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Abstract
The texture is the most fundamental aspect of a picture that contributes to its recognition.
Computer vision challenges such as picture identification and segmentation are built on the
foundation of texture analysis. Various images of satellite, forestry, medical etc. have been
identifiable because of textures. This work aims to offer texture classification models that
will outperform previously presented methods. In this work, transfer learning was applied
to attain this goal. MobileNetV3 and InceptionV3 are the two pre-trained models employed.
Brodatz, Kylberg, and Outex texture datasets were used to evaluate the models. The models
achieved excellent results and achieved the objective in most cases. Classification accu-
racy obtained for the Kylberg dataset were 100% and 99.89%. For the Brodatz dataset, the
classification accuracy obtained was 99.83% and 99.94%. For the Outex datasets, the clas-
sification accuracy obtained was 99.48% and 99.48%. The model outputs the corresponding
label of the texture of the image.

Keywords Texture classification · Computer vision · Transfer learning · MobileNetV3 ·
InceptionV3 · Deep learning

1 Introduction

The texture is the fundamental quantity of an image that aids in its identification. Texture
analysis forms the foundation for computer vision problems like image recognition, image
retrieval [37] and segmentation. Various images of satellite [30], forestry [27], medical [10],
etc have been identifiable because of textures in them. The texture of an object provides
important insights into the properties and behaviour of these objects. These insights later
help in the computer vision tasks related to such objects when their shape doesn’t help.
Texture today is one of the key components in the analysis of images. This makes the task of
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texture classification important. For the past years, there has been a lot of effort to develop
models that can identify and classify these textures efficiently.

Classic machine learning approaches used for this task include using hand-engined fea-
tures to extract information and using a statistical algorithm like SVM in the final layer for
classification [43]. These approaches were previously preferred, but in recent times these
approaches have been outperformed by deep learning methods, particularly convolutional
neural networks. After the win of AlexNet [18] in the 2012 ImageNet large-scale visual
recognition challenge, there has been an exponential growth in the usage of convolutional
neural networks for image classification tasks. Today, significant models in computer vision
for tasks like image classification, segmentation, recognition, etc., use convolutional neural
networks.

CNN’s learn feature vectors with weight sharing and local connectivity, which detects
patterns at all locations in the image. Initial layers of a CNN learn simple features like the
edges, and the deeper ones learn more complex features. CNN’s can learn texture patterns
of various complexity and scales. Novel convolution neural network models have better per-
formance than the classic machine learning algorithms. This paper aims to propose models
that would perform better than the previously proposed models and improvise the texture
classification approach.

This paper proposes a transfer learning approach for the texture classification problem.
Transfer learning is an approach wherein the intuition uses the knowledge gained while
learning to classify classes of one dataset to a different data set of related problems. Transfer
learning aims to focus on leveraging labelled data from one feature space to enhance the
classification of other entirely different learning spaces. This approach works well when the
source dataset (on which the model is trained) and the target dataset (the one in the study)
are of a similar domain, making their feature spaces similar. In transfer learning, the top
layer of the pre-trained model is replaced by a new layer with the number of neurons equal
to the number of classes of the target dataset.

There are two types of transfer learning approaches. The first is feature extraction,
wherein only the top layer is trained on the target dataset, freezing the rest of the dataset.
The frozen layers are used as feature extractors on the target dataset, training only the top
layer. The idea is that a feature vector trained on one kind of data set can extract valuable
features on another data set. The second type is the fine-tuning of the model wherein only
a few or none of the layers are frozen, and the rest of the layers along with the top layer are
trained on the target dataset.

Transfer learning helps leverage the knowledge learnt by a model on one data set to
extract information on another data set. Transfer learning also reduces the time of learning
all the weights of the convolution layer. Using knowledge of a pre-trained model might also
help in complete learning of the problem task compared to building a model from scratch.
The pre-trained models used in this paper are MobileNetV3 and InceptionV3. The presented
work focusses on:

– Study about transfer learning on texture datasets.
– Achieving better results on the provided benchmark datasets than previous work on the

same datasets.

