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Abstract
Traditionally, dengue is controlled by fogging, and the prime location for the control
measure is at the patient’s residence. However, when Malaysia was hit by the first wave
of the Coronavirus disease (COVID-19), and the government-imposed movement control
order, dengue cases have decreased by more than 30% from the previous year. This
implies that residential areas may not be the prime locations for dengue-infected mos-
quitoes. The existing early warning system was focused on temporal prediction wherein
the lack of consideration for spatial component at the microlevel and human mobility
were not considered. Thus, we developed MozzHub, which is a web-based application
system based on the bipartite network-based dengue model that is focused on identifying
the source of dengue infection at a small spatial level (400 m) by integrating human
mobility and environmental predictors. The model was earlier developed and validated;
therefore, this study presents the design and implementation of the MozzHub system and
the results of a preliminary pilot test and user acceptance of MozzHub in six district health
offices in Malaysia. It was found that the MozzHub system is well received by the sample
of end-users as it was demonstrated as a useful (77.4%), easy-to-operate system (80.6%),
and has achieved adequate client satisfaction for its use (74.2%).
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1 Introduction

Over the last five decades, dengue has evolved and become the world’s fastest-growing
mosquito-borne disease. With approximately half of the world’s population residing in
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dengue high-risk areas, this has resulted in an estimated 100–400 million annual infec-
tions alongside an increasing number of dengue mortalities. Consequently, healthcare
systems worldwide are burdened with rising numbers of dengue infections, which
unfortunately has no effective treatment or cure to date. Malaysia is a country located
in the Southeast Asian region, which had first reported dengue infections in 1902. Since
then, dengue has become a major public health issue for Malaysians with the first major
outbreak being reported in 1973 [27]. In Malaysia, dengue control measures are primar-
ily focused on source reduction (i.e., larviciding) and vector control measures (i.e.,
thermal fogging, ultra-low-volume spray, and indoor residual spray), which are achieved
through active engagement between health authorities and the local community [28].
Effective dengue control measures are crucial in breaking the chain of transmission and
subsequently reducing dengue-related morbidity and mortality [29]. Despite the institu-
tion of the existing dengue control measure, we remain unable to eradicate dengue;
consequently, dengue cases and outbreaks continue to increase [8]. One of the reasons
for this could be attributed to challenges in identifying the correct source of dengue
infection. As the majority of individuals tend to have frequent daily movements from one
location to another (i.e., a person will visit the workplace, school, premises, park, and
other places), this makes identification of the exact location of infection highly chal-
lenging. Furthermore, the accuracy of the location of infection is highly dependent on the
mobility history provided by the patient, which could be subject to recall bias. All of
this, in essence, may result in dengue control measures being directed at incorrect
locations (i.e., conducting residual spraying only in the housing area and omitting other
potential sources of infection, including the workplace, park, etc.), thereby defeating the
purpose.

Malaysia reported a 30.3% reduction in dengue cases in 2020 (88,845) compared with
that in 2019 (127,407) [26]. In 2020, a movement control order (MCO) was instituted in
Malaysia to curb the Coronavirus disease (COVID-19) outbreak, wherein during the MCO,
all individuals were urged to stay at home to avoid getting infected by COVID-19. Studies
have suggested that the reduction in dengue cases observed in 2020 could be attributed to
the MCO, which restricted the mobility of individuals; consequently, several individuals
were confined to their homes. If this was the case, then it would be safe to imply that most
residences may not be the common source location of dengue infections; otherwise, we
would have experienced an increase in dengue cases during 2020. Therefore, dengue
control measures should not primarily target residential areas but should also consider
other potential locations (i.e., other potential sources of infections based on patient mobility
patterns) [10].

Typical studies on vector-borne disease transmission applied data-driven methods,
such as the statistical approach [7, 20, 33] and machine learning techniques [6, 19, 30,
32], for integrating the environmental factors and epidemiology datasets as alarm vari-
ables for predicting the disease outbreak. These studies were focused on the seasonality
occurrences of the diseases to early identify a high-risk region and implemented as an
early warning system (EWS) [15, 32] to prevent the outbreak. However, the regions
identified by those studies are at the macro level, such as a city, district, province, and
state in a country, which is the current limitation for EWS [16]. Hussain-Alkhateeb et al.
[16] reported that the features in most of the current EWS lack the ability to identify the
high transmission areas at a microlevel. The area at a macrolevel may not be suitable for
identifying the probable sources of dengue infection for vector control measures because
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high spatial prediction ability is defined as microlevel [16]. Moreover, vector-borne
diseases, including dengue, are influenced by several inter-related factors, such as human
mobility [34, 35], which were not considered in those studies or the approaches required
a large scale of data [32].

To identify the probable sources of dengue infection, the mobility history of patients
with dengue taken 2 weeks before the onset of symptoms is critical. Each location visited
will need to be quantified based on selected parameters, including the environmental
factors that affect the dengue mosquito’s survival rates. However, the run time of data-
driven approaches is shorter than those of other approaches, which is suitable for use in a
real-time system [5]. However, most EWSs for dengue were not operated in a real-time
environment; therefore, a model that can integrate the heterogeneity of human effect and
the location visited is more essential in an EWS. Deep learning approaches were widely
employed to overcome the shortage of machine learning approaches, particularly in
spatio–temporal problems [1, 2, 31], which take human factors and environmental
predictors into account. Despite that, the input size must be large enough to generate a
high-accuracy model, and high computational power is required for model training [38].
However, the decision-making process to develop a trained model is not frequently
interpretable by humans and lacks common sense. This can lead to several issues,
particularly for policymakers, since the reasons must be provided before enforcing new
policies [38].

