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Abstract
Speech signal enhancement is a subject of study in which a large number of researchers
are working to improve the quality and perceptibility of speech signals. In the existing
Kalman Filter method, the short-time magnitude or power spectrum due to random
variations of noise was a serious problem and the signal-to-noise ratio was very low.
This issue severely reduced the perceived qualityand intelligibility of enhanced
speech. Thus, this paper intent to develop an improved speech enhancement model
and it includes“training phase and testing phase”. In the training phase, the input noise
corrupted signal is initially fed as input to both STFT-based noise estimation and
NMF-based spectrum estimation forestimating the noise spectrum and signal spec-
trum, respectively. The obtained noise spectrum and the signal spectrum are fed as
input to the Wiener filter and these filtered signals are subjected to Empirical Mean
Decomposition (EMD).Since, tuning factor η plays a key role in Wiener filter, it has to
be determined for each signal and from the denoised signal the bark frequency is
evaluated. The computed bark frequency is fed as input to the learning algorithm
referred as Fuzzy Wavelet Neural Network (FW-NN)for detecting the suited tuning
factor η for the entire input signal in Wiener filter.An Adaptive Randomized Grey
Wolf Optimization (AR-GWO) is proposed for proper tuning of the tuning factor η
referred as tuned tuning factor (ηtuned). The proposed AR-GWO is the improved
version of standard Grey wolf optimization (GWO). In the testing phase, the training
is accomplished initially and from which the tuning factor is gathered for each of the
relevant input signal. Then, the properly tuned tuning factor (ηtuned) from FW-NN is
fed as input to EMD via adaptive wiener filter for decomposing the spectral signal and
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the output of EMD is denoised enhanced speech signal. At last, the performance of the
adopted approach is evaluated to the existing approaches in terms of various metrics.
In particular, the computation time of the adopted AR-GWO model is 34.07%,
43.57%, 28.86%, 38.88%, and 16.03% better than the existing GA, ABC, PSO, FF,
and GWO approaches respectively.

Keywords STFT-basednoiseestimation.NMF-basedspectrumestimation.EMD.Weinerfilter .

FW-NN

Abbreviations
ABC Artificial Bee Colony optimization
CSED Cumulative Squared Euclidean Distance
DNN Deep Neural Network
ESTOI Extended STOI
FF Firefly optimization
FRBM Fuzzy Restricted Boltzmann Machines
GA Genetic Algorithm
GWO Grey Wolf optimization
HMM Hidden Markov Model
IFD Instantaneous Frequency Deviation
IMF Intrinsic Mode Functions
IRM Ideal Ratio Mask
JT-FS Joint Time-Frequency Segmentation Algorithm
KCF Kalman Filter-Based
LT-FD linear time-frequency distribution
MMSE Minimum Mean Square Error
MSE Mean Square Error
NMF Nonnegative Matrix Factorization
P-ASE Phase-Aware Speech Enhancement
PDF Power Spectral Density
PESQ Perceptual Evaluation Of Speech Quality
P-SJL Phase-Sensitive Joint Learning Algorithm
PSD Power Spectral Density
PSM Phase-Sensitive Mask
PSO Particle Swarm Optimization
PWFT perceptual wavelet filter bank
RMSE Root-Mean-Square Error
SDR Source To- Distortion Ratio
S-MSE Single-Microphone Speech Enhancement
SNR Signal-To-Noise Ratio
SSD Supervised Speech Denoising
STFT Short-Time Fourier Transform
STOI Extended STOI
T-F Time-Frequency
VoIP Voice over Internet Protocol

24102 Multimedia Tools and Applications (2023) 82:24101–24125



1 Introduction

In the present era, speech enhancement plays a major role in the field of speech processing as it
is related to the speaking as well as listening skills. In general, speech enhancement is
employed with a desire of processing the noisy speech signals, thereby enhancing human
perception [3, 38, 41]. Generally, the quality of the speech is related to the attributes of the
speaker, like the naturalness and speaker recognizability, whereas the intelligibility of the
speech is related to the meaning or information content that is hidden behind the words [45]
[27]. Speech signals are utilized in many purposes and in recent times, COVID-19 [28, 36] has
been detected from speech signals. Hence, it is vivid that, the ability to communicate (speak
and listen) diminishes in the noisy environment.

The speech enhancement is performed with the intention of reducing the impact of the
communication problem [22]. Most of the research proved that, it is a complex task to reduce
the noise of the signal without distorting speech and this is the major reason behind the non-
availability of an ideal enhancement systems [4, 30]. Beyond this, efforts to enhance the
“higher quality and/or intelligibility of noisy speech” will definitely end up with a mass
increment in the performance of the speech signal and hence it can be employed in the fields
of “speech coding/compression and speech recognition, hearing aids, voice communication
systems and so on” [21, 35]. Further, the goal behind each of the speech recognition might be
different and they are application based, such as diminishing the listener fatigue, boosting the
overall speech quality, enhancing the intelligibility and improving the performance of the
voice communication device, etc. But, the major benchmark behind all the research is to
diminish the noise level and to enhance the quality as well asthe intelligibility of the signal.
Hence,“speech enhancement is necessary to avoid the degradation of speech quality and to
overcome the limitations of human auditory systems” [2, 43].

A vast amount of automatic speech processing systems are playing a major role in human
life, like the “mobile communication, speech and speaker recognition, hearing impaired and
numerous other applications”. Moreover, the quality and intelligibility of speech areof utmost
importance with the intention of enhancing the accuracy of information exchange [31].
Beyond this, in the controlled environment, human as well as automatic speech communica-
tions are found to be much more effective [5, 47]. The Spectral Subtraction algorithm suffers
from the problem of restoration in the basis parameters of the speech like the power spectrum
or the magnitude spectrum and here only the additive noise available in the signal can be
removed [1]. Then, in the Sub-space analysis algorithm, there was a difficulty in enhancing the
noise spectrum and updating the noise spectrum from period to period was a complex task.
[46]. Thus, in order to override these entire problems, there is a necessity to have an optimal
speech enhancement method.

Nowadays, literature works have come up with several techniques for speech enhancement
as relates to speaking as well as listening skills. Tantibundhit et al. [44] proposed JT-FS with
the desire of decomposing the speech signal into “transient” as well as “non-transient
components” only the basis of the wavelet packets. Lee et al. [30] proffered P-SJL with the
intention of enhancing single-channel speech. The phase-related information of the speech
signal was represented using PSM which was similar to the T-F mask. Furthermore, the P-
ASEalgorithm [48] was formulated on the basis of DNN. Shao and Chang [40] developed a
framework of wavelet-based techniques with the intention of enhancing the performance of
automatic speech recognition by eliminating the background noise. AKCF algorithm was
introduced in [13]with the aim of enhancing speech. The noise as well as the speech

24103Multimedia Tools and Applications (2023) 82:24101–24125



parameters was estimated using the Estimate-Maximize (EM) method. Mohammadiha et al.
[34] proposed SSD algorithms on the basis of NMF. In addition to this, the Bayesian
Formulation of NMF (BNMF) was used for generating the novel speech enhancement method.
Additionally, Chazan et al. [6] proposed the S-MSE algorithm in order to enhance the speech
signal. Samuiet al. [39] proposed time-frequency masking in the basis of DNN with the
intention of enhancing the speech signal and here the pre-training of the signal was accom-
plished using FRBM. Moreover, the advantages and challenges of the few works are listed in
Table 1. These challenges have kept the main stand for motivating and accomplishing the new
speech enhancement model.