The rest of the paper is organised as follows. Section 2 discuss the literature survey of the
related work. Section 4 cover the study of material and methods. Section 4 presents the
experiments and results. At last, we are concluding work in Section 5.
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2 Literature review

There has been a lot of research dedicated to texture analysis owing to the importance it
holds in the field of computer vision. In 1993, [29] used two powerful algorithms, Principal
Component Analysis and Multiscale Autoregressive models, on the Brodatz dataset. The
variety of homogenous and non-homogenous images studied in this paper was more sig-
nificant than those in the previous work. This approach got better results than the models
proposed before it. In 1994 an energy-based approach was proposed in [38]. This model got
an accuracy of over 90 for the classification of images.

Statistical methods are considered one of the earliest methods for texture analysis of
the image, which have given good results on standard texture datasets. Ramola et al. [31]
discusses the different statistical approaches like grey level concurrence matrix (GLCM),
Local binary pattern(LBP), auto-correction function(ACF) and histogram pattern. Their
research and discussion concluded that GCLM is the best approach for texture analysis. The
major drawback of the GLCM model is the high matrix dimensionality and high correla-
tion between harlick features. Feng et al. [9] and [5] have also implemented such statistical
models on standard data sets and got good results.

Xu et al. [42] proposed a novel robust texture descriptor on variance in rotation, scale and
illumination, which combines the dominant orientation analysis and multifractal analysis
based on the Gabor filter. This approach was then implemented on the Brodatz and Outex
datasets.

Sana and Islam [32] proposed power-law transform (PLT) to extract new spectral texture
features. This technique outperformed the widely used Gabor features. As seen, machine
learning approaches have had excellent results on standard datasets for texture analysis.
However, these algorithms require handmade features for feature extraction. Also, such
models cannot be used for feature extraction of images of another dataset, as seen in deep
learning architectures with the help of transfer learning.

Zheng et al. [44] proposed an eight feature learning model alongside a deep learning per-
ceptron based architecture. This paper showed the deep learning model’s advantage over the
other model. In recent years, convolutional neural networks have surpassed the standard arti-
ficial neural networks in the field of computer vision. CNNs have also revolutionised other
fields like natural language processing, image and video recognition, information retrieval,
grayscale colourisation, and multi-dimensional data processing and have surpassed many
machine learning algorithms. Y LeCun proposed CNNs, Boser [21] (1989), three decades
ago but did not get popular then because of lack of data and computational power. Today
there is abundant data available, the computational power of computers has drastically
increased, and there has been a lot of development in developing better optimisation algo-
rithms. Algorithms like stochastic gradient descent with momentum (SGDM) and RMSprop
have emerged as the favourites for optimisation. All these factors have contributed to the
success of CNNs today[23]. Many CNN architectures such as AlexNet [17], VGG [36],
ResNet [11], MobileNet [33], etc have emerged and are being used widely.

Simon and Vijayasundaram [35] Proposed a standard convolution neural network for the
task of classification of images of flower and KTH data sets. This paper achieved excellent
results as compared to its predecessors. A modified version of CNN is proposed in [2]
called T-CNN, which is built on the intuition that the overall shape information extracted
by the fully connected layers of a classic CNN is of minor importance in texture analysis.
Therefore, an energy measure from the last convolution layer is pooled, connected to a
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fully connected layer. This idea was inspired by the classic neural networks and filter bank
approach. Jain et al. [13] proposed an Optimal Probability-Based Deep Neural Network
(OP-DNN) for multi-type skin disease prediction and achieved an accuracy of 95%.

