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Abstract
This work proposes and compare two different approaches for real-time human action
recognition (HAR) from raw depth video sequences. Both proposals are based on the
convolutional long short-term memory unit, namely ConvLSTM, with differences in the
architecture and the long-term learning. The former uses a video-length adaptive input data
generator (stateless) whereas the latter explores the stateful ability of general recurrent neu-
ral networks but is applied in the particular case of HAR. This stateful property allows the
model to accumulate discriminative patterns from previous frames without compromising
computer memory. Furthermore, since the proposal uses only depth information, HAR is
carried out preserving the privacy of people in the scene, since their identities can not be
recognized. Both neural networks have been trained and tested using the large-scale NTU
RGB+D dataset. Experimental results show that the proposed models achieve competitive
recognition accuracies with lower computational cost compared with state-of-the-art meth-
ods and prove that, in the particular case of videos, the rarely-used stateful mode of recurrent
neural networks significantly improves the accuracy obtained with the standard mode. The
recognition accuracies obtained are 75.26% (CS) and 75.45% (CV) for the stateless model,
with an average time consumption per video of 0.21 s, and 80.43% (CS) and 79.91%(CV)
with 0.89 s for the stateful one.
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1 Introduction

Human action recognition (HAR) has received great attention from computer vision
researchers in the last decade due to the broad variety of possible applications in different
areas, such as automated video surveillance [26], health care services [63], human-computer
interaction [48, 59] or autonomous driving.

The firsts works in HAR were based on analyzing RGB image sequences [14, 16, 43]
through different approaches, first with handcrafted feature descriptors [4, 5, 30, 46] and,
later, as in other areas [9], with deep learning-based techniques [2, 23, 53, 64] or a com-
bination of classical features and deep neural networks (DNN) [3]. In general, handcrafted
feature-based methods perform well on small datasets, whereas in the case of large datasets
the performance of DNNs is better, but with largest computational costs.

In recent years, due to the rise of affordable RGBD cameras [15], many studies have
focused on using this information for HAR. RGBD sensors provide images with rich 3D
structural information of the scene with benefits compared to RGB videos such as lighting
changes invariance and preservation of personal-privacy, which generates great interest in
some domains such as video surveillance [13, 60]. Furthermore, depth maps allow estimat-
ing the human joint positions [51] also known as the 3D skeleton, which supposes itself a
different data modality for HAR [44].

As in the case of RGB-based HAR works, the first depth-based studies employed
methods based on handcrafted descriptors [28, 41, 65, 67], but eventually works using
deep learning became the main approach [47]. Besides, DNN-based approaches have been
proved [69] to be more robust and suitable for challenging large datasets than handcrafted
features-based methods, but with much higher computational costs, which makes it difficult
to use them in real-time applications.

The use of DNNs for HAR requires encoding the spatio-temporal information [7]. To do
that, there are several approaches that create ad-hoc representations such as depth motion
maps [73] or dynamic images [72, 74, 76, 79, 81], whereas other works use specific DNNs,
such as the 3D convolutional neural networks (3DCNNs) [36, 47, 54, 80] or the recurrent
neural networks (RNN) [11, 31, 49, 50], that processes video-sequences. A particular RNN
which solves the exploding or vanishing gradient problem is the long short-term memory
(LSTM) [17], which can successfully learn patterns in long sequences like videos by stack-
ing several layers. However, LSTMs cannot directly learn spatio-temporal features from an
image sequence. This limitation was overcome by replacing the Hadamard product of the
original LSTM with the convolution operation (ConvLSTM) [82].

In this work, we propose and analyze two novel implementations of recurrent neural
networks based on ConvLSTMs that receive only depth information as input for real-time
HAR for video-surveillance applications. Both models are end-to-end trainable, and their
architectures have been optimized for real-time operation. The use of only depth data allows
preserving privacy since it does not allow recognizing their identity. Furthermore, input data
does not require any prior calculation such as skeleton positions, optical flow or dynamic
images, widely used in the literature, that notably increase the computational cost. As it is
shown in Section 5, the proposal allows obtaining results comparable to the state-of-the-art
in the widely used NTU RGB+D [49] dataset, using only the depth video sequences.

The main contributions of the present work are the following:

1. There have been proposed two different architectures for HAR using only raw depth
data based on ConvLSTMs, including a novel implementation of the unusually used
stateful capability for LSTM layers, in order to fully exploit the long-term memory.
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Both proposed architectures are end-to-end, so the raw depth data are fed to the network
input without any preprocessing, in contrast to other approaches that require computing
3D-Skeletons or Depth Dynamic Images, which highly increases the computational
cost.

2. A careful design of the networks architecture has been done for real-time execution,
by using batch normalization [22], LeakyReLU activations [39] and replacing the fully
connected layers at the top of the neural network with an average pooling , which
drastically reduces the number of parameters and improves model generalization.