In addition, many optimization algorithms have been introduced recently [8–10, 25] and
utilized in many fields for better outcomes [7]. In this research work, a modified version of a
popular meta-heuristic algorithm is employed. The major contributions of this research are
listed below:

& In this research work, STFT-based noise estimation and NMF-based spectrum estimation
are utilized for the estimation of the noise spectrum and signal spectrum of the noisy
signal.

Table 1 Features and Challenges of of the state-of-art Speech Enhancement models

Author [citation] Adopted
methodology

features Challenges

Tantibundhit
et al. [44]

JT-FS
Algorithm

Enhanced the word recognition rate. Low SNR
Increased speech intelligibility in

background Noise.
No consideration on the constant Or

slowly varying frequency
information

Lee et al. [30] P-SJL
algorithm

High SNR Not Applicable to magnitude spectra
domain.

Had consideration on the dynamic
range of speech and noise spectral
Features.

Do not solve the phase mismatch
problem.

Zheng andZhang
[48]

P-ASE
Algorithm

Solved phase wrapping problem Low SNR
Enhanced speech quality and

intelligibility.
BW is high

Shao and Chang
[40]

HMM Degraded the residual noise energy. Sensitivity of signal is high
High speech recognition accuracy. SNR is low

Gannot et al. [13] KF
algorithm

Achieves higher SNR and quality of
speech

Difficult to construct reliable VAD
(Voice Activity Detector)

Applicable to noise sources with fast
changing Spectrum

Mohammadiha
et al. [34]

SSD
algorithm

Noise classification and speech
enhancement were carried out at
the same time

Highly affected by nonnegative
decomposition problem

Solved the mismatch problem
Chazan et al. [6] DNN Preserves the continuity of speech. Do not address the problem of noisy

speech received by a single
microphone

Reduces the artifacts High distortions in the enhanced
speech

Samui et al. [39] Fuzzy based
DNN

Solves the problem of local optima
and total reconstruction error.

Not suitable for real-world noise.

Provides good performance under
noisy reverberant conditions.

Training of the signal is complex
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& To minimize the error, a Wiener filter is employed and the tuning factor ηof Wiener filter is
obtained for different signals.

& Introducing a Fuzzy Wavelet Neural Network (FW-NN) for detecting the suited tuning
factor η for the entire input signal in Wiener filter.

& Proposed an Adaptive Randomized GreyWolf Optimization (AR-GWO) for proper tuning
of the tuning factorηreferred as tuned tuning factor(ηtuned). The proposed AR-GWO
algorithm is an improved version of the traditional GWO algorithm.

The rest of the paper is organized as below: Section 2 portrays the proposed architecture of the
speech enhancement model. Section 3 depicts the processed steps for enhanced speech enhance-
ment. The results and discussions are exhibited in Section 4, and Section 5 concludes the paper.

2 Proposed architecture of speech enhancement model

2.1 Architectural representation

Figure 1 demonstrates the architecture of the proposed speech enhancement model in which
the overall process takes place in “two major phases (i) training phase (ii) testing phase”. In the
training phase, initially, the noise corrupted signal is fed as input to STFT-based noise
estimation as well as NMF-based spectrum estimation, for estimating the noise spectrum
and signal spectrum, respectively. The obtained spectrum (noise and signal) are given as input
to the Wiener filter. These, filtered signals are subjected to EMD, from which the denoised
signal can be obtained. Since, tuning factor η plays a key role in Wiener filter, it has to be
determined for each signals, and is trained in FW-NN. Then, from the denoised signal the bark
frequency is evaluated. The computed bark frequency is fed as input to the learning algorithm
referred as FW-NNfor detecting the suited tuning factorη for the entire input signal in Weiner
filter. The AR-GWO is employed for proper tuning of the tuning factorη. Moreover, in the
testing phase of a signal, the training is accomplished initially, from which the tuning factorηis
gathered for the corresponding input signal. Then, the properly tuned ηfrom FW-NNis fed as
input to EMD via adaptive Wiener filter for decomposing the spectral signal and the output of
EMD is denoised signal.

Consider the clear signal as T(n), when the noise Wgets corrupted into it, and the signal

becomes noisy signal T nð Þ. This noisy signal is fed as input to the STFT-based noise
estimation and NMF-based spectrum estimation, from which the noise spectrumWT and signal

spectrum WT
are obtained. The obtained noise and signal spectrum are subjected to filtration

using Wiener filtering process; at the end of filtration the filtered signal Tu nð Þ is generated.
Then, Tu nð Þ is decomposed using EMD as a result of this, the bark frequency c′(u′) is obtained.

This bark frequency is utilized to train FW-NN classifier. From the spectrum WT and WT
as

well as from FW-NN, ‘tuned η’ referred as ηtuned is acquired for all the inputs signals with AR-
GWO. In the testing process, the tuned ηtuned is acquired for the corresponding signal with the
aid of the AR-GWO; this ηopt is fed as input to the adaptive Wiener filtering process with the

intention of tuning the input signal T nð Þ. The outcomes of the adaptive Wiener filter are the

filtered signal Tu nð Þ. Again, Tu nð Þ is decomposed using EMD and the result is the enhanced

denoised signal To nð Þ.
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3 Processed steps for enhanced speech enhancement

3.1 STFT-based noise estimation

The noise power spectral density estimatorisbased onminimum statistics to track the minima
from the noisy signal [26]. The STFT coefficient of the frame γ is depicted as T(γ, p) and their
mathematical formula is exhibited in Eq. (1) [14].

T γ; pð Þ ¼ τ γ; pð ÞT γ−1; pð Þ þ 1−τ γ; pð Þð Þ T
�
γ; p
���� ���2 ð1Þ

Input speech 

signal

STFT based 

noise estimation

NMF based 

spectrum

estimation

Weiner filter

Empirical Mode 

Decomposition
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Network

Adaptive 

randomized 
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(AR-GW)

Adaptive 

Weiner filter
Empirical Mode 
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denoised speech 
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Fig. 1 Proposed intelligence architecture for speech enhancement model
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Here, the frequency bin is manifested as p. The frequency and time-dependent smoothing
parameters is portrayed as τ(γ, p). With the intention of observing the mean power, the bias
compensation factor is employed. The variance estimator of the smoothened PSD is repre-
sented as var{T(γ, p)} and the function corresponding to the length of minimum search interval
is defined by the bias compensation factorKmin. The variance estimator relating the smoothened
PSD is indicated asvar{T(γ, p)} and this assist in evaluating the variance of T(γ, p) by fixing
the length of the search interval in the algorithm. Eq. (2) depicts the mathematical formula for
evaluating the variance estimator at the frame γ relating the frequency bin p. In Eq. (2), the

mean smoothened periodograms is represented as T γ; pð Þ, and T2 α; bð Þ indicates the first-
order recursive average of smoothened periodograms [14].

var T γ; pð Þf g ¼ T2 γ; pð Þ−T
2
γ; pð Þ ð2Þ

This paper deal with STFT-based noise estimation and the graphical representation of the
power spectrum corresponding to the noise estimated by FFT as well as STFT is exhibited in
Fig. 2. The power spectrum varies by the magnitude of the frequency component. Moreover,
in determining the phase content of the signal and varying sine wave frequency that alter over
time are predicted using STFT. In general, the time signals which are larger in size are sub-
divided into smaller equal size signals and to each of the segments the Fourier transform is
employed. In addition, in the filtering process, STFT can also be interpreted. The estimation
strategy is satisfied by two major properties viz. magnitude based shift invariance property and
LT-FD properties. The noise spectrum WT is obtained as the resultant.