Dixit et al. [6] proposes another approach to classification where whale optimisation
algorithm (WOA) is used along with the CNN. Results of this model on the Kylberg, Bro-
datz and Outex datasets are compared to the results obtained by other models on the same
data set. This model gained excellent results and beat other models in comparison. Another
such work was [14] where the authors used a new optimisation module Knowledge-Based-
Search (KBS), along with Moth–Flame Optimization (MFO). Their work performed well
in a dynamic environment.

As discussed, Deep Neural Networks require a large amount of data. When trained on a
small dataset, their generalisation performance is limited. Liu et al. [22] proposes the use
of relative position network (RPN) and relative mapping network (RMN) for skin lesion
image classification with a small dataset. They were able to achieve an accuracy of 85%.
Deep learning architectures have the advantage that one model trained on a vast dataset can
extract features of images from another dataset. This approach is called transfer learning.

Kazi and Panda [16] uses the transfer learning technique to determine three different
types of fruits and their relative freshness and got great results. Kundo et al. [19] pro-
poses a bagging ensemble of three transfer learning models, InceptionV3, ResNet34 and
DenseNet201, that outperformed the state of the art methods by 1.56%. Nadeem et al. [26]
uses transfer learning for Pakistani traffic-sign recognition. They use a model trained on the
German traffic-sign recognition, and with additional pre-processing and regularisation, they
achieved competitive results on a small available dataset. This paper uses the approach of
transfer learning. Transfer learning has also been widely employed in the medical domain.
Arora et al. [3] used a transfer learning-based approach for detecting COVID-19 ailment in
lung CT scan. They achieved a precision of 100% using the MobileNet architecture on the
SARS-COV-2 CT-Scan dataset.

In recent years transformer-based architectures have revolutionised every domain of deep
learning. A transformer-based architecture was originally proposed in [41] where authors
proposed an attention mechanism based architecture, dispensing with recurrence and convo-
lutions entirely. Their model was experimented on two translation tasks and outperformed
the other models in terms of results and training time. Dosovitskiy et al. [7] proposed
Vision Transformers(ViT) inspired from the transformer architectures for Natural Language
Processing (NLP) tasks. Their study showed that ViT outperformed the conventional con-
volutional networks in terms of results and training time on standard datasets like the
ImageNet.

The following sections of this paper discuss the materials and methods used and the
experiments and results obtained. The last section summarises the paper and talks about the
future scope.

3 Materials andmethods

Figure 1 depicts the flowchart followed. The first step was to find the problem statement. The
following step was to collect the related dataset to the problem statement. After the data was
collected, it was preprocessed to make it of desirable format and size. The pre-processing stage
also included data augmentation, which was done to avoid over-fitting the model. After pre-
processing, models were designed for the problem statement, then tested on the pre-processed
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Fig. 1 Flow graph

dataset. Transfer learning models are used to classify the different datasets collected. We
use the MobileNetV3 and the InceptionV3 models for the classification task.

3.1 Dataset

We have used three standard benchmark datasets of the texture classification problem. These
are the Brodatz dataset, Kylberg dataset and the Outex dataset. Below is the summary of
these datasets.

3.1.1 Brodatz dataset

Brodatz dataset [4] is a very popular dataset for texture classification problems. The dataset
has been referred from the University of Southern California[]. The original dataset did not
contain the rotated images. In this paper, we have proposed these rotations using 40 different
rotation angles on these images. This dataset has 112 classes. The samples of this dataset
are displayed in Fig. 2. The summary of this dataset is given in Table 1.