3. Training procedures have been configured to exploit the ConvLSTM properties by
using different strategies [6, 57]. To reduce the usual subjectivity in the learning rate
choice, we use a learning rate range test to estimate optimal values once the batch size
is set. Furthermore, a cyclical learning rate [56] allows improving convergence and
reducing over-fitting. Moreover, a video-length-adaptive input data generator has been
designed to fully exploit the temporal dimension of long videos.

4. This work also includes a comparison with several previous approaches, obtaining
comparable accuracy results with much lower computational costs.

It is noteworthy that, to the best of our knowledge, there have not been studies where
depth raw videos are directly fed to an RNN or, more specifically, to an LSTM for HAR. It
is still more unlikely to find a study that uses an LSTM network in stateful operation mode
for action recognition, where all the potential of this architecture is exploited.

The rest of this paper is organized as follows. In Section 2, previous works related to
HAR are explained, giving special emphasis to depth-based ones. Section 3 includes the
description of the analyzed RNNs architecture. Subsequently, Section 4 describes in detail
the training stage. Section 5 shows and discusses the main experimental results. Finally, the
paper is concluded in Section 6.

2 Related work

As stated in the Introduction, initial works on HAR used visual images recorded with
standard RGB cameras and methods with handcrafted features [4, 5, 30, 46]. Motivated
by the success in image processing tasks [9, 55, 66], deep learning methods began to be
applied also for videos, typically with architectures such as 3D convolutions (3DCNN) and
RNNs [2, 23]. In particular, a very common framework found in the literature is the two-
stream neural network [12, 53, 70], where one stream operates on RGB frames whereas the
other tries to learn motion using optical flow as input. The optical flow is pre-computed
with handcrafted methods, which involves a high computational cost. To alleviate this, N.
Crasto et al. [8] proposed using a feature-based loss that mimics the motion stream in the
two-stream 3D CNN and removes the need for using optical flow. Most of the deep learning-
based works on HAR with RGB videos put the effort into solving the problem of how
to treat efficiently the temporal dimension of videos. The previous methods use the third
dimension in convolutions to deal with the extra dimension.

However, the existence of long videos, which is inherent to certain human actions, may
not allow the neural network to process discriminative features due to memory limitations,
failing to recognize these actions. This long-term problem in 3DCNNs is especially studied
in [64], where they propose to increase the temporal size of the input at the cost of reducing
spatial resolution, or in [61] by building motion maps to represent motion from videos
of any length. Another alternative is to use RNNs such as LSTM units to learn temporal
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patterns from features previously extracted with spatial CNNs. This scheme together with
a temporal-wise attention model and a joint optimization module to fuse output features
is used in [71]. Other researchers have used deep learning to estimate optical flow [21]
instead of using traditional and computationally expensive methods. Additionally, novel
spatial and temporal pyramid modules for CNN are proposed and aggregated to a Spatial-
Temporal Pyramid Network (S-TPNet) in [88] to learn effective spatio-temporal pyramid
representations of videos.

Instead of extracting human pose estimations from RGB images, many other works
[18, 19, 29, 32, 33, 62, 75] combine directly RGB with depth modality like 3D skeleton or
depth maps to leverage the advantages of both types of data.

Regarding depth-based works for HAR, there exist different approaches depending on
how 3D information is treated. As explicitly mentioned in [81], depth-based videos are usu-
ally divided into three categories depending on the nature of input: human skeleton-based,
raw depth-video-based and a combination of both. The evolution and progress of approaches
on these three categories have been affected by the growth of deep learning in the last years,
especially in computer vision, leading most recent studies to use this technique. In this
regard, P. Wang et al. [77] elaborated a very complete survey of recent studies using deep
learning in human motion recognition tasks.

In the first category, 3D positions of human body skeletons must be previously extracted
from the depth map in each frame or by using MOCAP systems. There are many different
approaches to how the 3D skeleton joint positions can be managed as, for instance, comput-
ing multiple joint angles [42], extracting discriminative parts for each human action [20] or
finding the best viewpoint for recognition as in [35]. Skeleton joint positions, or any other
data derived from them, are also fed into neural networks in most recent papers, mainly
through RNN-based methods [34, 40, 42, 58, 68, 86], but also with CNNs [10, 89].

Secondly, depth maps are directly used as input to the model. Different descriptors have
been proposed as inputs for the classification process, like in [1, 37, 41, 84]. X. Yang
et al. [85] proposed Depth Motion Maps (DMM) to represent depth videos through a pseudo
coloring image. Later, DNN-based architectures with DMMs as input [73, 74] improved
prior results. Alternatively to DMMs, in [72, 78], suggested using three pairs of images
for video representation using bidirectional rank pooling. Y. Xiao et al. [81] have recently
worked with multi-view dynamic images, reaching state-of-the-art results in the raw depth
maps modality.

