :
Long Papers), pp 1715–1725

40. Seok M, Song HJ, Park CY et al (2016) Named entity recognition using word embedding as a feature.
Int J Softw Eng Appl 10(2):93–104

41. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition.
In: ICLR

42. Soomro K, Zamir AR, Shah M (2012). In: Ucf101: a dataset of 101 human actions classes from videos
in the wild. arXiv:12120402

43. Standley T, Zamir A, Chen D et al (2020) Which tasks should be learned together in multi-task learning?
In: International conference on machine learning, PMLR, pp 9120–9132

44. Sun G, Liang L, Li T et al (2021) Video question answering: a survey of models and datasets. Mob Netw
Appl, 1–34

45. Tapaswi M, Zhu Y, Stiefelhagen R et al (2016) Movieqa: understanding stories in movies through
question-answering. In: CVPR

46. Tran D, Bourdev L, Fergus R et al (2015) Learning spatiotemporal features with 3d convolutional
networks. In: ICCV

38825Multimedia Tools and Applications (2023) 82:38799–38826

http://arxiv.org/abs/
http://arxiv.org/abs/

47. Ulmer D, Hardmeier C, Frellsen J (2022) Deep-significance-easy and meaningful statistical significance
testing in the age of neural networks. arXiv:220406815

48. Vaswani A, Shazeer N, Parmar N et al (2017) Attention is all you need. In: NeurIPS
49. Wang Y, Zhai C, Awadalla HH (2020) Multi-task learning for multilingual neural machine translation.

In: Proceedings of the 2020 conference on empirical methods in natural language processing (EMNLP),
pp 1022–1034

50. Wang J, Bao B, Xu C (2021) Dualvgr: a dual-visual graph reasoning unit for video question answering.
IEEE Trans Multimedia

51. Winterbottom T, Xiao S, McLean A et al (2020) On modality bias in the tvqa dataset. BMVC
52. Wolf T, Debut L, Sanh V, other (2019) Transformers: state-of-the-art natural language processing.

arXiv:191003771
53. Wu Y, Schuster M, Chen Z, other (2016) Google’s neural machine translation system: bridging the gap

between human and machine translation. arXiv:160908144
54. Xiao J, Shang X, Yao A et al (2021) Next-qa: next phase of question-answering to explaining tempo-

ral actions. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp 9777–9786

55. Xu D, Zhao Z, Xiao J et al (2017) Video question answering via gradually refined attention over
appearance and motion. In: ACM Multimedia

56. Xu H, Ghosh G, Huang PY et al (2021) Vlm: task-agnostic video-language model pre-training for video
understanding. In: Findings of the association for computational linguistics : ACL-IJCNLP, pp 4227-
4239

57. Yang Z, Garcia N, Chu C et al (2020) Bert representations for video question answering. In: WACV
58. Yang A, Miech A, Sivic J et al (2021) Just ask: learning to answer questions from millions of narrated

videos. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 1686–1697
59. Zamir AR, Sax A, Cheerla N et al (2020) Robust learning through cross-task consistency. In: Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition, pp 11,197–11,206
60. Zhang Y, Yang Q (2021) A survey on multi-task learning. IEEE Trans Knowl Data Eng
61. Zhao Z, Zhang Z, Xiao S et al (2018) Open-ended long-form video question answering via adaptive

hierarchical reinforced networks. In: IJCAI, p 4
62. Zhu L, Yang Y (2020) Actbert: learning global-local video-text representations. In: Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, pp 8746–8755

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

38826 Multimedia Tools and Applications (2023) 82:38799–38826

http://arxiv.org/abs/
http://arxiv.org/abs/
http://arxiv.org/abs/

	Video question answering supported by a multi-task learning objective
	Abstract
	Introduction
	Related work
	Video question answering
	Word embedding techniques

	Methodology
	Multi-task learning strategy
	VideoQA architectures
	ST-VQA
	CoMem
	HME-VQA

	Results and discussions
	The datasets
	PororoQA

	Word embeddings
	GloVe
	ELMo
	BERT
	XLM

	Evaluation protocol
	Results using the frozen embeddings
	EgoVQA
	PororoQA

	Finetuning the embeddings
	EgoVQA
	PororoQA

	Adoption of multi-task learning strategy
	EgoVQA
	PororoQA

	Embeddings finetune after the multi-task learning
	PororoQA

	About inference times
	Take-home messages
	Word embeddings
	Importance of the embedding choice
	Bidirectionality
	Finetuning
	Multi-task learning

	Conclusion
	Declarations
	References