3.1.2 Kylberg dataset

The Kylberg dataset is another widely used dataset for texture classification problems. This
dataset has 2 versions (1) with rotation patches and (2) without rotation patches [20]. We
have used v1.0, which is the version without rotation patches. The classes of this dataset
are blanket1, blanket2, canvas1, ceiling1, ceiling2, cushion1, floor1, floor2, grass1, lentils1,
linseds1, oatmeal1, pearlsugar1, rice1, rice2, rug1, sand1, scarf1, scarf2, screen1,seat1,
seat2, sesameseeds1, stone1, stone2,stone3, stoneslab1 and wall1. The samples of this
dataset are displayed in Fig. 3. The summary of this dataset is given in Table 2.
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Fig. 2 Samples of the Brodatz dataset

3.1.3 Outex dataset

The Outex [28] database has a lot of datasets. We are using the Outex TC 00012 dataset of
this database. We have referred to this dataset from the University of OULU. The classes
of this dataset are canvas001, canvas002, canvas003, canvas005, canvas006, canvas009,
canvas011, canvas021, canvas022, canvas023,canvas025,canvas026 ,canvas031 ,canvas032,
canvas033, canvas035, canvas038,canvas039,tile005 ,tile006 ,carpet002 ,carpet004 ,car-
pet005 and carpet009. The samples of this dataset are displayed in Fig. 4. The summary of
this dataset is given in Table 3.

Table 1 Summary of the Brodatz
dataset Features Value

Number of Classes 112

Number of samples/ class 40

Total number of samples 4480

Texture patch size 640*640pixels

Format of image 8 bit grey scale PNG

Total size of dataset 1.02 GB
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Fig. 3 Samples of the Kylberg dataset

3.2 Data preprocessing and splitting

Data preprocessing is one of the most critical steps. This step makes the raw data compatible
with the deep learning model. Images in the Outex and Brodatz datasets are in GIF format
and converted to compatible models.

After the data is converted to a compatible format, the images are then resized to a size
of 224*224*3, making it compatible with the pre-trained model. After preprocessing, the
data is split. The Kylberg, Outex TC 00012 and the brodatz dataset are split in a ratio of
80:20 into training and testing data.

3.3 Data augmentation

As discussed earlier, data augmentation refers to the act of creating more data out of the
already existing data. The intuition is that the image of the surface of texture rotated by
an angle or flipped along an axis remains the image of that surface. Since there is only 1
image available for each class in the Brodatz dataset, more images are produced by rotating
the original images by different angles. Data augmentation is also done for all the data of
all three datasets. Figure 5 shows a sample of data received after subjecting the data of
the Kylberg dataset to data re-scaling and data augmentation. Figure 6 shows a sample of

Table 2 Summary of the Kylberg
dataset Features Value

Number of Classes 28

Number of samples/ class 160

Total number of samples 4480

Texture patch size 576*576

Format of image 8 bit grey scale PNG

Total size of dataset 1.76 GB
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Fig. 4 Samples of the Outex dataset

data received after subjecting the data of the Brodatz dataset to data re-scaling and data
augmentation. Figure 7 shows a sample of data received after subjecting the data of the
Outex dataset to data re-scaling and data augmentation.

3.4 Proposedmodel

This paper uses the methodology of using pre-trained models called transfer learning. Intu-
ition uses the knowledge gained by a model on one problem to solve another similar
problem. This methodology reduces the time spent on training a model from scratch. Also,
using a pre-trained model might be able to learn the problem entirely compared to a model
trained from scratch. This paper uses the MobileNetV3 and InceptionV3 models. For each
approach, the last dense layer (classification layer) of the pre-trained model is replaced with
a softmax layer suitable for classifying the texture of classes of that dataset. In this work,
the following transfer learning techniques were implemented (Fig. 8):

– Feature extraction: Here, we froze all the model layers and trained only the added dense
layer. Here the pre-trained model is only used as a feature extractor for the classifier.

– Full fine-tuning: Here, the whole pre-trained model was fine-tuned using the data in
use.