Finally, some researchers chose to use both 3D skeleton positions and depth maps and
reached good results [45, 50], taking the benefits from both modalities at the cost of an
increase in model complexity. Indeed, the combination of these two types of data is more
often used with traditional hand-crafted feature algorithms.

A recent comparative review of action recognition methods [69] asserts that skeletal
data-based models have achieved better accuracy and robustness than depth-based ones.
Nevertheless, 3D skeleton joints have some known drawbacks: general information loss,
potential failures of 3D position extraction and the impossibility of action detection involv-
ing human-object interactions. In addition, 3D skeleton joints can not be directly extracted
with a camera, unless a MOCAP system is used, which is not plausible in most applica-
tions. On the other hand, depth-based techniques are more similar to how human vision
works but with extra 3D information and can be recorded with a camera and immedi-
ately used as input to deep learning models without any intermediate calculation. Studies
related to this modality are valuable in research fields such as computer vision and scene
understanding.

16216 Multimedia Tools and Applications (2023) 82:16213–16235



3 Proposed RNN architectures

As explained before, one of the most common approach for HAR is based on the LSTM [17]
layer. It is characterized by including a memory cell Ct or cell state, which is modified over
time steps through three different gates: input it , forget ft and output ot , until they build a
final state Ht . This algorithm allows LSTM networks to model long-term dependencies.

Additionally, in [82] a modified LSTM layer is proposed, namely the convolutional
LSTM or ConvLSTM, and applied directly to videos for weather forecasting. The expres-
sions that model this approach are shown in (1), where, ◦ denotes the Hadamard product
and ∗ the convolutional operator.

The main difference between ConvLSTM and regular LSTM is that, instead of using 1D
arrays, all the input, output, gates and hidden states are 3D tensors where the 2 extra dimen-
sions correspond to the spatial dimensions. Further details and mathematical explanations
are presented in [82].

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi)

ft = σ(Wxf ∗ Xt + Whf ∗ Ht−1 + Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo)

Ht = ot tanh(Ct )

(1)

The showed structure allows ConvLSTM layers to encode both spatial information, as
CNNs do, and temporal patterns extracted from previous frames. This makes ConvLSTM
a good choice for modelling spatio-temporal sequences like videos, removing any type of
previous encoding or preprocessing.

The short-term memory of an LSTM layer is represented by the cell state Ct , which
in the case of ConvLSTM is a 3D tensor, whereas the long-term memory is reflected in
the trainable weights inside the gates. However, short-term memory is the novel property
LSTMs introduce. Ideally, the cell state will not be reset until the entire time sequence is
fed to the network. Thus, the cell state can contain full-sequence information, but in the real
world, this situation is not always feasible. Training data are provided to neural networks
in batches with sizes that are restricted by the CPU/GPU memory capacity of computers.
When the used data consist of videos, it is necessary to find a balance between the number
of frames in each input sample (the bigger, the more long-term dependencies our model will
extract) and samples in each batch (generally the more, the better the model will generalize
and avoid over-fitting), both subjected to the hardware memory limitation.

The LSTM stateless mode resets its cell state after each batch is processed and the
weights are updated. Most studies use LSTMs in stateless mode since these layers usu-
ally operate on already extracted features or simplified data, so the memory limit is not
significant. However, there exists a solution to this limitation through what is called the
stateful mode of an LSTM [24]. With this mode, the LSTM layers preserve the cell state
from the previous batch, removing any memory restriction. This property allows LSTMs to
handle videos of very different lengths as usually happens with HAR samples, where the
information from previous frames can be extremely useful.

These properties are also present in the convolutional version of the LSTM layer, Con-
vLSTM, and therefore, they can be applied to videos. In this paper, we make a performance
comparison between stateless and stateful networks on a challenging depth-based HAR
dataset [49].
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3.1 Stateless ConvLSTM network

LSTM stateless mode is set by default in most machine learning libraries and it is usually
omitted in the papers that use this architecture. This operation mode does not require any
particular data preparation (as opposed to the stateful mode) and performs well in many
cases.

The stateless ConvLSTM network proposed in this work contains two stages: a recurrent
block, which extracts features directly from the video frames, and a decision block with
convolutional and pooling layers. Furthermore, the network contains two parallel branches
(main branch and support branch) that are fused afterwards through addition. Figure 1 shows
a general block representation of this architecture where both branches can be seen.

The main branch is composed of 4 stacked ConvLSTM layers with Batch Normalization
(BN) after each one (see Fig. 1). BN reduces internal covariance, contributing to speed up
the training. The ConvLSTM layers have 32, 32, 128 and 256 3×3 filters, respectively. The
last recurrent layer removes the temporal dimension and leads to a convolutional layer with
128 3 × 3 filters. At this point, the support branch is added up to the main one.