To address the abovementioned issues, the bipartite network approach was used by
researchers [11, 23] to study the identification of disease hotspots. A bipartite network model
(BNM) is a model made up of two discrete entities that consist of different sets of nodes. Each
node in one entity is linked to a node in the other entity. Links between connected nodes are
weighted to define the contact strength of the link between the two nodes. As highlighted by
[23], the least amount of data is sufficient to formulate a network model to provide effective
prediction; therefore, the bipartite network has been widely used in several areas, including
biology [12, 18, 24], sociology [3, 4, 18, 25], and ecology [37]. Most diseases can be
formulated into a bipartite network, which is human and location. By assigning selected
parameters to the human and location entities, the link weight can be quantified to rank the
locations based on the contact strength between human and location. Therefore, the patients’
mobility history and environmental factors can be used in a BNM to identify the most probable
source of dengue infection.

There is an urgent need to accurately detect the potential sources of dengue
infections to achieve effective dengue control. However, to date, there are limited
dengue models that are able to accurately identify sources of dengue infection.
Therefore, this study presents a validated dengue network model [22, 23] that evalu-
ates patient mobility history and environmental data, including temperature, relative
humidity, and precipitation, to identify sources of dengue infections in Malaysia. This
study primarily aimed to discuss the development, design, and implementation of the
well-established model [23] as a user-friendly tool—MozzHub system—which is a
bipartite network-based dengue hotspot detector for detecting the potential source of
dengue infection. Furthermore, we performed user acceptance testing (UAT) of the
MozzHub system in several district health offices in Malaysia. We believe that the
MozzHub system would be able to assist public health authorities in efficiently
deciding on deploying dengue control measures and preventing future dengue out-
breaks in Malaysia.
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2 Methods

2.1 Requirement analysis

Kok et al. (2017) previously discussed the formulation of the bipartite network-based dengue
model, which is consisted of the following three sub-modules: 1) location node quantification,
2) link weight quantification, and 3) visualization via heatmap [19]. These sub-modules were
developed to facilitate bipartite network-related research that incorporates location as one of its
entities within the network. Details of the sub-modules are described in the following
paragraphs.

Sub-module I: Location node quantification As aforementioned, the bipartite network can
be applied to several real-world problems that deal with mobility [10, 14, 23, 37]. In
previous studies, locations were converted to global positioning system (GPS) coordinates
in the form of latitude and longitude. These coordinates are used as inputs of distance
matrix to remove any redundant location and used to retrieve environmental data from a
weather application programming interface (API). This sub-module assists the researcher
to automate the process of converting GPS coordinates, location clustering, and retrieving
environmental data. Based on the model formulated [23], the maximum flight range of the
Aedes mosquito is 400 m; thus, a new location is declared in the database if the distance
between the new location node and the existing location node is greater than 400 m. This
sub-module requires the user to provide good input on locality as well as the date and time
of locations visited in a spreadsheet format and subsequently input the data to this sub-
module. The parameters included for the location node in the model are relative humidity
(H), precipitation (Pre), life cycle index (Lc), survival index (S), biting rate (B) of Aedes
mosquito, altitude (Al), and the number of times a location visited by the respective human
(Fl) [23]. Lc, S, and B are calculated by using temperature (T). The three weather param-
eters, including T, H and Pre, are obtained using the weather API that is provided by World
Weather Online.

Sub-module II: Link weight quantification In this sub-module, the link weight between
the connected human and location nodes will be quantified. In this study, the parameters
of the human node are the number of times a human visited a location (Fh) and the time
duration of the human stay at one location (Du) [23], which is retrieved based on the
patient mobility data. Therefore, both parameters constitute the human node’s quantifi-
cation for the network. To quantify the link weight, all the paired nodes require to be
sorted in a spreadsheet by listing all the parameter values for both nodes. The link
weight of the connected nodes will be quantified by adopting the summation rule [23],
and all of the parameters will be normalized before quantification. In sub-module II, the
weighted contact network will be formulated and used to generate the ranking of the
location node. The ranking algorithm adopted in this study is the hyperlink-induced
topic search (HITS) [21].

Sub-module III: Visualization via heatmap A heatmap is a graphical data representation
method with different variety densities of colors to define the relationship of data values in the
heatmap. The objective of this sub-module is to generate a heatmap to better visualize the
output on the relevant geographical map generated from the previous sub-modules. Similar to
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the previous sub-modules, users are required to list the locations with the corresponding GPS
coordinates and rank the locations in a spreadsheet to allow this sub-module to generate the
heatmap.

In summary, these three sub-modules improved the workflow of a BNM-related study,
thereby allowing the user to reuse the sub-modules in their case study. However, these
three sub-modules are researcher oriented and may not be user-friendly for non-re-
searchers. Public health officers are the main users of the bipartite network-based dengue
model and may possess insufficient knowledge in modeling and programming techniques
to be able to use the previous sub-modules. Additionally, data preparation is time-
consuming. Therefore, these three sub-modules should be integrated and implemented
into an automated system. The design of the integrated system is presented in the
following subsection.