3.4.1 Transfer learning

It becomes difficult to collect enough data to build a model from scratch in many world
applications. In such scenarios, the idea of transfer learning comes in. As discussed earlier,
transfer learning is an approach wherein a model trained on a vast data set is used to solve

Table 3 Summary of the Outex
dataset Features Value

Number of Classes 24

Number of samples/ class 40

Total number of samples 960

Texture patch size 128*128

Format of image 8 bit grey scale GIF

Total size of dataset 0.16 GB
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Fig. 5 Sample images of Kylberg data set after pre-processing and data augmenation

Fig. 6 Sample images of Brodatz data set after pre-processing and data augmenation

Fig. 7 Sample images of Outex TC 00012 data set after pre-processing and data augmenation
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Fig. 8 Proposed model

a related problem. In the medical domain, the number of samples is limited because the
procedure of collecting the data is both expensive and complicated. In such situations, using
a pre-trained model is more effective than training a model from scratch. One such example
is breast cancer classification [34] where the goal is to classify whether a cancer is malignant
or benign. The paper compared the results from a pre-trained model and a model trained
from scratch. Results obtained by transfer learning surpassed those obtained by a model
trained from scratch. In this paper, we have used TensorFlow Hub to import such pre-trained
models without their top layers. A softmax layer is then added to these layers. For the
Kylberg dataset, only the last layer is trained. For the Outex and brodatz datasets, the models
were fine-tuned.

MobileNetV3 MobileNet was proposed by Sandler, Howard [33]. This model has achieved
a great balance between performance and computation cost. MobileNet offers an extremely
efficient network architecture that can easily match the requirements for mobile and embed-
ded applications. This paper makes use of the MobileNetV3 small model, which was
proposed in [12]. TensorFlow Hub is used to use the MobileNetV3 model, which has been
trained on ImageNet (ILSVRC-2012-CLS) data. The model is used as feature extraction for
the Kylberg dataset without tuning. The model is fully fine-tuned for Outex and the brodatz
datasetsuned. Figure 9 summarises the MobileNetV3 architecture.

InceptionV3 InceptionV3 [40] is the third edition of Google’s Inception Convolutional
Neural Network. The Inception modules are well-designed convolution modules that can
generate discriminatory features and reduce the number of parameters. The InceptionV1
model was introduced at the 2014 ILSVRC classification challenge, where VGGNet [36]
was also presented for the first time. Both gained similar results. However, Inception archi-
tecture had the advantage of performing well even under strict constraints on memory and
computational budget.

The Inceptionv1 [39] model overcame the problem of variation of information by having
different sizes of filters and a wider network. It is 22 layers deep (27, including the pooling
layers). It uses global average pooling at the end of the last inception module. It is a deep
network and is subject to the vanishing gradient problem. To prevent the middle part of the
network from “dying out,” it uses two auxiliary classifiers.

Neural networks perform better when convolutions don’t alter the dimensions of the input
drastically. Reducing the dimensions too much may cause loss of information, known as a
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Fig. 9 Summary of the MobileNetV3 model

“representational bottleneck.” InceptionV2 [40] model overcame this problem by expanding
the filterbanks. InceptionV2 also used clever factorization methods to make the convolution
more efficient in terms of computation complexity.
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The InceptionV3 had all the upgrades that InceptionV2 had. In addition, it used
RMSProp Optimizer, BatchNorm in the Auxillary Classifiers, and Label Smoothing to
prevent overfitting. Figure 10 summarises the MobileNetV3 architecture.

4 Experiments and results

4.1 Hardware and software setup

Tesla K80 GPU and 13 GB RAM used for training along with TensorFlow, Keras, and
Scikit-learn libraries in Google Colab, coded in Python 3.7.10.

Fig. 10 Summary of the InceptionV3 model
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4.2 Training and testing data

The Kylberg, Brodatz and the Outex datasets are split into training data (80%) and testing
data (20%). Adam optimisation and categorical cross-entropy loss functions are used in all
cases. A learning rate of 0.01 has been used. The batch size for the training was set to 32.
The proposed model 1 for the Kylberg dataset is only fully trained on the training data. Rest
in all other cases, the pre-trained model is used as a feature vector, and only the top added
layer is trained on the training data.