The support branch (lower branch in Fig. 1) has fewer layers but bigger filters. The input
passes through two ConvLSTM layers with 8 7 × 7 and 16 5 × 5 filters, respectively. Next,
there is a convolutional layer with 128 3×3 filters before the addition to the main branch. A
more complete description can be seen in Table 1 including kernel and strides properties of
convolutions. The employed activations are LeakyReLU (Leaky Rectified Linear Unit [39])
functions. This type of function follows the expression shown in (2), with α = 0.3, and it
has proven to be more efficient [83] compared with the standard ReLU activation.

f (x) = x if x ≥ 0

f (x) = α · x if x < 0
(2)

Fig. 1 Schematic of the proposed stateless ConvLSTM network for HAR
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Table 1 Summary of stateless ConvLSTM network architecture

Layer Parameters Output size

Support branch Input - (30, 64, 64, 1)

ConvLSTM k=(7, 7), s=(2, 2) (30, 29, 29, 8)

Batch Normalization -

ConvLSTM k=(5, 5), s=(2, 2) (1, 13, 13, 16)

Batch Normalization -

Conv2D k=(1, 1), s=(2, 2) (13, 13, 128)

Main branch Input - (30, 64, 64, 1)

ConvLSTM 1 k=(3, 3), s=(1, 1) (30, 64, 64, 32)

Batch Normalization -

Activation LeakyReLU

ConvLSTM 2 k=(3, 3), s=(2, 2) (30, 31, 31, 32)

Batch Normalization -

Activation LeakyReLU

ConvLSTM 3 k=(3, 3), s=(1, 1) (30, 64, 64, 128)

Batch Normalization -

Activation LeakyReLU

ConvLSTM 4 k=(3, 3), s=(2, 2) (1, 15, 15, 256)

Batch Normalization -

Activation LeakyReLU

Conv2D k=(3, 3), s=(1, 1) (13, 13, 128)

Decision block Add Main Branch + Support Branch - (13, 13, 128)

Activation LeakyReLU

Conv2D k=(3, 3), s=(2, 2) (6, 6, 128)

Batch Normalization -

Activation LeakyReLU

Conv2D k=(1, 1), s=(1, 1) (6, 6, 60)

Global Average Pooling 2D - (1, 1, 60)

Activation Softmax

k: kernel size, s: stride

These convolutional layers start the decision block. After the addition, there are other
two convolutional layers with 128 3 × 3 filters that precede 2D global average pooling and
softmax activation, producing a vector that includes the class likelihoods standardized to the
unit.

3.2 Stateful ConvLSTM network

The stateful ConvLSTM architecture is slightly simpler than stateless. It consists of a single
branch and the structure is very similar to the main branch of the Stateless ConvLSTM
network.

The recurrent block contains four ConvLSTM layers with 32, 64, 128 and 256 3 × 3
filters and BN after each one. After the third ConvLSTM layer, a regular 2D convolution
has been placed to reduce the number of features and, consequently, the overall network
parameters. The decision block is composed of two convolution layers with 128 3×3 filters,
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followed by BN and Leaky ReLU activations as in the stateless architecture. Next, a final
convolution reduces the number of features to match the number of classes, which precedes
Global average pooling and softmax activation. A detailed description of every layer of the
stateful model is reported in Table 2.

The complexity of the stateful network falls essentially on the particular training and data
arrangement, which is explained in the following section.

4 Training stage

We use the NTU RGB+D dataset [49], which is one of the largest available human action
datasets that include videos in RGB, depth-maps, 3D-skeletons and infrared. It contains
56880 samples with one or more subjects performing a particular action. Videos have been
recorded using three simultaneous Microsoft Kinect II [87] sensors and, thus, providing
multi-view scenes. Resolution of RGB videos is 1920×1080 pixels, whereas for depth-map
and infrared videos it is 512 × 424 pixels. 3D skeletal data provide three-dimensional loca-
tions of 25 main human body joints for every frame. The database contains 60 human actions
within three well-defined groups: daily actions, medical conditions, and mutual actions.

This work only uses the depth-map modality and adapts the two data evaluations sug-
gested in [49] by which the training and test are divided: cross-subject (CS) and cross-view
(CV). The provided images are foreground masked versions to improve the compression
ratio of files and alleviate the processes of downloading and managing such a big amount of
data. They are then cropped to the movement area of the action, as shown in Fig. 2. Finally,
the model itself takes the cropped images and re-scales them to 64 × 64 pixels to build the
network input.