2.2 System design

The overall system architecture of MozzHub is shown in Fig. 1. The MozzHub is
deployed and hosted at a workstation in the Universiti Malaysia Sarawak research
facility. As MozzHub is a web-based application, users are required to access the
MozzHub system using a web browser, such as Google Chrome, Mozilla Firefox, or
Microsoft Edge. The user interface is designed using React, which is an open-source
front-end JavaScript library. In this study, sub-module III is implemented on the client
side by requesting the data from the backend. Leaflet is an open-source JavaScript (JS)
library used to develop interactive maps for a web application. Thus, it is selected to
realize the heatmap in MozzHub. To assist users in easily adopting the system, the
format of the actual investigation form used by public health authorities was converted
into hypertext markup language (HTML) form. Therefore, all the data collected by

Fig. 1 System architecture of MozzHub
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MozzHub are based on the investigation form approved by the Malaysia Ministry of
Health.

Moreover, the server side was deployed and hosted on the same workstation and built based
on Node JS and Express JS for RESTful API. The process manager 2 (PM2) is used to manage
and monitor the server script for MozzHub. Therefore, the server side will act as a proxy
between the client side and database; data analytics and database to perform data management.
All requests will be handled by the server side, including user authentication, data retrieval,
data storing, and other relevant database processes. To ensure the correct data format before
storing it in the database, preliminary error checking of the data submitted by the user from the
client side is performed at the server side.

As previously mentioned, sub-modules I and II correspond to the formulation of a bipartite
network for dengue. To ensure compatibility with the overall system architecture, these sub-
modules were rewritten in R language. One of the objectives of this study is to automate the
process of formulating the network; therefore, all data will be retrieved by the script itself via
RESTful API. Thus, the user is not required to recognize the R language since the network
model will be automatically formulated. Data analytics scripts are hosted on the Windows
platform. Therefore, Task Scheduler provided by Windows is used to set the scripts’ execution
schedule.

The database management system (DBMS) used in MozzHub is MySQL. MySQL is
an open-source relational DBMS. Thus, it is suitable for the database design in
MozzHub. The only proxy to interact with the database is the server side. Data update,
retrieval, and definition are initially handled by the server side and subsequently passed
to the database. All the required data for analysis and output are requested and stored by
calling the ResfulAPI, which is the only way to communicate with the database via the
server side.

2.3 Data flow design

In this study, a data flow diagram (DFD) is used to depict the design of the data flow in
MozzHub. DFDs are constructed in layers wherein the top level is defined as the context
diagram (Level-0); Level-1 is presented in the following subsections.

2.3.1 Context diagram

The context diagram is a graphical representation of the data flow at the highest level
containing the entire MozzHub system. The major data flows are presented in Fig. 2. The
external entity in MozzHub is the main user, which is the person that interacts with the system.

Fig. 2 Context diagram of MozzHub
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Dengue cases will be inputted by the user into MozzHub by following the investigation form.
MozzHub will subsequently process and analyze the data to generate the hotspot of dengue as
the output.

2.3.2 Level-1 DFD

The level-1 data flow corresponds to the processes within the context diagram. The
details of each child’s processes in the context diagram are illustrated in Fig. 3. A total of
seven child processes and five data stores are defined in level-1 DFD. The only data
inputted by the user is the dengue case details with patient movement records. As
mentioned in system architecture, data will be stored in the database via the serve side;
therefore, data insertion or retrieval is performed by calling RESTful API. Therefore,
case details provided by the user will be stored in DS1 after being processed by process
1. Users can review the existing cases that users previously submitted via process 2,
which will retrieve the required data from DS1 and return it to the user. Processes 3–6
are mainly focused on the data analytical component highlighted in Fig. 1. Each process
represented the main steps to generate a bipartite network, which were used to identify
the hotspots of dengue. All the required data will be returned by calling RESTful API
and stored in a database in the same way. Details of these four processes are explained in
the model implementation section by showing the algorithms of these processes. Process
7 corresponds to the sub-module III, as previously explained. The heatmap is imple-
mented at the front-end of MozzHub wherein the required data will be returned from the
server side and generate a heatmap on the client side.

Fig. 3 Level-1 data flow diagram of MozzHub
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2.4 System development and implementation

This section is divided into two parts, wherein the first part explains the development
of each function that appears in the MozzHub user interface, and in the second, the
details of the model implementation of MozzHub integrating all the sub-modules are
presented.

2.4.1 System functionalities development

MozzHub was developed using React JavaScript library and React Semantic UI for ease of
user interface (UI) development. Figure 4 shows the user authentication section of MozzHub,
wherein the system can only be accessed by authenticated users. Users are required to log in to
the system using an assigned ID and password.

The overview of the MozzHub dashboard is shown in Fig. 5. To identify the possible
source of infection of dengue and take action as early as possible, the district health officer or
public health authority as the user can obtain the latest information displayed on the dashboard.
The name of the health officer is displayed in the top-left section and followed by a list of the
potential sources of infection generated by MozzHub below it. If the distance between two
locations is <400 m, both of the locations will be clustered into the same location node. If the
location node consists of more than one location, there will be more than one address locations
listed. The total cases indicate the number of dengue cases that were used to formulate the
network for identifying the dengue hotspot. The date is mentioned when the network has been
formulated.