3.2 NMF-based Spectrum estimation

In the time-frequency (γ, p) domain, the voicing of the noisy signal T nð Þ takes place via
STFT as per Eq. (3), to enhance the speech signal [42]. In Eq. (3), the STFT of the clear

speech T(p, γ), the STFT of the noisy speech T p; γð Þ and the STFT of the noise signalW(p, γ)
are used in pth frequency bin of γ frame. The mathematical formula for “noisy speech’s
magnitude spectrum” approximation, which is most commonly, utilized assumption for
NMF-based processing of speech and audio signal, is show in Eq. (4) [14].

Fig. 2 Noise power spectrum (a) estimated by FFT (b) estimated by STFT - minimum statistics
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T p; γð Þ ¼ T p; γð Þ þW p; γð Þ ð3Þ

jT p; γð Þ j ¼ jT p; γð Þ j þ jW p; γð Þ j ð4Þ

The magnitude spectrum matrices of the varied signal are indicated as per Eq. (5) and
magnitude spectral value corresponding to γ frame for the pth bin is depicted as jp, γ. The
count of the frequency bins is represented as H and the time frames are indicated as I.

J ¼ jp;γ
h i

∈NH�I
þ ð5Þ

For the training data JT∈NH�ITþ as well as JW∈NH�IWþ , the Eq. (5) is employed separately in
the training stage and the outcome of these data is the basis matrices in terms of clear speech

FT ¼ rTHl
� �

∈NH�LTþ and noise FW ¼ rWHl
� �

∈NH�LWþ , respectively. The count of base vectors is

indicated as L. In Eq. (6) ζ represents a H × I matrix, whose entities is equal to one and the
transpose of the matrix, is represented as T′. In addition, the basis matrices are fixed in the

enhancement stage as FT ¼ FT½ FW � ∈NH� LTþLWð Þ
þ .The activation matrix EbT ¼ ET 0

T E
T 0
W

� �T 0
∈

N
LTþLWð Þ�IbTþ corresponding to the noisy speech is estimated from JbT∈NH�IbTþ by means of

employing the NMF activation update. Further, with the assistance got from the Wiener Filter
(WF), the clear speech spectrum is evaluated from the speech signal only after obtaining the
activation matrix as per Eq. (7). The estimated PSD matrices corresponding of the clear speech
is manifested as V′T = [V′T(p, γ)] and the evaluated PSD matrices corresponding to the noisy

signal is represented as V 0
W ¼ V 0

W p; γð Þ½ � ∈N
H�IbTþ in Eq. (7). Further, as per Eqs. (8) and (9)

the next solution is obtained via the temporal smoothing of the period grams. The temporal
smoothing factor of speech ωT and noise ωW is shown in Eqs. (8) and (9), respectively.

F←F ⊗
J=F:Eð ÞE

ζE
;

E←E⊗
F J=FEð Þ
FT

0
ζ

ð6Þ

Q ¼ V 0
T

V 0
T þ V 0

W
⊗ bT ð7Þ

V 0
T p; γð Þ ¼ ρTV

0
T p; γ−1ð Þ þ 1−ρTð Þ FTET½ �pγ

� �2
ð8Þ

V 0
W p; γð Þ ¼ ρWV

0
W p; γ−1ð Þ þ 1−ρWð Þ FWEW½ �pγ

� �2
ð9Þ
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The signal spectrum WT
is obtained as the outcomes.

The obtained noise spectrum WT and signal spectrum WT
are subjected to filtration using

Wiener filtering process.

3.3 WienerFilter

In the signal enhancement technique, theWiener filter has been employed in large scale [15]. The
Wiener filter works on the principle of producing an estimate of the clean signal from the
corrupted noise signal. The estimation is accomplished by minimizing MSE in between the
desired signal and additive noise corrupted signal. The filter transfer functionis shown in Eq. (10)
and it gives the solution to this optimization problem in the frequency domain. This equation is

generated by considering the signal spectrumWT
and the noise spectrumWT as uncorrelated and

stationary signals. The power spectral density of WT
is represented as GT(ω) and the power

spectral density of WT is depicted as GW(ω). The mathematical formula for SNR is exhibited in
Eq. (11) and the SNR formula can be incorporated in the filter transfer function as per Eq. (12).

The estimated signal magnitude spectrum is indicated as bGW ωð Þ.

F ωð Þ ¼ GT ωð Þ
GT ωð Þ þ GW ωð Þ ð10Þ

SNR ¼ GT ωð ÞbGW ωð Þ
ð11Þ

F ωð Þ ¼ 1þ 1

SNR

� �−1
ð12Þ

At the end of filtration the filtered signal Tu nð Þ is generated.
The Wiener filteroften fails at all the frequencies due to the drawback of fixed frequency

response and requirement of estimating the clean signal and noise signal’s power spectral
density prior to filtering.

3.4 Empirical model decomposition

EMD [16] was introduced by Huang as an adaptive technique in which small number of
orthogonal empirical modes referred as IMF were added to represent the complex data. The
symmetric envelope is present in each of the mode in terms of local maximums and
minimums. Thus at all locations of the envelope, mean is zero and in the underlying signal,
there is no requirement of linearity or time invariance. Further, by the process of shifting, the
riding waves are eliminated. The shifting process of EMD algorithm can be depicted as shown

below. Two main properties are obeyed by EMD during the splitting of Tu nð Þ into its IMF
components. They are (a) In between two subsequent zero crossing, the IMF has only one
extremum and (b) Mean value of IMF is zero.
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The data set Tu nð Þ is decomposed into IMFs ye(n) and residue q(n). The mathematical
formula corresponding to this decomposition is described in Eq. (13).

y nð Þ ¼ ∑
e
ye nð Þ þ y nð Þ ð13Þ

Furthermore, the detailed steps of EMD are given below.

& At first, initialization is processed i.e., d ≔ 1,q0(n) = y(n)
& As per the following steps, dth IMF is extracted

Set k0(n) ≔ qd − 1(n),m ≔ 1 and local maxima and minima of whole km − 1(n) are identified.
Then the envelope UBm − 1(n) for km − 1(n) defined by the maxima and LBm − 1(n) by the
minima using the cubic splines interpolation.For both the envelopes belonging to km − 1(n), the
mean zm − 1(n) is determined as zm−1 nð Þ ¼ 1

2 UBm−1 nð Þ−LBm−1 nð Þð Þ. This running mean is

referred as low frequency local trend. Further, via the process of shifting, the evaluation of high-
frequency local detail takes place.