Table 2 Summary of stateful ConvLSTM network architecture, being k: kernel size and s: stride

Layer Parameters Output Size

Input - (8, 64, 64, 1)

Stateful ConvLSTM 1 k=(3, 3), s=(1, 1) (8, 64, 64, 32)

Batch Normalization -

Stateful ConvLSTM 2 k=(3, 3), s=(2, 2) (8, 31, 31, 64)

Batch Normalization -

Stateful ConvLSTM 3 k=(3, 3), s=(1, 1) (8, 31, 31, 128)

Batch Normalization -

Stateful ConvLSTM 4 k=(3, 3), s=(2, 2) (1, 15, 15, 256)

Batch Normalization -

Conv2D 1 k=(3, 3), s=(2, 2) (7, 7, 128)

Batch Normalization -

Activation LeakyReLU

Conv2D 2 k=(3, 3), s=(2, 2) (3, 3, 128)

Batch Normalization -

Activation LeakyReLU

Conv2D 3 k=(1, 1), s=(1, 1) (3, 3, 60)

Global Average Pooling 2D - (1, 1, 60)

Activation Softmax
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Fig. 2 Example of one original video frame (up) from the NTU RGB+D dataset [49] and the cropping
process of its masked version (down)

Due to the strongly different strategies followed by the two proposed methods, they need
different training procedures. On one hand, the stateless ConvLSTM focuses on how the
frames to be processed from the video are selected depending on their length and follows
a more conventional training, on the other hand, the training of stateful ConvLSTM needs
a special treatment due to the existence of a state that can be updated and reset throughout
the processing of each video. Below it is presented in more detail the processes for training
both proposed models.

4.1 Training of the stateless ConvLSTM network

Data arrangement concerns how training and test samples are generated from data and fed
to the model, and usually has a big influence not only on the ability to train a neural network
but also on the final accuracy of the model. It is required a good understanding of the
network architecture and taking into account the dataset properties to get an optimum data
arrangement.

The temporal sequences that are fed to our network are 30 frames long, which corre-
sponds to 1 second of a video. This value has been experimentally chosen following the
previously mentioned balance between the number of frames in the input sample and batch
size, which is set to 12, but also subject to the hardware memory limitation. However, in the
NTU dataset, video lengths go from 26 to 300 frames. There are only a few videos shorter
than 30 frames. In this case, some of the final frames have been smoothly repeated until the
desired length is reached. When videos are longer, the starting point of the 30-frames tem-
poral window is randomly selected and, in the case of very long videos, it also skips frames
uniformly to cover a wider video range (see Fig. 3 for an explanatory illustration). These
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Fig. 3 Window selection scheme performed by the stateless input data generator

strategies have proven to achieve a better performance of the network for action recognition
without increasing the number of input frames.

In Fig. 3, being L the number of frames of a video from the dataset, the input data
generator select d frames to build the input video that will be fed to the neural network.
When L < d , the original video is extended by repeating the last frames until reaching
d frames. In the second case, an initial frame fj is randomly chosen provided that the d

subsequent frames fit inside the original video. Finally, when L ≥ d, the initial randomly
chosen frame fj is followed by {fj+2, fj+4, ..., fj+2d} to cover a region of size 2d in the
original video.

The training method has been as follows. First, a learning rate range test has been per-
formed to find the optimum interval of values, as suggested in [56] when using a cyclical
learning rate schedule. As mentioned in [6], there exists a dependency between batch size
and learning rate, so we have first set the batch size to 12 and then perform the learning rate
range test (see Fig. 4). From the results of this range test, we choose a customized cycli-
cal schedule, which can improve accuracy with faster convergence. In the first 21 epochs,
the learning rate moves linearly between a minimum value of 8 × 10−5 and a maximum
of 9.8 × 10−4. After that, boundaries are reduced to 10−5 and 10−4, respectively. Finally,
after epoch 44 the learning rate is fixed to the minimum 10−5 until training completes 48
epochs. The algorithm Adam [27] has been used as optimizer. This algorithm performs a
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Fig. 4 A learning rate range test performed for the stateless ConvLSTM on NTU RGB+D dataset (CV
evaluation) with a batch size of 12. The interval of values where the loss function decreases define the optimal
range for the learning rate. In this figure, it would be between 10−5 and nearly 10−3

stochastic gradient descent with an adaptive learning rate computed from estimations of first
and second moments of the gradients, and it has proven to achieve fast convergence and be
computationally efficient with large models and datasets.

Due to the large training times, it has been used a checkpoint technique in training that
continuously saves the model weights when validation accuracy improves. Thus, we take
the best model between the former 48 epochs and extend training on 27 more epochs using
an initial learning rate of 2 × 10−4 that is reduced by half after 4 epochs without accuracy
improving.

The followed learning rate schedule together with the training and validation curves are
shown in Figs. 5 and 6 for recognition accuracy and loss function, respectively. Here it can
be seen how the variation of learning rate affects accuracy and loss function curves. For
instance, the big step at epoch 48 shown in both accuracy and loss function appears due to
a significant change in learning rate meaning to find a better minimum of the loss function
and to reduce over-fitting.

4.2 Training of the stateful ConvLSTM network

Training the ConvLSTM in stateful operation mode requires data preparation as videos have
to be sorted by their lengths. This is necessary for the neural network to know where an
action ends, and at this point, reset states so a new state starts for the next sequences.