The heatmap shown in Fig. 6 is one of the abovementioned sub-modules. In MozzHub,
the heatmap is rendered on the client side and supported by the Leaflet, which is an open-
source JavaScript library for interactive maps. The red circles in the map indicate the
locations of the dengue hotspots identified by the system, with higher color intensity
indicating higher priority for dengue control action. The color intensity of the circle is
obtained from the following eq. (1):

intensity ¼ floor 255−Location Rankingi � 255ð Þ ð1Þ
where i is the ranking of the ith location. The color scheme used in this system is based on
the RGB scheme. Thus, the value of r is fixed at 255, and the values of g and b depend on

Fig. 4 MozzHub: User authentication interface
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the value of the intensity that is computed based on eq. (1). When the user hovers across or
clicks the circle, the ranking and the coordinates of the location node will pop up.

The MozzHub interface for entering a new case is presented in Fig. 7. The interface was
designed based on the format of the dengue case investigation form currently used by public
health authorities for recording the case details, patient information, symptoms of the patient,
and the movement of the patient in the past 14 days from the date of onset. The case ID is
assigned by the system and will serve as a unique ID that corresponds to the human node ID in
the network [23].

The MozzHub interface for inputting patient information (left) and notification information
(right) is shown in Fig. 8. Residential and other addresses (e.g., school and workplace) will be
used as an option for quick input in the patient movement record section. As it will be used to
generate the dates of the last 14 days from the onset date in the patient movement record, the
onset date column in the notification is one of several compulsory inputs.

The MozzHub interface for keying in the patient’s past 14-day movement record is depicted
in Fig. 9. As those records will be stored and used as input for the location node quantification

Fig. 5 MozzHub: Overview of the dashboard

Fig. 6 MozzHub: Visualization of the source of infection via heatmap
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process and link weight quantification process to generate the ranking of the hotspot, the 14-
day movement history requires to be recorded. The dates from day 1 to 14 are generated by the
system, and the start and end times are used to calculate the duration/length of time the patient
was in the particular location. The duration will be used as a parameter in the human node of
the bipartite network.

The case ID and patient name are displayed at the top of the page to indicate which patient
and case are being referred to. In the real world, a patient may visit more than one location on
the same day; therefore, it is not realistic if the form provides only one row for each day record.
Thus, the interface of the patient movement record was designed such that the user is able to
add additional rows for each day or reduce the number of rows by clicking the PLUS and
MINUS buttons. As previously mentioned, the residential and other addresses in the previous
section are displayed at the top of the form and can be used as a shortcut to enable the user to
select it instead of repeatedly keying in the data.

The case review section of MozzHub is illustrated in Fig. 10. All the cases submitted by the
user will be listed in a table by case ID. In the table, a green tick symbol in the mobility column
indicates that there is mobility data attached to the case ID; otherwise, a red cross symbol will
be shown. The user is allowed to edit the data, including the details of patient movement
records, if the particular case has not yet been formulated into the network. A green tick
symbol in the Editable column means the user is allowed to edit the data, whereas a red cross
symbol signifies edits are not allowed.

Fig. 7 MozzHub: New case entry I

Fig. 8 MozzHub: New patient information (left) and notification information (right)

17424 Multimedia Tools and Applications (2023) 82:17415–17436



2.4.2 Model implementation

One significant aspect of the model implementation is the automation of the dengue
bipartite network formulation process [23]. The abovementioned sub-modules were
rewritten to integrate the script with the server side via RESTful API (prefixed with /).
The following four main scripts were implemented: data preprocessing of the new
location, location clustering, location node parameter quantification, and bipartite

Fig. 9 MozzHub: Patient movement record

Fig. 10 MozzHub: Case review interface
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network formulation. All of the scripts were written in the R language in the following
algorithm:

Algorithm 1: Preprocessing new location

INPUT: new mobility dataset from /unprocess, existing geocoded location dataset from /getlocationlist

OUTPUT:

START

1. Request the new mobility data from the database via /unprocess and set it to Locnew

2. Check the length of Locnew. If 0, exit and end the script; otherwise, continue

3. Request the existing geocoded location from the database via /getlocationlist and set it to Locexist

4. Compare Locexist and Locnew, remove duplicate values, and set to Locnew

5. Calling the google_geocoding function by passing Locnew as input and setting the return value to 

Locnew

6. Save Locnew to the database and set the status of the location to 0 via /geocoded

7. Set the status of the mobility data to /status

END

Algorithm 1 delineates the steps in data preprocessing of new locations in MozzHub. The
input of the process is requested from the database via RESTful API. API /unprocess requests
the database to retrieve the patient movement record that is new in the database and indicated
by the attribute “status.” If the status is 0, this indicates that the particular record is new, and
data preprocessing requires to be performed. API /getlocationlist requests the existing
geocoded location from the database and compares both data to remove duplicated elements.
Removing duplicated elements helps to reduce the number of calls of Google Map API. After
the location has been geocoded, it is stored in data via API /geocoded using the POST method.
The status of the new patient movement records is subsequently set to 1, indicating that it has
been processed.