4.3 Evaluation criteria

In the prediction phase, seven quantitative performance measures were computed to access
the reliability of trained models using the validation data, including precision, recall,
f1-score, accuracy, macro-avg, weighted-avg and Cohen kappa score. These metrics are
computed based on True Positive (TP), True Negative (TN), False Positive (FP), False
Negative (FN).

Precision = T P

T P + FP
(1)

Recall = T P

T P + FN
(2)

F1Score = 2 ∗ Precision ∗ Recall

P recision + Recall
(3)

Accuracy = T P + T N

T P + FN + T N + FP
(4)

Weightedavg = F1class1 ∗ W1 + F1class2 ∗ W2 + F1class3 ∗ W3 + · · · + F1classn ∗ Wn (5)

F1classm : F1 score of class m

Macroavg = F1class1 + F1class2 + F1class3 + · · · + F1classn (6)

F1classm : F1 score of class m Cohen kappa score:

K = p0 − pe

1 − pe
(7)

p0 = relative observed agreement among raters, pe = the hypothetical probability of chance
agreement.

4.4 Training single convolutionmode

All the images in the .gif or the .ras format were converted to a compatible format. After
that, All the images of the three datasets in the study were rescaled to a size of 224*224.
The images were then normalised to make the values of their pixels range from 0-1. The
Kyllberg and Brodatz datasets were then subjected to data augmentation before passing
them to the proposed model.

4.4.1 Kylberg dataset

The first dataset to be studied was the Kylberg dataset. The first model is developed using
the MobileNetV3 small model, trained on the ImageNet dataset. The top layer of the pre-
trained model is removed and replaced by a softmax layer with 28 classes. The model was
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Table 4 Classification report for model 1 Kylberg dataset

precision recall f1-score support

Accuracy − − 1.00 896

Macro Avg 1.00 1.00 1.00 896

Weighted Avg 1.00 1.00 1.00 896

fully fined tuned, i.e. all the model layers were trained on the training dataset. The proposed
model was trained for 10 epochs on the training dataset. The model achieved an accuracy
of 100% on the testing dataset. The classification report and confusion matrix of model 1
on testing it on testing data are shown in Table 4 and Fig. 11 respectively. The accuracy vs
epochs graph and the loss vs epochs graph of model1 for the Kylberg dataset while training
is shown in Fig. 12.

The second model is developed using the InceptionV3 model trained on the ImageNet
dataset. The top layer of the pre-trained model is removed and replaced by a softmax layer
with 28 classes. The pre-trained model was used as a feature extractor, i.e. all the layers of
the pre-trained model were frozen, and only the top layer was trained on the training dataset.
The proposed model was trained for 10 epochs on the training dataset. The model achieved
an accuracy of 99.8883% on the testing dataset. The classification report and confusion
matrix of model 2 on testing it on testing data is shown in Table 5 and Fig. 13 respectively.
The accuracy vs epochs graph and the loss vs epochs graph of model1 for the Kylberg
dataset while training is shown in Fig. 14.

4.4.2 Brodatz dataset

The second dataset to be studied was the Brodatz dataset. The first model is developed using
the MobileNetV3 small model, trained on the ImageNet dataset. The top layer of the pre-
trained model is removed and replaced by a softmax layer with 112 classes. The pre-trained

Fig. 11 Model 1 confusion matrix for the Kylberg datset
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Fig. 12 Model 1 accuracy and losses graph for the Kylberg datset

Table 5 Classification report for model 2 Kylberg dataset

precision recall f1-score support

Accuracy − − 1.00 896

Macro Avg 1.00 1.00 1.00 896

Weighted Avg 1.00 1.00 1.00 896

Fig. 13 Model 2 confusion matrix for the Kylberg dataset
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Fig. 14 Model 2 accuracy and losses graph for the Kylberg datset

model was used as a feature extractor, i.e. all the layers of the pre-trained model were frozen,
and only the top layer was trained on the training dataset. The proposed model was trained
for 7 epochs on the training dataset. The model achieved an accuracy of 99.6651% on the
testing dataset. The classification report of model 1 on testing it on the testing data is shown
in Table 6. The accuracy vs epochs graph and the loss vs epochs graph of model1 for the
Brodtz dataset while training is shown in Fig. 15.