Further, the mth component is formed as km(n) ≔ km − 1(n) − zm − 1(n). In case if km(n) is
not found to be accordance with whole IMF criteria, then the process of shifting is continued
by increasing mm + 1. In case, if all IMF criteria is satisfied by km(n), then set yd(n) ≔ km(n)
and qd(n) ≔ qd − 1(n) − yd(n).

& The shifting process can be stopped, if qd(n) represents a residuum and if not, then
continue the shifting process by increasing d, d + 1 and again begin the process.

Further, EMD algorithm achieves the completeness of the decomposition process automat-

ically as y nð Þ ¼ ∑
v

d¼1
yd þ q and this represents an identity. The locally orthogonal IMFs are

generated by EMD algorithm and lacks to guarantee the global orthogonality, since
identical frequencies might be utilized by neighboring IMFs at different time points. As a
result of this, the bark frequency c′(u′) is obtained. This bark frequency is utilized to train
FW-NN classifier.

3.5 Fuzzy wavelet neural network (FW-NN) classifier

Classification is the most frequently used prediction type [37]. Generally, the wavelet func-
tions are combined with neural nets to provide better results [17–19]. In this work, a FW-NN
model is employed and it is combination of fuzzy logic concepts and wavelet neural network.
In FW-NN, each fuzzy rule corresponds to a WNN comprised of numerous wavelets with
changeable translation and dilation parameters. The fuzzy rules are being the consequent part
of theFW-NN architecture and it is described only by wavelet functions. The output of WNN
is expressed as per Eq. (14).

Y ¼ ∑
k

j¼1
δ jκ j Xð Þ ð14Þ

In which κj is jth layers wavelet activation function corresponding to the hidden layer. In
addition, δj is the weight between the hidden (hid) and output layer.
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The FWNN combines the wavelet functions and the TSK fuzzy system. A MF is shown by
each of the region in the TSK fuzzy model. The FWNN has the properties of high precision
and fast convergence. The FW-NN has six layers and they are discussed in the below section.

Layer 1 (input layer) The input signal vector In = (In1, In2, …, Inn) is fed as input to the next
layer and the whole FW-NN model is trained with the bark frequency c′(u′).

Layer 2 (fuzzification layer) The fuzzy MFs are shown by each of the neuron in IF part of the
rules. The MFs values are the outcomes’ from this layer. In the first layer there is l1 count of
MFs and in the second layer there is l2 count of MFs. For the ith input variable, the Gaussian
membership function is shown as per Eq. (15).

Ai
ji
¼ exp −

X i−ϖji

ς ji

	 
2
 !

;

i ¼ 1; 2; :; n and ji ¼ 1; 2;…; li

ð15Þ

Layer 3 Grey wolf (fuzzy rule layer) In this layer, each neurons show fuzzy rule. The lth nodes
outcome is denoted as per Eq. (2). Here, each of the input MFs based possible combinations
describes a fuzzy rule.

ηl ¼ ∏
n

i¼1
Ai

ji
X ið Þ ð16Þ

Layer 4 Grey wolf (normalization layer) Normalization factor is computed for each of the
neurons in this layer. The lth nodesnormalization factor is expressed as per Eq. (17).

ηl ¼ ηl

∑
m

j¼1
ηl

ð17Þ

Layer 5 The weighted output value is computed in this layer as per Eq. (18).

Fl ¼ ηlχl ð18Þ

Layer 6 The overall output is calculated in this layer by summing the previous layers outputs.
This is mathematically shown in Eq. (19).

Out ¼ ∑
m

l¼1
Fl ð19Þ

During the training phase, the MSE is selected as the performance index and this MSE
minimization is being the major objective of the current research work. The mathematical
formula for MSE based training is shown in Eq. (20). Here, the actual FWNN outcome is Act
and the desired outcome is Pre.

Er ¼ 1

N
∑
N

k¼1
Act−Preð Þ ð20Þ
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4 Adaptive randomizatized grey wolf algorithm: solution encoding
and objective function

4.1 Objective function and solution encoding

The major objective of the current research work is to minimize the error Er of the FW-NN.
This is expressed mathematically in Eq. (21).

Obj ¼ Min Erð Þ ð21Þ
The AR-GWO is employed for properly tuning the tuning factor η, which is accomplished by
means of optimizing the hidden neurons (hid) of FW-NN. The solution fed as input to AR-
GWO is exhibited in Fig. 3.

4.2 Standard GWO

GWO [11, 32] was introduced by Mirjalili on the basis of the natural behavior of the grey wolves
and it belongs to the category of swarm intelligence algorithm. Three are four types of grey wolves
and these wolves stay in groups. The highest authority among them is the α (alpha) and it has the
responsibility of taking decision. The supporter ofα in taking decisions isβ (beta), the lowest among
these wolves isω (omega) and it has to bow other wolves. The leftovers are referred as δ (delta). The
main phases of GWO are “hunting, chasing and approaching the prey, encircling the prey and
attacking the prey”. The upcoming section portrays the mathematical model of GWO.

Mathematical model of GWO

(i) Search for prey (exploitation): In the search process, the 1st, 2nd and 3rd best solutions
are obtained during the search process of unique α, β and δ

(ii) Encircling prey: The mathematical formula for prey encircling during the hunting
process is represented in Eqs. (22) and (23). In Eq. (24) the current iteration and the
localization of the prey is represented as x&Cg(x). The coefficient vectors are indicated as
Y and D. In addition, C(x) represents the position of the grey wolf and the random values
are manifested as b1 & b2. In addition Eqs. (24) and (25) are the mathematical formula for
calculating the coefficient vectors Y andD, here there is a gradual decrease in the value of
c from 2 to 0 over the course of iterations.

A ¼ D:Cg xð Þ−C xð Þ�� �� ð22Þ

C xþ 1ð Þ ¼ Cg xð Þ−Y :A ð23Þ

xhid1 hid2 hidn .....

Fig. 3 Solution encoding
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Y ¼ 2:cb1−c ð24Þ

D ¼ 2:b2 ð25Þ
(iii) Hunting the prey: There lacks no information on the location of the prey in the search

space. An assumption is made here that a better knowledge on the potential location of
prey can be acquired from α, β and δ. This is the reason behind the storage first three
results by discarding the others. The mathematical formula for hunting of prey is
depicted in Eqs. (26) to (32) [32].

Aα ¼ D:Cα−Cj j ð26Þ

C1 ¼ Cα−Y 1: Aαð Þ ð27Þ

Aβ ¼ D:Cβ−C
�� �� ð28Þ

C2 ¼ Cβ−Y 2: Aβ

� � ð29Þ

Aδ ¼ D:Cβ−C
�� �� ð30Þ

C3 ¼ Cδ−Y 3: Aδð Þ ð31Þ

C xþ 1ð Þ ¼ C1 þ C2 þ C3

3
ð32Þ

(iv) (iv) Attacking the prey (exploitation): This is the end process of hunting behaviour of
grey wolf and this process take place, when the prey is stationary.