Algorithm 2: Clustering location

INPUT: Existing geocoded location wherein status = 0, existing location node

OUTPUT: List of new location nodes with child location

START

1. Request the existing geocoded location from the database via /uncluster and set it to Locuncluster

2. Check the length of Locuncluster. If 0, exit and end the script; otherwise, continue

3. Request the Existing location node from the database via /getLocationNode and set it to Locnode

4. Insert Locuncluster[1] to Locnode[h+1], where h is the length of Locnode

5. Calling distance_matrix function by passing Locnode. Set the return value to Locnode

6. Delete Locuncluster[1]

7. Repeat steps 4–5 until the length of Locuncluster = 0

8. Save the Locnode to database via /clustered

END

Algorithm 2 outlines the location clustering process. The data requested via API /uncluster
will return the list of the location that has not yet been clustered and assigned to Locuncluster.
The Locuncluster includes the location ID, LatLng, and elevation of the location. The list of
existing location nodes will be returned by calling API /getLocationNode and assigned to
Locnode. The list consists of the location node ID, latitude and longitude of the location node,
the elevation of the location node, and followed by the location ID that has been clustered into
the node. The top of the element in the list of Locuncluster will be appended to the last row of
Locnode. By comparing the last row of the matrix, the Locnode will be inputted to the
distance_matrix function. If the value is <400 with one of the cells in the matrix, the location
will be clustered to the nearest location node and deleted from Locuncluster and Locnode.
Otherwise, the location is kept in Locnode, and the process is repeated until all the locations
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listed in Locuncluster have been clustered. The final Locnode will be posted to the database, and
the status of the location will be set to 1 via /clustered.

Algorithm 3: Location node’s parameter quantification

INPUT: /graph, /getLocationNode, area

OUTPUT: List of quantified location node’s parameters

START

1. Initial temp, humi, pre-variables; loc_node_params as dataframe

2. Request the data from the database via /graph by passing area and 1 as query and set to Mobnew

3. Check the length of Mobnew. If 0, exit and end the script; otherwise, continue

4. Request the existing location node from the database via /getLocationNode and set it to Locnode

5. Obtain the total visit date of the location node in Mobnew and set it to datevisit

6. Calling the weather API to request the data by passing LatLng, datevisit -14, and datevisit as a query.

7. Compute the average value of temperature, humidity, and precipitation from the return values of the 

weather API
8. Set the average value of temperature, humidity, and precipitation to temp, humi, and pre, respectively

9. Compute the value of Lc, S, and B by passing temp as input. All the values are assigned to Lc, S, and 

B, respectively

10. Compute the value Fl and assigned it to Fl

11. Append the location node, temp, humi, pre, elevation, Lc, S, B, and Fl to loc_node_params

12. Repeat steps 5–10 until all the location nodes listed in Mobnew are quantified
13. Save loc_node_params to the database via /quantified

END

In this study, the parameters implemented in this model [23] are H, Pre, Lc, S, B of Aedes
mosquito, Al, and Fl for the location node; Fh and Du are the parameters for the human node.
Algorithm 3 lists the steps of location node parameter quantification. The data returned by
/graph consist of the location node in the area that has not yet been quantified. To quantify the
location node, the environmental properties 14 days before the visit date to the location need to
be calculated. The weather API used in MozzHub is WordWeatherOnline API, the query
needs to include the LatLng and the start and end dates to request the average value for the
period. The environmental properties of a location visited will be kept in the database until a
control measure is acted on the location. If there is no control measure taken on a particular
location node and the same locality is being visited by another patient, then current environ-
mental property values are added to the previous ones, and the average values will be stored.

Algorithm 4: Bipartite network formulation.

INPUT: Area, /graph, /quantifiedLocNode

OUTPUT: Hotspot list for the area

START

1. Request the data from the database via /graph by passing area and 2 as query and set to rawgraph

2. Compute the duration by subtracting the rawgraph$end_time and rawgraph$start_time and set the Dur
3. Compute the Fh in rawgraph by summarizing all the common locations with particular human node ID

4. Create a dataframe named human_node consisting of human_node_ID, visited_location_node, Fh, 

and Du

5. Normalize the value of Fh and Du

6. Request the data from the database via /quantifiedLocNode and set it to quantified_location_node
7. Select the location node’s parameter value of human_node$visited_location_node from 

quantified_location_node and set to location_node

8. Normalize all the numeric values in location_node

9. Extract the unique human_node_ID and set it to col

10. Extract the unique location_node_ID and set it to row

The flow of the last script that covers human node quantification, link weight quantifica-
tion, and HITS algorithm implementation is listed in algorithm 4. Passing the area and 2 to
/graph, the relationship table of the human and location nodes will be returned for the
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particular area. This returned value is set to rawgraph, which is the input to formulate the
bipartite graph of the area. Human node quantification includes Du (step 2) and Fh (step 3).
The quantified location nodes will be returned by /quantifiedLocNode and will be matched
with the location node that appears in rawgraph. The parameter values will be normalized (steps
5 and 8) to ensure all the values are within a range from 0 to 0.9.

A contact matrix that represents the bipartite graph will be formed by assigning the number
of human nodes as the number of columns and the number of location nodes as the number of
rows. To convert the bipartite graph to a bipartite network, the link weight value will be
assigned to each cell (step 12). The bipartite network will be inputted to the HITS function to
generate the ranking of the location and human nodes. The primary aim of MozzHub is to
identify the hotspot of dengue; therefore, only the ranking of location nodes will be returned
from the HITS function (step 17). The ranking of location nodes will act as a hotspot and be
stored in the database via /ranking.

2.5 System testing

Two main tests were performed in this phase, including functional testing to ensure all
components in MozzHub work as expected and user testing to evaluate the usability of the
system by a sample of target users.

2.5.1 Functional testing

In this testing, the main interface of the integrated system was analyzed to ensure all the data
inputted were captured by the system. Functional testing was performed with the following
three test objectives: 1) to verify the functioning of the heatmap display, 2) verify the proper
functioning of new case entry case details, and 3) verify the proper functioning of case
movement records entry. Results of the functional testing by test objective are shown in
Tables 1, 2 and 3.