The second model is developed using the InceptionV3 model trained on the ImageNet
dataset. The top layer of the pre-trained model is removed and replaced by a softmax layer
with 112 classes. The pre-trained model was used as a feature extractor, i.e. all the layers
of the pre-trained model were frozen, and only the top layer was trained on the training
dataset. The proposed model was trained for 7 epochs on the training dataset. The model
achieved an accuracy of 99.8884% on the testing dataset. The classification report of model
2 on testing it on the testing data is shown in Table 7. The accuracy vs epochs graph and the
loss vs epochs graph of model1 for the Brodatz dataset while training is shown in Fig. 16.

4.4.3 Outex dataset

The third dataset to be studied was the Outex dataset. The first model is developed using the
MobileNetV3 small model, trained on the ImageNet dataset. The top layer of the pre-trained
model is removed and replaced by a softmax layer with 112 classes. The pre-trained model
was used as a feature extractor, i.e. all the layers of the pre-trained model were frozen, and
only the top layer was trained on the training dataset. The proposed model was trained for 5
epochs on the training dataset. The model achieved an accuracy of 99.479% on the testing

Table 6 Classification report for model 1 Brodatz dataset

precision recall f1-score support

Accuracy − − 0.9967 896

Macro Avg 1.00 1.00 1.00 896

Weighted Avg 1.00 1.00 1.00 896
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Fig. 15 Model 1 accuracy and losses graph for the Brodatz datset

Table 7 Classification report for model 2 Brodatz dataset

precision recall f1-score support

Accuracy − − 0.9933 896

Macro Avg 0.99 0.99 0.99 896

Weighted Avg 0.99 0.99 0.99 896

Fig. 16 Model 2 accuracy and losses graph for the Brodatz datset
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Table 8 Classification report for model 1 Outex dataset

precision recall f1-score support

Accuracy − − 1.00 192

Macro Avg 1.00 1.00 1.00 192

Weighted Avg 1.00 1.00 1.00 192

dataset. The classification report and confusion matrix of model 1 on testing it on testing
data is shown in Table 8 and Fig. 17 respectively. The accuracy vs epochs graph and the loss
vs epochs graph of model1 for the Outex dataset while training is shown in Fig. 18.

The second model is developed using the InceptionV3 model trained on the ImageNet
dataset. The top layer of the pre-trained model is removed and replaced by a softmax layer
with 112 classes. The pre-trained model was used as a feature extractor, i.e. all the layers of
the pre-trained model were frozen, and only the top layer was trained on the training dataset.
The proposed model was trained for 5 epochs on the training dataset. The model achieved an
accuracy of 99.479% on the testing dataset. The classification report and confusion matrix
of model 2 on testing it on testing data are shown in Table 9 and Fig. 19 respectively. The
accuracy vs epochs graph and the loss vs epochs graph of model1 for the Outex dataset
while training is shown in Fig. 20.

4.5 Comparative study

The results of the 2 proposed models are compared with other recently proposed models.
Table 10 shows the comparison between the two proposed models and other recently applied
models on the Kylberg dataset. Table 11 shows the comparison between the two proposed

Fig. 17 Model 1 confusion matrix for the Outex datset
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Fig. 18 Model 1 accuracy and losses graph for the Outex datset

Table 9 Classification report for model 2 Outex dataset

precision recall f1-score support

Accuracy − − 1.00 192

Macro Avg 1.00 1.00 1.00 192

Weighted Avg 1.00 1.00 1.00 192

Fig. 19 Model 2 confusion matrix for the Outex datset
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Fig. 20 Model 2 accuracy and losses graph for the Outex datset