4.3 AR-GWO

The conventional GWO suffers from the drawbacks of “bad local searching ability, low
solving precision and slow convergence”. So, the AR-GWO is formulated. In the conventional
GWO, the random values b1and b2 are within the range [0, 1] and they are utilized to find the
coefficient vectors Y and D in Eqs. (24) and (25). But, in the proposed model, instead of
random numbers the proposed algorithm determines the random values bi1 and bi2 on the basis
the fitness functions. The coefficient vectors are presented as Yi and Di are computed by
utilizing Eqs. (33) and (34). Here i denote α, β and δ wolves. Further, the random values bi1
and bi2 are determined by using Eqs. (35) and (36), in which fitness of the best wolves either α,
β or δ is represented as Fi,
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Yi ¼ 2:cbi1−c ð33Þ

Di ¼ 2:bi2 ð34Þ

bi1 ¼ Fi ð35Þ

b21 ¼ Fi
1

3
∑

i¼α;β;δ
Fi

ð36Þ

The resultant from AR-GWO is the properly tuned tuning factor ηtuned, which is fed as input to
adaptive Wiener filtering.

4.4 Adaptive WienerFiltering

The role of tuning ratio ηtuned is highly substantiated. The estimated tuning ratio by the FW-

NN, on the basis of the c′(u′) (bark frequency) of the NMF-based filtered EMD signal To nð Þ is
fine-tuned by AR-GWO. Mathematically, c′(u′) can be expressed as per Eq. (37)

c
0
u
0

� �
¼ 13arctan 0:76u

0
� �

þ 3:5arctan 0:33u0ð Þ2
h i

ð37Þ

The properly tuned tuning ratio ηtuned acquired from AR- GWO is fed as input to the wiener filter,

instead of the constant η. The outcomes of the AdaptiveWiener filter are the filtered signal Tu nð Þ.
Again, Tu nð Þ is decomposed using EMD and the result is the enhanced denoised signal To nð Þ.

In the training process, the training library is constructed by giving the known c′(u′) (bark
frequency) and tuning ratio ηtuned as inputs. The testing process is said to be the online process,
while the training process is an offline process. The appropriate tuning factor for diverse noises
are identified in the offline process and with this, the FW-NN is trained. The actual enhance-
ment process takes place in the online mechanism, where the tuning factor is identified with
the trained network.

5 Results and discussion

5.1 Experimental setup

The proposed speech enhancement model using GWO with FW-NN was implemented in
MATLAB and the resultant of each of the analysis is observed. The data set for the research
work is gathered from [23]. In this database, the five noise types, namely, “airport noise,
exhibition noise, restaurant noise, station noise and street noise” are added to the speech
signals. The performance of the proposed model (AR-GWO) is compared with the extant
modelslike GA [29], PSO [20], ABC [24], FF [12] and GWO [14] in terms of “SDR, PESQ,
SNR, RMSE, Correlation, ESTOI and CSED”. Also, statistical analysis and computational
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time analysis are performed. Figure 4 exhibits the noisy and denoised signal for different
approaches like GA, PSO, ABC, FF and GWO.

5.2 Performce analysis of airport noise

The performance evaluation of the proposed model over the existing model for airport noise at
varying SNR levels is shown in Table 2. whenSNR = 0 dB, the SDR of the proposed model is
2.13%, 1.04%, 0.67%, 0.56% and 2.4% superior to the extant models like GA based η tuning,

Fig. 4 The noisy and denoised signal of various approaches (a) GA (b) ABC (c) PSO (d) FF(e) GWO and (f)
AR-GWO
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ABC based η tuning, PSO based η tuning, FF based η tuning and GWO based η tuning,
respectively.PESQ of the proposed model at SNR = 0 dB exhibits an improvement of 3.7%,
2.6%, 4.5%, 1.3% and 1% over the extant models like GA based η tuning, ABC based η tuning,
PSO based η tuning, FF based η tuning and GWO based η tuning, respectively.In airport noise at
SNR = 5 dB, RMSE of the proposedmodel is 3.4%, 2.7%, 1.6%, 3.44% and 0.9% superior to the
traditional models like GA based η tuning, ABC based η tuning, PSO based η tuning, FF based η
tuning andGWObased η tuning, respectively. At SNR = 10 dB, ESTOI of the proposedmodel is
1.11% better than GA based η tuning, 1.6% better than ABC based η tuning, 2% better than PSO
based η tuning, 1.7% better than FF based η tuning and 0.9% better than GWO based η tuning.
Further, at SNR = 10 dB, STOI of the proposed model shows an improvement of 0.9%, 1%,
1.2%, 1.1% and 0.7% better than classical model like GA based η tuning, ABC based η tuning,
PSO based η tuning, FF based η tuning and GWO based η tuning, respectively.

5.3 Performce analysis of exhibition noise

Table 3 exhibits the performance analysis of the proposed model over exiting for exhibition
noise at different SNR levels. At SNR = 0 dB, the proposed model shows an improvement of
10.3%, 3.6% 10.2%, 3.1% and 1.6% over the classical models like GA based η tuning, ABC

Table 2 Performance evaluation of proposed model over existing for airport noise at varying SNR

Airport Noise at SNR=0 dB

Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 4.7437 1.9181 5.0273 0.024047 0.83179 0.50627 0.7133
ABC [24] based η tuning 4.6986 1.9643 5.165 0.023663 0.82836 0.50418 0.71323
PSO [20] based η tuning 4.6933 1.9661 5.2589 0.023316 0.83346 0.49648 0.70853
FF [12] based η tuning 4.7909 1.9454 5.1998 0.023503 0.829 0.50408 0.71318
GWO [33] based η tuning 4.8551 1.9531 5.1905 0.023567 0.82864 0.50189 0.71254
AR-GWO based η tuning 4.9841 1.9703 5.2668 0.02327 0.82995 0.50845 0.71535
Airport Noise at SNR=5 dB
Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 9.5432 2.3844 8.4923 0.016008 0.92871 0.6604 0.8186
ABC [24] based η tuning 9.71 2.3865 8.5657 0.015902 0.92942 0.66107 0.81988
PSO [20] based η tuning 9.4551 2.4003 8.6167 0.01572 0.93146 0.66148 0.82061
FF [12] based η tuning 9.5676 2.3794 8.5016 0.016011 0.9287 0.66177 0.81667
GWO [33] based η tuning 9.6879 2.3984 8.6911 0.015614 0.93199 0.66267 0.82075
AR-GWO based η tuning 9.746 2.4058 8.7794 0.01546 0.9324 0.66586 0.82486
Airport Noise at SNR=10 dB
Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 12.373 2.7008 10.51 0.012779 0.95782 0.77512 0.88209
ABC [24] based η tuning 12.533 2.7093 10.843 0.01222 0.96042 0.77079 0.88111
PSO [20] based η tuning 12.493 2.7153 10.54 0.01263 0.95905 0.76772 0.87947
FF [12] based η tuning 12.517 2.7075 10.754 0.012384 0.95943 0.76992 0.88066
GWO [33] based η tuning 12.57 2.7293 10.765 0.012342 0.95975 0.77607 0.88368
AR-GWO based η tuning 12.671 2.732 11.128 0.011823 0.96271 0.78377 0.89057
Airport Noise at SNR=15 dB
Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 14.046 2.9512 11.823 0.011128 0.96883 0.83878 0.91063
ABC [24] based η tuning 14.387 2.9856 12.257 0.010448 0.97199 0.84432 0.91623
PSO [20] based η tuning 14.023 2.9525 11.73 0.011077 0.96909 0.83847 0.91185
FF [12] based η tuning 14.37 2.9732 12.34 0.010484 0.97152 0.84457 0.91637
GWO [33] based η tuning 14.303 2.9651 12.18 0.010559 0.9715 0.84048 0.91378
AR-GWO based η tuning 14.616 2.988 12.576 0.010081 0.97384 0.84906 0.9207
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based η tuning, PSO based η tuning, FF based η tuning and GWObased η tuning, respectivelyin
terms of SNR. Further, RMSE of the proposed model is 5.4%, 2.4%, 6.5%, 2% and 0.9% better
than the extant models like GA based η tuning, ABC based η tuning, PSO based η tuning, FF
based η tuning and GWO based η tuning, respectively at SNR = 0 dB. For the exhibition noise
at SNR = 5 dB, the SDR of the proposed model is improvedover the existing model as 15.7%,
2.16%, 1.2%, 0.86%, and 6.83% by GA based η tuning, ABC based η tuning, PSO based η
tuning, FF based η tuning and GWO based η tuning, respectively. Then, in terms of Correlation
at SNR = 10 dB, the proposed model is found to be better than the existing approaches GA
based η tuning, ABC based η tuning, PSO based η tuning, FF based η tuning and GWO based η
tuning, respectively. ESTOI of the proposed model is 0.6% better than GA based η tuning,
0.05% better than ABC based η tuning, 0.06% better than PSO based η tuning, 0.3% better than
FF based η tuningand 0.15% better than GWO based η tuningat SNR = 10 dB.