2.5.2 UAT

Study design and participants This was a cross-sectional pilot study conducted from August
to December 2021 to examine the user acceptance of the MozzHub system. Participants were

Table 1 Test plan of dashboard heatmap

Test objective: examine dashboard component: heatmap

Test case Input data Expected result Actual result Pass/
Fail

The system loaded
when there is an
Internet connection

When the page
loaded

The map displays success, and the
heatmap is rendered in the map. All
tiles are rendered when zooming in
or out on the map.

The same as the
expected result.

Pass

The system loaded
when there is no
Internet connection

When the page
loaded

The map displays success, and the
heatmap is missing. Some tiles are
missing when zooming in or out on
the map.

The same as the
expected result.

Pass
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recruited from seven district health offices in three states in Malaysia as in Table 4 and given
access to the MozzHub system. These districts were selected after discussions with the
Vector Control Division, Ministry of Health Malaysia and the system developers, wherein
the selection was based on the fulfillment of the following criteria: low dengue burden,
absence of concurrent dengue research activities in the district, having sufficient computers
with Internet connection for accessing the system, and low burden of COVID-19 cases.
These criteria would enable the staff at the district health office to use the MozzHub system
and provide sufficient responses for the study. The participants recruited for the user
acceptance test were designated users of the MozzHub system at the respective district
health offices, consisting of key officers involved in managing dengue surveillance,
including the dengue control officer and the dengue control environmental health officers.
For the model to generate the probable source of infection in a single locality within the
district, these officers were required to key in a minimum of 20 dengue cases into the
MozzHub system, and they were subsequently asked to complete a user acceptance
questionnaire for the MozzHub system.

Study instrument This study is a 16-item self-administered questionnaire based on a 5-point
Likert scale response options, ranging from 1-Strongly Disagree, 2-Disagree, 3-Neutral, 4-
Agree, and 5-Strongly Agree. The questionnaire is designed by referring to the concept of the

Table 2 Test plan of new case enter (1)

Test objective: verify the new case enter function: case details

Test case Input data Expected result Actual result Pass/
Fail

All the required
columns are
entered

onClick=DF and WB
Epid Week Number=30
Area=Kota Samarahan

After clicking the SAVE button, no
message pops up.

The same as the
expected result.

Pass

Some required
columns are
empty

onClick=DF and WB
Area=Kota Samarahan

After clicking the SAVE button, the
warning message pops up.

The same as the
expected result.

Pass

Table 3 Test plan of new case enter (2)

Test objective: verify the new case enter function: patient movement record

Test case Input data Expected result Actual result Pass/
Fail

Generate more
input field

“PLUS” button
click=TRUE

After clicking the PLUS button, the input
field is generated for a specific day,
and the MINUS button is activated for
the generated input field.

The same as the
expected result.

Pass

Remove the
redundant
input field

First field=FALSE
“MINUS” button

click=TRUE

After clicking the MINUS button, the
redundant input field is removed.

The same as the
expected result.

Pass

Save the input Save button
click=TRUE

Next button
click=TRUE

After clicking the SAVE button, the
NEXT button is clicked, and the
system will pop up a complete
message for the user.

The same as the
expected result.

Pass
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technology acceptance model (TAM) that was created by Davis (1985) [9]. TAM is a theory
to study how the user accepts the technology and how they use it [9]. In TAM, the
following were the two major cognitive factors raised to measure user acceptance: 1)
Perceived of Usefulness (PU) and 2) Perceived Ease of Use (PE). PU is concerned about
how the system improves the productivity and effectiveness of user performance, whereas
PE is related to how users are able to easily access the system and its display. Thus, the
questionnaire consisted of the following three domains that assess user acceptance of the
system: 1) usefulness of the system (8 items), 2) ease of use (4 items), and 3) user
satisfaction (4 items). The eight items in the first domain are designed based on PU,
whereas the four items in the second domain are designed based on PE in TAM. Based on
TAM, user satisfaction will come after the cognitive factors of a user (PU and PE) toward
the system. Thus, the third domain of the questionnaire is to collect the overall experience
of the user after accessing the system.

A forward-backward translation of the questionnaire was undertaken to ensure consis-
tency [36]. The questionnaire, which was initially in English, was translated into Bahasa
Malaysia and back-translated into English by four Malaysian translators with similar
educational backgrounds and similar command of English and Bahasa Malaysia. Varia-
tions in the original and translated versions were discussed and resolved by a joint
agreement involving all four translators. The final questionnaire was presented in a dual-
language format (English and Bahasa Malaysia) and distributed to the participants using
Google Forms.

2.6 Statistical analysis

The internal reliability of the questionnaire was examined using Cronbach’s alpha wherein the
alpha value was reported at 0.984, indicating good internal consistency of the questionnaire.
Removal of any of the items did not increase the Cronbach’s alpha value by more than 0.002
(Appendix 1); therefore, all items were retained. For ease of analysis, the initial 5-point Likert
scale response was reduced to the following 3-point response: agree (strongly agree and agree),
neutral, and disagree (strongly disagree and disagree). Descriptive statistical analysis for the
user testing was performed by calculating the percentage and frequency of responses for
individual items and each domain. The scores for all items in each domain were averaged to
obtain domain-wise agreement wherein average scores of more than 3, less than 3, and equals

Table 4 Distribution of participants (n = 31)

State (Districts) n %

Terengganu
PKD Kuala Terengganu 6 19
PKD Marang 5 16

Johor
PKD Kulai 6 19
PKD Tangkak 4 13

Sabah
PKD Kota Kinabalu 5 16
PKD Tawau 5 16
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3 were interpreted as “Agree,” “Disagree,” and “Neutral,” respectively. All analyses were
performed using SPSS software version 24.