Therefore, a video-length analysis of the dataset is required to ensure data balance for
training. A distribution of the video-lengths in NTU RGB+D dataset is shown on the left
graphic in Fig. 7 for CS evaluation. It shows big differences of video lengths, which range
from 26 to 300 frames, but most of them fall into the 44-90 frames region. Thus, we selected
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Fig. 5 Curves of training and validation accuracies for the stateless ConvLSTM network. In addition, the
learning rate schedule used along the epochs is shown

a customized set of bin edges in order to get a slightly more uniform distribution, which can
be seen on the right graphic in Fig. 7.

The left limit of every bin on the right graphic in Fig. 7 is chosen to be the length of
the videos inside that bin. For example, a video of 46 frames is reduced to 40 frames and
one of 300 to 208. These discrete lengths are chosen to be multiple of 8, which is set as the
number of frames in each temporal window or unit clip that is fed to the neural network at
each step. Thus, videos inside the bin of 112 frames will have 14 pieces of 8 frames, i.e. the
neural network has to look through 14 different windows until the 112 frames are reached.

Every time the network processes one of these windows, it is able to update weights. If
we let the network do this with every window of a video, validation metrics will behave
abnormally and a strong over-fitting will appear. To solve this, we make the network process
the first half of the video without making weight updates, but preserving the cell states, and

Fig. 6 Curves of training and validation loss function for the stateless ConvLSTM network. In addition, the
learning rate schedule used along the epochs is shown
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Fig. 7 2D histogram for video-length per class distribution for the NTU depth database training data (CS
evaluation), with automatic bin edges on the left (Note the maximum value of 300 frames corresponds to
videos in actions 14, 16 and 17) and with customized bin edges on the right

then train on the windows that belong to the second half using here the information gained
from the previous frames.

Similarly, we have computed both training and testing metrics considering that late pre-
dictions (final windows) are more reliable than the initial ones, where the state does not
contain enough information yet. Therefore, for each video, a weighted average is performed
using per-window predictions. The distribution of weights w(t) follows the expression
shown in (3).

w(t) = Nta (3)

where t is the window number and N , a normalization constant. We chose a = 3, whereas
the value of N is video-dependent and adopts the expression T −a , being T the total number
of windows in a sequence.

We have found that training of the stateful network is more sensitive to learning rate
changes than the stateless one. Therefore, to obtain a non-divergent validation loss, we
experimentally found some valid learning rate values. Due to the unusual characteristics of
this training, the learning rate range test is not used here. The batch size has been set to 6.
As in stateless mode, we used Adam as optimizer and a 25%-rate dropout right before the
decision block to reduce over-fitting.

We have experimentally observed that small learning rate values are needed to minimize
model divergence in training. The applied learning rate schedule for stateful training has
been as follows. The initial learning rate is set to 9 × 10−5, then diminished to 3 × 10−5

in epoch 4, to 8 × 10−6 in epoch 8, to 4 × 10−6 in epoch 15 and, from here, divided by
2 every 4 epochs until complete a total of 25 epochs. The learning rate schedule can be
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seen in Fig. 8 together with the recognition accuracy curves of training and validation or
in Fig. 9, where curves of training and validation loss functions are also shown. In these
figures, it can be seen that the stateful ConvLSTM network reaches convergence faster than
the stateless mode, but with higher computational time per epoch. It is also noteworthy that
a relatively small initial value like 9×10−5 for the learning rate still causes a big divergence
in the validation curve at first epoch (see Fig. 9). This erratic behavior has been observed
in different curves of training at some precise epochs, proving that the stateful operation of
the neural network is especially sensitive to the learning rate size.

5 Experimental results

The NTU RGB+D [49] dataset has also been used for the test phase of the proposed meth-
ods. The authors of this dataset suggest two different evaluations: cross-subject (CS), where
40 320 samples recorded with 20 subjects are dedicated for training and 16 560 samples with
20 different subjects for test; and cross-view (CV), where 37 920 videos were recorded with
2 cameras from different viewpoints and 18 960 videos from a third different viewpoint for
test. Results of both proposed models are shown and analyzed below.

The whole analysis in this work, including training and prediction tests, have been imple-
mented using Tensorflow and the Keras API for Python on a NVIDIA GeForce GTX 1080
with 8 GB and an Intel(R) Core(R) i7-7700 CPU at 3.60 GHz.

5.1 Recognition performance analysis

The confusion matrices for the stateless and stateful model are shown in Fig. 10. As it can
be seen, both models exhibit a reasonable performance in the recognition rate over the entire
60 classes of the dataset, and no significant confused actions appear.

In order to further analyze this performance, a more detailed study of the prediction
quality of the models has been made, and it is summarized in Table 3 for the cross-subject
evaluation. Here they are shown the top 10 recognized actions together with the 10 worst

Fig. 8 Curves of training and validation accuracies for the stateful ConvLSTM network. In addition, the
learning rate schedule used along the epochs is shown
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Fig. 9 Curves of training and validation loss functions for the stateful ConvLSTM network. In addition, the
learning rate schedule used along the epochs is shown

classified one for both stateless and stateful networks. Also, the average accuracy of these
top 10 classes is given for easier comparison.