5.4 Performce analysis of restaurant noise

Table 4 portrays the performance evaluation of the proposed model over the existing for
restaurant noise at different SNR levels. From, which SDR of the signal at SNR = 0 dB is
8.5%, 5.7%, 9.7%, 5.7% and 4.3% superior to the classical models like GA based η tuning,

Table 3 Performance evaluation of proposed model over existing for exhibition noise at varying SNR

Exhibition Noise at SNR=0 dB

Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 4.8816 1.8847 4.9769 0.024181 0.83386 0.5536 0.73186
ABC [24] based η tuning 5.3046 1.9195 5.2921 0.023453 0.83881 0.55774 0.7336
PSO [20] based η tuning 4.934 1.9288 4.9329 0.024466 0.83118 0.5594 0.73382
FF [12] based η tuning 5.3942 1.9284 5.3336 0.023355 0.83972 0.55461 0.73462
GWO [33] based η tuning 5.5763 1.9176 5.404 0.023082 0.84347 0.56018 0.73376
AR-GWO based η tuning 5.6496 1.9372 5.4944 0.022868 0.84495 0.56032 0.73619
Exhibition Noise at SNR=5 dB
Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 8.8427 2.268 8.0345 0.016949 0.9184 0.66867 0.82182
ABC [24] based η tuning 9.2962 2.2925 8.338 0.016348 0.92256 0.67082 0.82384
PSO [20] based η tuning 9.383 2.3008 8.3461 0.016334 0.92438 0.67058 0.81908
FF [12] based η tuning 9.4158 2.3035 8.2985 0.016411 0.92435 0.67239 0.822
GWO [33] based η tuning 8.8893 2.2617 8.3604 0.016278 0.92534 0.67411 0.82333
AR-GWO based η tuning 9.497 2.3164 8.4358 0.016145 0.92541 0.67664 0.82735
Exhibition Noise at SNR=10 dB
Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 12.766 2.6089 10.685 0.012575 0.95814 0.77244 0.88091
ABC [24] based η tuning 12.819 2.626 10.922 0.01215 0.96033 0.77738 0.88182
PSO [20] based η tuning 12.838 2.6333 10.654 0.012527 0.95848 0.77733 0.88133
FF [12] based η tuning 12.791 2.63 10.615 0.012602 0.95782 0.77547 0.88071
GWO [33] based η tuning 12.894 2.6031 10.727 0.012474 0.95847 0.77665 0.88108
AR-GWO based η tuning 12.951 2.6351 11.112 0.011962 0.96048 0.77782 0.88468
Exhibition Noise at SNR=15 dB
Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 15.159 2.8586 12.591 0.010224 0.97272 0.84184 0.91566
ABC [24] based η tuning 15.389 2.9084 12.878 0.00981 0.97467 0.85189 0.92211
PSO [20] based η tuning 15.296 2.9074 12.375 0.01035 0.97274 0.84318 0.91555
FF [12] based η tuning 15.201 2.8987 12.537 0.01017 0.97332 0.84546 0.91675
GWO [33] based η tuning 15.247 2.9056 12.532 0.010191 0.97319 0.84327 0.91605
AR-GWO based η tuning 15.602 2.9094 13.251 0.009483 0.97579 0.85294 0.92215
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ABC based η tuning, PSO based η tuning, FF based η tuning and GWO based η tuning. PESQ
of the proposed modelis found to be 1.2%, 0.4% better than GA and ABC, 0.2%, 0.9%
and0.7% better than PSO, FF and GWO, respectively at SNR = 0 dB. Then, for SNR = 5 dB,
RMSE of the proposed model exhibits superiority to the traditional models like GA based η
tuning, ABC based η tuning, PSO based η tuning, FF based η tuning and GWO based η tuning
by 1.54%, 0.04%, 1.2%, 0.7% and 0.09%, respectively. Further, in terms of SNR, there is an
improvement of 1.8%, 0.19%, 1.6%, 0.9% and 0.7% in the proposed model over the existing
model like GA, ABC, PSO, FF and GWO, respectively at SNR = 5 dB. Moreover, from SNR
= 10 dB, STOI of the proposed model is 0.8%, 0.5%, 0.7%, 0.6% and 0.76% better than state-
of-art models like GA based η tuning, ABC based η tuning, PSO based η tuning, FF based η
tuning and GWO based η tuning. CSED at SNR = 10 dB is 6.9%, 2%, 6.7%, 5.9% and 5.13%
superior to the extant modelsGA based η tuning, ABC based η tuning, PSO based η tuning, FF
based η tuning and GWO based η tuning, respectively.

5.5 Performce analysis of station noise

From 5 represents the performance analysis of the proposed model over exiting for station
noise at different SNR values as (Table 5 shows the performance evaluation of the proposed

Table 4 Performance evaluation proposed model over existing for restaurant noise at varying SNR