3 Results

UAT A total of 31 participants from the six districts completed the user acceptance question-
naire [17] (Table 4). Each district had almost similar numbers of respondents with an average
of five respondents per district with proportions ranging from 13% to 19%.

For the first domain, which is the usefulness of the system, individual item agreement ranged
from 61.3% (“It saves me time when I use”) to 77.4% (“It is useful”). Domain-wise, 77.4%,
16.1%, and 6.5% of the participants agreed, disagreed, and were neutral, respectively, regarding
the items on the usefulness of the system. For the second domain (ease of use), agreement for
individual items ranged from 67.7% (“I can use it without written instruction”) to 74.2% (“It
requires the fewest steps possible to accomplish what I want to do with”). Domain-wise, 80.6%,
9.7%, and 9.7% of the participants agreed, disagreed, andwere neutral, respectively, regarding the
items relating to the system’s ease of use. In the third domain (user satisfaction), agreement for
individual items ranged from 58.1% (“I feel I need to have it”) to 71.0% (“I am satisfied with it”).
Domain-wise, 74.2%, 12.9%, and 12.9% of the participants indicated satisfaction, disagreed, and
were neutral with the system, respectively. Overall, the highest agreement was reported in the ease
of use (80.6%) followed by the usefulness of the system (77.4%) and user satisfaction (74.2%)
domain. The user acceptance questionnaire responses for individual itemswithin each domain and
the overall domain are presented in Table 5.

Table 5 User acceptance questionnaire responses

Item Agree Neutral Disagree
% (n) % (n) % (n)

Usefulness of the system 77.4 (24) * 6.5 (2) * 16.1 (5) *
QU1 It helps me be more effective 74.2 (23) 16.1 (5) 9.7 (3)
QU2 It helps me be more productive 74.2 (23) 16.1 (5) 9.7 (3)
QU3 It is useful 77.4 (24) 12.9 (4) 9.7 (3)
QU4 It makes the things I want to accomplish easier to get done 74.2 (23) 16.1 (5) 9.7 (3)
QU5 It saves me time when I use 61.3 (19) 29.0 (9) 9.7 (3)
QU6 It meets my needs 67.7 (21) 22.6 (7) 9.7 (3)
QU7 The source of infection generated from the system is accurate

to the real world
64.6 (20) 19.4 (6) 16.1 (5)

QU8 It does everything I would expect it to do 67.7 (21) 19.4 (6) 12.9 (4)

Ease of use 80.6 (25) * 9.7 (3) * 9.7 (3) *
QE1 It is easy and simple to use 71.0 (22) 22.6 (7) 6.5 (2)
QE2 It requires the fewest steps possible to accomplish what I want

to do with
74.2 (23) 16.1 (5) 9.7 (3)

QE3 I can use it without written instruction 67.8 (21) 25.8 (8) 6.5 (2)
QE4 I can use it successfully every time 71.0 (22) 19.4 (6) 9.7 (3)

User satisfaction 74.2 (23) * 12.9 (4) * 12.9 (4) *
QS1 I am satisfied with it 70.9 (22) 19.4 (6) 9.7 (3)
QS2 It works the way I want it to work 61.3 (19) 29.0 (9) 9.7 (3)
QS3 I feel I need to have it 58.0 (18) 29.0 (9) 12.9 (4)
QS4 It is pleasant to use 64.6 (20) 35.5 (8) 9.7 (3)

* Domain-wise agreement based on the average score
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4 Discussion

To date, the identification of dengue hotspots as targets for instituting control measures has
been based on conjectures. According to Hussain-Alkhateeb et al. [16], most of the existing
EWSs are focused on temporal prediction for vector-borne diseases. Research works on spatial
predictions for EWS are limited. Although few EWSs demonstrated their ability in spatial
prediction, a large scale of data is required for those EWSs [13, 32] to establish stable
prediction, and the areas of prediction are normally at a macro level [6, 7]. EWSs with
microlevel spatial analysis are limited, which is essential for vector control measures [16].
The comparison between selected studies and MozzHub based on the three aspects is tabulated
in Table 6.

As presented in Table 6, the studies [30, 32] did not consider patient movement effect,
suggesting the absence of heterogeneity of humans in these studies. As previously mentioned,
to identify the hotspot of dengue, the movement of the patient should not be neglected.
Therefore, the MozzHub system has been developed as a potential solution for addressing
this issue. MozzHub uses a bipartite network to identify the probable locations of dengue
infection based on the 14-day history of dengue case movements. As aforementioned, BNM
only requires a small amount of data to provide an efficient result for prediction; thus, it is the
best-fit solution to integrate the 14-day history of dengue case movement data. Although the
entomological data were not directly inputted to MozzHub, the parameters Lc, S, and B were
quantified using the entomological data of the vector during the model formulation. Moreover,
since the primary concern of the study was to forecast the dengue outbreaks instead of
identifying dengue hotspots, the spatial component was absent in [32]. The study [30] involved
a spatial component in the prediction. However, the spatial component is focused on the data
collected in the selected districts and forecasts the trend of dengue for the given district only.
Thus, it is not suitable to use for identifying dengue hotspots for implementing vector control
measures. The probable locations of dengue infection identified by MozzHub were focused on
a small spatial level (i.e., 400 m) to allow public health to utilize the resources in these areas for
vector control measures.