Regarding the stateless ConvLSTM model, almost all the top 10 recognized actions
present an accuracy higher than a 90%. On the other hand, this model finds some difficulties
to classify actions like put on a shoe, confused with take off a shoe, or reading, with writing,
among others. Analyzing the characteristics of these classes it can be seen that correspond
to actions that involve similar, short motions and small objects that can not be correctly seen
in depth images, thus, this conducts to classification errors and confusion.

In regards to the stateful network, it overcomes the stateless version both within the
top 10 recognized and top 10 confused, with some minor exceptions like classes writing
or headache, which slightly decrease their accuracy percentage. On the whole, the top 10
confused actions improve their recognition rate in almost 5% and the top 10 recognized in
more than 4% compared with the stateless version. This proves the superiority of using the
stateful mode of operation of the LSTM layers over the usual stateless mode. Even with a
simpler architecture (less number of layers and branches) and using a challenging dataset,
the stateful model achieves higher accuracy rates than the stateless.

Again, the confusion between different classes appears when the actions have similar
movements or involve small objects: put on a shoe and take of a shoe, reading and writing,
back pain and chest pain, etc.

The total average accuracy on the NTU RGB+D dataset is 75.26% (CS) and 75.45%
(CV) for the stateless ConvLSTM network and 80.43% (CS) and 79.91% (CV) for the
stateful ConvLSTM network. This proves that, although it is rarely used in the literature, the
stateful mode of the conventional LSTM is able to improve dramatically its performance
on challenging datasets like NTU RGB+D. Furthermore, it is worth highlighting that the
accuracy for both proposed networks is very similar independently of the chosen evaluation
set (CS or CV), allowing us to conclude that they are robust against changes in the camera
pose and the actors performing different actions.

In the next section, we compare the obtained results and computational costs with state-
of-the-art methods.
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Fig. 10 Confusion matrices for the proposed models stateless (top) and stateful (bottom)

5.2 Comparison with state-of-the-art methods

A performance comparison of the proposed models (stateless and stateful ConvLSTM)
with previous state-of-the-art methods is shown in Table 4. Thanks to the innovative
deep learning techniques applied, the models proposed in this paper achieve competitive
recognition accuracies on the NTU RGB+D dataset, and overcome other ConvLSTM-based
methods like in [38]. In addition, although the methods that use dynamic images, as in
[72, 79, 81], get the highest accuracies on this dataset within depth modality, they do it at
the expense of very high time consumption. The usage of dynamic images prevents these
methods from being used in real-time applications like video surveillance, health-care ser-
vices, video analysis or human-computer interaction, because of the high computational cost
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Table 3 Top 10 accurate actions and confused pairs for the proposed model, including accuracy recognition
per action (CS evaluation)

Stateless ConvLSTM

Top 10 recognized actions Top 10 confused actions∗

1) Falling down (95.65%) 1) Put on a shoe → Take off a shoe (40.22%)

2) Hugging (94.93%) 2) Reading → Writing (46.37%)

3) Jump up (93.84%) 3) Writing → Play with phone/tablet (46.74%)

4) Shake head (92.75%) 4) Take off a shoe → Put on a shoe (51.81%)

5) Walking towards (92.39%) 5) Sneeze/cough → Chest pain (52.17%)

6) Put on a jacket (91.67%) 6) Take off glasses → Put on glasses (52.54%)

7) Salute (91.67%) 7) Put on glasses → Take off glasses (52.90%)

8) Pushing (91.67%) 8) Play with phone/tablet → Writing (54.71%)

9) Pick up (90.22%) 9) Rub two hands → Clapping (55.43%)

10) Kicking (88.77%) 10) Eat meal → Brush teeth (57.61%)

Average accuracy 92.36% Average accuracy 51.05%

Stateful ConvLSTM

1) Jump up (98.19%) 1) Writing → Play with phone/tablet (39.13%)

2) Walking towards (98.19%) 2) Put on a shoe → Take off a shoe (48.55%)

3) Stand up (97.83%) 3) Headache → Put on glasses (50.00%)

4) Walking apart (97.83%) 4) Play with phone/tablet → Writing (52.17%)

5) Hugging (97.10%) 5) Reading → Writing (52.54%)

6) Sit down (96.01%) 6) Sneeze/cough → Chest pain (54.71%)

7) Hopping (96.01%) 7) Point to something → Taking a selfie (63.41%)

8) Falling down (95.29%) 8) Clapping → Rub two hands (65.58%)

9) Take off jacket (94.93%) 9) Back pain → Chest pain (68.48%)

10) Put on a hat/cap (93.48%) 10) Take off a shoe → Put on a shoe (69.20%)