Restaurant Noise at SNR=0 dB

Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 3.7234 1.9355 4.459 0.025493 0.80808 0.51043 0.70067
ABC [24] based η tuning 3.8386 1.9501 4.5555 0.025202 0.8115 0.51518 0.70489
PSO [20] based η tuning 3.6758 1.9541 4.3721 0.025728 0.8088 0.51486 0.70261
FF [12] based η tuning 3.838 1.9409 4.5605 0.025168 0.81113 0.51307 0.70103
GWO [33] based η tuning 3.8974 1.9553 4.5775 0.025115 0.81268 0.51203 0.70278
AR-GWO based η tuning 4.073 1.9597 4.6674 0.024878 0.81594 0.517 0.7076
Restaurant Noise at SNR=5 dB
Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 8.8132 2.3121 8.1199 0.016642 0.92163 0.65082 0.81008
ABC [24] based η tuning 8.8225 2.316 8.2539 0.016383 0.92313 0.64843 0.80827
PSO [20] based η tuning 8.8684 2.3083 8.137 0.016599 0.92168 0.64538 0.8055
FF [12] based η tuning 8.6289 2.3145 8.2625 0.016515 0.92195 0.64878 0.80944
GWO [33] based η tuning 8.8698 2.3071 8.2049 0.016374 0.92304 0.64866 0.80906
AR-GWO based η tuning 8.9533 2.3219 8.2702 0.01639 0.92368 0.65163 0.81352
Restaurant Noise at SNR=10 dB
Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 11.913 2.6448 10.313 0.013046 0.95504 0.7633 0.87382
ABC [24] based η tuning 12.11 2.6647 10.638 0.012508 0.95762 0.76751 0.87699
PSO [20] based η tuning 11.981 2.6569 10.2 0.013148 0.95455 0.76607 0.87308
FF [12] based η tuning 11.915 2.6478 10.452 0.012784 0.95646 0.76327 0.87696
GWO [33] based η tuning 12.089 2.6708 10.565 0.012615 0.95741 0.76792 0.87634
AR-GWO based η tuning 12.139 2.6774 10.696 0.012403 0.95866 0.7743 0.88253
Restaurant Noise at SNR=15 dB
Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 14.189 2.8967 12.05 0.010765 0.97066 0.84242 0.91343
ABC [24] based η tuning 14.469 2.9243 12.45 0.010169 0.97351 0.84493 0.91598
PSO [20] based η tuning 14.298 2.9281 12.014 0.010704 0.97139 0.84393 0.91434
FF [12] based η tuning 14.268 2.9093 12.153 0.010616 0.97125 0.84181 0.91481
GWO [33] based η tuning 14.281 2.9194 12.14 0.010567 0.97167 0.84285 0.91416
AR-GWO based η tuning 14.617 2.9452 12.676 0.009908 0.9749 0.85112 0.92113
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model over existing model for station noise at varying SNR).. From the table, at SNR = 0 dB,
the proposed model overtakes the extant modelsGA based η tuning, ABC based η tuning, PSO
based η tuning, FF based η tuning and GWO based η tuning by 2.6%, 4.5%, 1.2%, 2.7% and
1%, respectively in terms of SDR. Moreover, SEQ of the proposed model at SNR = 0 dB is
3.7%, 1.14%, 2.2%, 1.7% and 1% better than the extant models like GA based η tuning, ABC
based η tuning, PSO based η tuning, FF based η tuning and GWO based η tuning, respectively.
Then, for SNR = 5 dB, the proposed model is better than extant models, 5.4% by GA, 2.4%
by ABC, 1.2% by PSO, 3.1% by FF and 1.6% by GWO. SEI of the proposed model at SNR =
10 dB, an improvement of 0.3%, 0.2%, 0.1%, 0.5% and 0.02% over the state-of-art models.
Then, atSNR = 15 dB, the proposed model is 0,6%, 0.02%, 0.9%, 0.3% and 0.4% better than
extant modelsGA based η tuning, ABC based η tuning, PSO based η tuning, FF based η tuning
and GWO based η tuning in terms of STOI. In terms of CSED at SNR = 15 dB, the proposed
model is 9.5%, 4.5%, 10.9%, 9.8% and 7.7% better than the traditional models GA based η
tuning, ABC based η tuning, PSO based η tuning, FF based η tuning and GWO based η tuning,
respectively.

Table 5 Performance evaluation proposed model over existing for station noise at varying SNR

Station Noise at SNR=0 dB

Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 6.4259 2.037 5.7614 0.022214 0.86557 0.47946 0.70202
ABC [24] based η tuning 6.3054 2.0924 5.6648 0.022488 0.86031 0.4714 0.70522
PSO [20] based η tuning 6.5155 2.0598 5.7821 0.022054 0.86512 0.47993 0.70432
FF [12] based η tuning 6.4156 2.0788 5.8548 0.021868 0.86597 0.47663 0.70174
GWO [33] based η tuning 6.5284 2.0458 5.7819 0.022073 0.86721 0.47881 0.70517
AR-GWO based η tuning 6.5994 2.1167 5.9058 0.021723 0.86727 0.48062 0.70639
Station Noise at SNR=5 dB
Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 9.6888 2.4452 8.168 0.01657 0.92905 0.65479 0.81531
ABC [24] based η tuning 9.8802 2.4501 8.5373 0.015867 0.93236 0.64988 0.81377
PSO [20] based η tuning 9.8902 2.4446 8.356 0.016186 0.93232 0.65575 0.81579
FF [12] based η tuning 9.894 2.4484 8.3898 0.016162 0.93177 0.65616 0.81535
GWO [33] based η tuning 9.924 2.4529 8.4232 0.016112 0.9314 0.65599 0.816
AR-GWO based η tuning 10.04 2.4669 8.6676 0.015649 0.93302 0.6575 0.81666
Station Noise at SNR=10 dB
Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 12.654 2.7153 10.69 0.012513 0.9598 0.76866 0.87386
ABC [24] based η tuning 12.746 2.7219 10.816 0.012267 0.96001 0.76982 0.87447
PSO [20] based η tuning 12.482 2.7009 10.411 0.012815 0.95793 0.76372 0.86911
FF [12] based η tuning 12.647 2.7094 10.755 0.012396 0.95977 0.76721 0.87422
GWO [33] based η tuning 12.654 2.7334 10.744 0.012352 0.96011 0.77175 0.87556
AR-GWO based η tuning 12.758 2.7343 10.988 0.012003 0.9621 0.77158 0.87685
Station Noise at SNR=15 dB
Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 14.281 2.9701 11.881 0.011026 0.96941 0.83574 0.91008
ABC [24] based η tuning 14.569 2.9968 12.436 0.010197 0.97367 0.84294 0.91569
PSO [20] based η tuning 14.096 2.967 11.657 0.011177 0.96897 0.83418 0.90697
FF [12] based η tuning 14.394 2.9911 12.166 0.010578 0.97211 0.83742 0.91285
GWO [33] based η tuning 14.338 2.9964 12.044 0.010711 0.97133 0.83899 0.91214
AR-GWO based η tuning 14.732 2.9993 12.671 0.009969 0.97436 0.84346 0.91593
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5.6 Performce analysis of street noise

The performance evaluation of the proposed model over the existing model for the street noise
is shown in Table 6. For SNR = 0db, the proposed model exhibits an improvement of 1.7%,
0.5%, 1.3%, 1.72% and 1.7% over the classical models like GA based η tuning, ABC based η
tuning, PSO based η tuning, FF based η tuning and GWO based η tuning, respectively in terms
of CSED. Then, for the same SNR, the STOI of the projected model is 0.4%, 0.3%, 0.9%,
0.7% and 0.3% superior to the state-of-art models like GA based η tuning, ABC based η
tuning, PSO based η tuning, FF based η tuning and GWO based η tuning, respectively. For
SNR = 5 dB, ESTOI of the proposed model is 1.3%, 0.9%, 1.4%, 0.5% and 0.4% superior to
the conventional models GA based η tuning, ABC based η tuning, PSO based η tuning, FF
based η tuning and GWO based η tuning, respectively. The correlation of the signal for the
same SNR is 0.35%, 0.017%, 0.13%, 0.2% and 0.29% superior to the existing approaches GA
based η tuning, ABC based η tuning, PSO based η tuning, FF based η tuning and GWO based
η tuning, respectively. Then, in case of SNR = 15 dB, the PESQ of the proposed model is
1.8%, 0.27%, 0.8%, 0.9% and 0.89% better than GA based η tuning, ABC based η tuning,