The system is designed to automatically generate locations that may replace the currently
used manual hotspot identification method. The only mandatory input of the system is the 14-
day history of dengue case movements, and all the data preprocessing and analysis will be
automatically performed by MozzHub, making it suitable for less-skilled or nontechnical users
who can easily use the system without any modeling and statistical knowledge.

In this study, we reported on the usefulness, ease of use, and user satisfaction with the
MozzHub system using a validated and reliable instrument. From this analysis, we found that a
large majority of users were in agreement with the domains relating to the ease of use (80.6%),
usefulness (77.4%), and user satisfaction (74.1%) of the MozzHub system. More specifically,
users reported high agreement on items regarding the system being useful (usefulness domain),

Table 6 Comparison between selected studies and MozzHub

Study Mobility of patient Spatial component User testing in Malaysia

[32] No No No
[30] No No No
[15] No Yes, district level Yes
MozzHub Yes Yes, 400 m Yes
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the system requiring a few steps to accomplish the outcome (ease of use domain), and general
satisfaction with the system (user satisfaction). The MozzHub system must achieve desirable
agreement levels in the system user testing phase as this would ensure its use more efficiently
and effectively.

Across each domain, several items scored lower agreement levels, including the items
relating to saving time (usefulness domain), ability to use without written instruction (ease of
use domain), and the need to have the system (user satisfaction). Several reasons could be
attributed to these findings. Among the reasons that could result in a low agreement on the
item relating to saving time are user-related factors, such as being first-time users, lack of
familiarity with the system, and infrequent system use, thereby requiring more time to get
familiarized and operate the system. Furthermore, there could be several system-related factors
that could contribute to time-consuming factors, including the requirement for data entry into
the system, such as mobility history, data reentry into the spreadsheets and the system, and
redundancies in the spreadsheets. Additionally, the inability of users to use the system without
written instructions could be due to their limited training. Furthermore, the low agreement on
the need to have the system could be due to the presence of several existing dengue
surveillance systems that the staff are already more familiar with. Moreover, it is possible that
the users are not privy to the advantages and validity of the newly introduced MozzHub
system.

Based on the UAT of the MozzHub system, it is evident that the system satisfies the criteria
of being useful, easy-to-operate, and able to provide adequate satisfaction to its users.
However, several improvements could be made at the system and user levels to further
improve the user acceptance of the system. These include reducing redundancies in the data
spreadsheet and minimizing data reentry to improve time constraints at the system level. To
address the user-related factors, more training, supervision, and daily use of the system are
required. Future validation studies for MozzHub are required to further ascertain its reliability
and validity. The prediction power of the MozzHub system will be examined using the
retrospective dengue cases collected earlier; furthermore, prospective dengue cases from
2022 onward will continuously be used for further validation analysis.

5 Conclusions

In this study, the design, implementation, and UAT of the MozzHub system has been
demonstrated and documented. The MozzHub system is a bipartite network-based dengue
hotspot detector that only requires the least amount of input to identify the potential source of
dengue infection within a 400-m radius spatial size by factoring in both the effects of
population mobility and environmental factors into the model. The MozzHub system was
developed based on a previously validated bipartite dengue network model and is designed
with a certain degree of automation to reduce the system complexity for end-users. Conse-
quently, the MozzHub system appeals well to the end-users as it has been demonstrated to be a
useful, easy-to-operate system along with having achieved adequate client satisfaction for its
use. With the currently available evidence, the MozzHub system is a system that could greatly
assist the MOH, Malaysia in the management and control of dengue as it would provide
crucial information on the location of sources of infection, which should be the target area for
instituting dengue control measures. Thus, it is also hoped that the MozzHub system will be
expanded to all district health offices in Malaysia in the future.
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Appendix 1

Scale mean if
item deleted

Scale variance
if item deleted

Corrected item-
total correlation

Cronbach’s
alpha if item
deleted

1. It helps me be more effective 54.23 128.114 0.932 0.982
2. It helps me be more productive 54.23 128.314 0.920 0.982
3. It is useful 54.16 127.806 0.922 0.982
4. It makes the things I want to

accomplish easier to get done
54.26 128.531 0.950 0.982

5. It saves me time when I use 54.35 128.970 0.863 0.983
6. It meets my needs 54.23 127.781 0.864 0.983
7. The source of infection generated from

system is accurate to the real world
54.39 127.312 0.870 0.983

8. It does everything I would expect it to
do

54.35 127.970 0.918 0.982

1. It is easy and simple to use 54.19 130.028 0.832 0.983
2. It requires the fewest steps possible to

accomplish what I want to do with
54.23 128.847 0.890 0.982

3. I can use it without written instruction 54.23 130.447 0.801 0.984
4. I can use it successfully every time 54.26 129.065 0.871 0.983
1. I am satisfied with it 54.29 128.280 0.958 0.982
2. It works the way I want it to work 54.39 131.245 0.778 0.984
3. I feel I need to have it 54.45 128.389 0.895 0.982
4. It is pleasant to use 54.32 129.292 0.848 0.983
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