Average accuracy 96.49% Average accuracy 56.38%

∗Numbers between parenthesis are the recognition accuracy of true action (before the arrow)

related to dynamic image generation. To illustrate this, the last column of Table 4 includes
the reported average processing times per video from the compared methods, accompa-
nied by the results from the two proposed models. The time consumption of the multi-view
dynamic images-based method was computed in [81] using an Intel(R) Xeon(R) E5-2630
V3 CPU running at 2.4 GHz and an NVIDIA GeForce GTX 1080 with 8 GB on videos
from the NTU RGB+D dataset. Using the same GPU in the present work, the average time
consumption was estimated from 10 000 random video samples of the same dataset, giv-
ing as a result 0.21 s for the stateless ConvLSTM and 0.89 s for the stateful ConvLSTM.
Although the time consumption of the stateful version is small and allows a real-time appli-
cation, it is still slower than the stateless one since the stateful model analyzes the whole
video regardless of its length. Nevertheless, both proposed models are drastically faster than
the methods in Table 4 that have reported computational cost information. Although most
of the works do not report this information, as they use similar pre-processing strategies
(dynamic images or 3D skeleton), it seems reasonable to assume that they would present
similar order of magnitude for time consumption as the reported ones. Therefore, although
there is an improvement of around 7% in accuracy when using these methods, they are
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Table 4 Comparison of total average accuracy (%) on the NTU RGB+D dataset from different modalities

Method CS CV Time/video (s)

Modality: 3D Skeleton

ST-LSTM + Trust Gate (2016) [49] 69.2 77.7 −
Clips + CNN + MTLN (2017) [25] 79.57 84.83 −
AGC-LSTM (2019) [52] 89.2 95.0 −
Modality: Depth

Unsupervised ConvLSTM (2017) [38] 66.2 − −
Dynamic images (HRP) (2018) [72] 87.08 84.22 62.03

HDDPDI (2019) [79] 82.43 87.56 −
Multi-view dynamic images (2019) [81] 84.6 87.3 51.02

Stateless ConvLSTM 75.26 75.45 0.21

Stateful ConvLSTM 80.43 79.91 0.89

The last column also shows the average time consumption per video of each method as reported by their
authors

approximately 100 times slower than the methods proposed in this study, making the latter
far more suitable for real-time applications.

It is noteworthy that, as it has been explained before, the proposal outperforms the results
provided by the authors [38], that uses a ConvLSTM with raw depth data as input, as well as
some of the approaches based on 3D skeletons [49] and [25] on CS evaluation, been able to
run in real time. Furthermore, it is worth to highlight that the obtained accuracy for the CS
and CV evaluations is very similar for the proposal, whereas there appear larger differences
for other state-of-the-art approaches. This allows validating the robustness of the proposed
systems for HAR against the change in the point of view or in people performing the actions.

6 Conclusion

In contrast to most previous deep learning-based methods in human action recognition, this
paper presents two models based on long short-term memory (LSTM) units for the stage
of feature extraction from raw depth videos, followed by an ensemble of convolution and
average pooling layers for the classification process. Both proposed models use a variant
of LSTM, namely ConvLSTM, that leverages the convolution operation to extract spatial
and temporal features from a sequence of images. In addition, to exploit the performance of
these models several techniques from deep learning theory have been used, such as learning
rate range test, cyclical learning schedule or batch normalization.

The major contribution of this work is the implementation of two novel approaches
using ConvLSTMs that aim to boost time efficiency performance while keeping competi-
tive accuracy rates, with two different strategies to directly use the long-term information
contained in videos of variable lengths. On the one hand, we proposed an input data gen-
erator that takes into account the video lengths and allows the neural network to learn
long-term characteristics (stateless ConvLSTM). On the other hand, we leveraged the state-
ful capability of LSTMs (and ConvLSTMs), by which the states of recurrent layers steadily
learn along the video preserving spatio-temporal information of previous frames. That
is, we assure that the stateful model processes nearly the whole video length. The main
advantage of this approach is that, unlike state-of-the-art methods that generate static video
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representations such as depth motion maps or dynamic images, the proposed end-to-end
trainable stateful model can effectively recognize actions belonging to very long and com-
plex videos. Experiment results on the challenging NTU RGB+D dataset show that both
proposed models (stateless and stateful ConvLSTM) reach competitive accuracy rates with
very low computational cost compared with state-of-the-art methods because of the absence
of any preprocessing. Furthermore, it is observed that the stateful ConvLSTM achieves bet-
ter accuracy rates than standard or stateless ConvLSTM, proving the effectiveness of this
uncommon methodology for videos.

The proven success of the stateful mode operation for HAR may open future research
lines that integrate this capability to more complex or robust neural networks that improve
accuracy rates in some problematic actions. Additionally, one may leverage its very long-
term spatio-temporal pattern learning to design models for real-life continuous/online action
recognition, with great interest in the video-surveillance field.
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