Table 6 Performance evaluation proposed model over existing for street noise at varying SNR

Street Noise at SNR=0 dB

Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 6.4479 2.0587 5.8042 0.02216 0.86391 0.51601 0.72324
ABC [24] based η tuning 6.7136 2.1067 5.8664 0.021787 0.86832 0.51561 0.72419
PSO [20] based η tuning 6.3911 2.0922 6.0489 0.021285 0.86341 0.51708 0.71952
FF [12] based η tuning 6.8776 2.0922 5.9977 0.021426 0.86787 0.51849 0.7213
GWO [33] based η tuning 6.7047 2.0819 5.9561 0.021506 0.86648 0.51715 0.72374
AR-GWO based η tuning 6.9113 2.1121 6.0753 0.021276 0.86971 0.51968 0.72652
Street Noise at SNR=5 dB
Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 10.343 2.4608 8.459 0.016038 0.93221 0.65462 0.80808
ABC [24] based η tuning 10.477 2.4569 8.7538 0.015468 0.9354 0.65674 0.81378
PSO [20] based η tuning 10.408 2.4771 8.5652 0.015798 0.9343 0.65378 0.80799
FF [12] based η tuning 10.409 2.4678 8.6381 0.015704 0.9335 0.65946 0.81023
GWO [33] based η tuning 10.378 2.4718 8.5641 0.015827 0.93281 0.6603 0.81101
AR-GWO based η tuning 10.508 2.4865 8.8397 0.015302 0.93556 0.6632 0.81415
Street Noise at SNR=10 dB
Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 13.28 2.759 11.182 0.011819 0.96423 0.75127 0.87123
ABC [24] based η tuning 13.483 2.7811 11.623 0.01118 0.96669 0.75718 0.87601
PSO [20] based η tuning 13.477 2.7518 11.243 0.01165 0.96555 0.75744 0.87482
FF [12] based η tuning 13.473 2.7955 11.401 0.011478 0.96623 0.75838 0.87631
GWO [33] based η tuning 13.451 2.7753 11.307 0.0116 0.96554 0.75485 0.87494
AR-GWO based η tuning 13.619 2.7998 11.643 0.011159 0.96756 0.75995 0.87721
Street Noise at SNR=15 dB
Approaches SDR PESQ SNR RMSE CORR ESTOI STOI
GA [29] based η tuning 14.94 2.9263 12.472 0.010375 0.97234 0.82301 0.90012
ABC [24] based η tuning 15.24 2.9737 12.86 0.009771 0.97544 0.82681 0.90526
PSO [20] based η tuning 14.869 2.9574 12.26 0.010444 0.97267 0.81959 0.89918
FF [12] based η tuning 15.025 2.9532 12.597 0.010133 0.97394 0.82197 0.9005
GWO [33] based η tuning 14.958 2.9554 12.435 0.010269 0.97339 0.8188 0.89966
AR-GWO based η tuning 15.286 2.982 13.042 0.009615 0.976 0.82982 0.90647
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PSO based η tuning, FF based η tuning and GWO based η tuning, respectively. Then, for the
same SNR, the proposed model is 2.2%, 0.3%, 2.7%, 1.7% and 2.12% better than the
traditional models like GA based η tuning, ABC based η tuning, PSO based η tuning, FF
based η tuning and GWO based η tuning, respectively in terms of SDR at 15 dB.

5.7 Statistical analysis

The evaluation of statistical analysis of the adopted and existing approaches is depicted in Fig.
5. The outcomes are provided based on the error and thus the proposed model value is lower
than the existing works. On considering the results, the best value of the adopted AR-GWO
scheme is 9.41%, 3.51%, 8.99%, 3.84%, and 4.53% superior to the existing GA, ABC, PSO,
FF, and GWO approaches. Furthermore, in mean case scenario, the suggested approach value
is 5.21%, 2.57%, 3.37%, 2.81%, and 2.33% superior to the existing GA, ABC, PSO, FF, and
GWO approaches. Moreover, the median value of the AE-GWO approach is 0.013641 and it
is 5.22%, 2.99%, 3.77%, 3.92%, and 2.41% better than the existing GA, ABC, PSO, FF, and
GWO methods. Therefore, the effectiveness of the proposed speech enhancement model is
proved.

5.8 Computational time analysis

In this section, the computational time of the proposed and existing methods is evaluated and it
is depicted in Fig. 6. From the graph, the computation time of the proposed AR-GWO method
is 227.86 and it is 34.07%, 43.57%, 28.86%, 38.88%, and 16.03% better than the existing GA,
ABC, PSO, FF, and GWO approaches respectively. Thus, the effectiveness of the adopted
AR-GWO based speech enhancement method is validated.
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Fig. 5 Statistical analysis of the proposed and existing approaches
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5.9 Practical implications

The major aim of the proposed speech enhancement is to suppress the noise in a noisy speech
signal and improve the quality and intelligibility of speech. The proposed speech enhancement
approach utilizes in real-time applications such as speech recognition, mobile phones, VoIP,
teleconferencing systems and hearing aids.

6 Conclusion

In this paper, an optimized fuzzy wavelet neural network based speech enhancement model is
proposed. In the training phase, the input noise corrupted signal was initially provided as input
to both STFT-based noise estimation and NMF-based spectrum estimation for estimating the
noise spectrum and signal spectrum, respectively. The obtained noise spectrum and the signal
spectrum are fed as input to the wiener filter and these filtered signals are subjected to
EMD.Since, tuning factorη plays a key role in wiener filter, it has to be determined for each
signals, and is trained in FW-NN. Then, from the denoised signal the bark frequency is
evaluated. The computed bark frequency is fed as input to the learning algorithm referred as
FW-NN for detecting the suited tuning factorη for the entire input signal in Weiner filter. The
AR-GWO is employed for proper tuning of the tuning factor η referred as tuned tuning factor
(ηtuned). In the testing phase, the training is accomplished initially and from which the tuning
factor is gathered for each of the relevant input signal. Then, the properly tuned tuning factor
(ηtuned) from FW-NN is fed as input to EMD via adaptive wiener filter for decomposing the
spectral signal and the output of EMD is denoised enhanced speech signal.Theresultant
acquired is compared over the existing models in terms of various measures. In case of street
noise, at SNR = 0db, the proposed model exhibits an improvement of 1.7%, 0.5%, 1.3%,
1.72% and 1.7% over the classical models like GA based η tuning, ABC based η tuning, PSO
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based η tuning, FF based η tuning and GWO based η tuning, respectively in terms of CSED.
Thus, the effectiveness of the work is validated via the result analysis. However, in statistical
analysis, the standard deviation metric value is not better than the existing ones. Hence, in the
future work, we enhanced our proposed work by utilizing the recent optimization algorithms
and validate the work in real-time applications.
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