Table 10 Performance comparison of our models with the existing techniques for the Kylberg dataset

Paper (reference Model/technique Classifcation accuracy (%)

Andrearczyk and Whelan [2] T-CNN-3 99.4±0.2

Kaya et al. [15] KNN+nLBP(d=1) 99.64

El Khadiri et al. [8] RALBGC 99.23

Kaya et al. [15] LBP 97.97

Dixit et al. [6] Modifed CNN+WOA 99.71

Proposed model 1 MobileNetV3 (Fully fined tuned) 100

Proposed model 2 InceptionV3 (Feature extraction) 100

Table 11 Performance comparison of our models with the existing techniques for the Brodatz dataset

Paper (reference) Model/technique Classifcation accuracy (%)

Kaya et al. [15] LBPû2̂ and nLBP d 99.26

El Khadiri et al. [8] RALBGC, RLBGC 100

de Mesquita Sá Junior and Backes [25] ELM based Signature (�19,39) 99.42

Ahmadvand and Daliri [1] Hybrid feature vector 89.28

Dixit et al. [6] Modifed CNN+WOA 97.43

Proposed model 1 MobileNetV3 (Feature extraction) 99.67

Proposed model 2 InceptionV3 (Feature extraction) 99.33
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Table 12 Performance comparison of our models with the existing techniques for the Outex TC-00012
dataset

Paper (reference Model/technique Classifcation accuracy (%)

Ahmadvand and Daliri [1] Hybrid feature vector 90.78

Mehta and Egiazarian [24] FbLBP 96.00

Dixit et al. [6] Modifed CNN+WOA 97.70

Proposed model 1 MobileNetV3 (Feature extraction) 100

Proposed model 2 InceptionV3 (Feature extraction) 100

models and other recently applied models on the Brodatz dataset. Table 12 shows the com-
parison between the two proposed models and other recently applied models on the Outex
dataset.

4.6 Discussion

In this experiment, the pre-trained models used are trained on the ImageNet dataset and
openly available for use. The models were trained and tested using two cases. In the first
case, the pre-trained model used a feature extractor, and only the last layer was trained on the
dataset. The whole model was trained on the training dataset in the second case. The feature
extraction case yielded better results and lesser training time in most cases. As mentioned in
Section 3.2, all the images were rescaled to a size of 224*224*3 to make them compatible
with the pre-trained models. The datasets were then split in a ratio of 80:20 for training and
testing data. Tables 10, 11, and 12 in Section 4.5 showcase the comparison of the results
of our method with the previously proposed methods. From the tables, it is evident that our
methods have outperformed the previously proposed methods.

5 Conclusion and future Scope

Texture classification is an essential area of research that has attracted many researchers to
propose different models. From the comparative study, it can be concluded that our mod-
els give better results than most of the existing models for the Kylberg and Outex datasets.
Both models got a testing accuracy of 100 on the Kylberg and Outex datasets. Our models
gave competitive results for the Brodatz dataset too. Despite using the models as only fea-
ture extractors (except for MobileNetV3 on the Kylberg dataset), the models have attained
outstanding results. It means that the datasets in the study and the ImageNet dataset have
very similar feature space. Hence, it can be concluded that transfer learning can be used
to quickly solve tasks where the feature space of the target dataset is similar to the feature
space of the dataset on which the pre-trained model is trained.

In future, we would like to test our models on more texture datasets and even use them
for other domains like medical and aerial imagery. It is evident that the similarity of feature
space of the source and target dataset has a massive impact on the model performance. This
study used models which were trained on the ImageNet datasets. The authors also aim to
extend this work to transformer based architectures. We would also like to expand the study
by using the same model architectures trained on a different dataset. Using different source
models for standard architectures and different target models can help understand transfer
learning deeper.
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