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Abstract
Classical one-dimensional chaotic map has many ideal characteristics which is quite
suitable for many different kinds of scientific fields, especially cryptography. In this
paper, we propose an idea of constructing high-dimensional (HD) cyclic symmetric
chaotic maps by using one-dimensional (1D) chaotic map. Two constructed 3D cyclic
symmetric chaotic maps are taken as the examples, named three-dimensional cyclic
symmetric logistic map (3D-CSLM) and three-dimensional cyclic symmetric Chebyshev
map (3D-CSCM), respectively. Numerical experiments show that the new maps pos-
sesses better dynamical performances, and their parameters have a wider range, compared
with the original map. Furthermore, to verify its effect in image encryption, a novel image
encryption algorithm based on 3D-CSLM and DNA coding is proposed. DNA method
for image encryption can improve the efficiency of permutation and diffusion. Firstly, the
algorithm uses 3D-CSLM to generate chaotic sequences for DNA operation rule selection
and pixel permutation. Then through the DNA XOR operation to achieve diffusion, and
finally form an encrypted image. Several simulation tests results indicate that the proposal
has a promising security performance and strong anti-attack ability.

Keywords Cyclic symmetric chaoticmap . Image encryption . DNA coding

1 Introduction

With the development of science and technology, especially the advance of computer tech-
nology, our life is more and more convenient. Nowadays, most of information are transmitted
on the network in a digital form. The transmitted information was once only text form, but now
there are more and more information forms, including image and video, etc. All forms of
information are widely used in all sorts of online communicating, including professional
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multimedia communication and online working. World have suffered a lot due to international
pandemic caused by COVID-19 virus and people rely more on network interaction [37]. In this
case, the problem of information security has highlighted, to ensure the information security,
many encryption algorithms have been proposed by scholars [18, 22, 27, 34, 38, 50]. Among
all kinds of information forms, image information is widely used due to its legibility and
comprehensive. Image information would be accessed illegally by unauthorized hackers if
they are not encrypted, resulting huge losses. However, if use the tradition encryption
algorithms to process images, the effect would be not good as expected because images
own strong correlations between adjacent pixels and highly redundancy. One of the reasons
is that these algorithms are originally designed for text, they are not suitable for images. These
algorithm acts like a helping hand to near us the required results which we intended [4, 6–14,
23, 25, 46]. Thus, we need algorithms that are more suitable for image encryption.

In recent years, there are more and more scholars pay attention to the study of chaos theory.
Chaos theory, especially chaotic maps among it, has been widely used due to their good
performance since its mentioned firstly by Lorenz [41]. Chaos maps own many excellent
characteristics, such as high sensitivity to the initial parameters and values, unpredictability to
trajectories, topological transitivity and so on [18, 27, 38]. The sequences generated by chaotic
maps are pseudo-randomness, thus, it’s usually used as a random source to combine with
image encryption methods. Then the security of image cryptographic algorithms could be
further improved because of the good chaotic behavior of maps.

Among image encryption algorithms based on chaotic maps, chaotic maps are used to
generated pseudo random sequences, and then according to the sequence scramble and diffuse
the images. From the perspective of dimensionality, chaotic maps could be divided into one-
dimensional (1D) chaotic maps and high-dimensional (HD) chaotic maps, respectively. Both
them have their own advantages. 1D chaotic maps own simple structure, and then there are a
number of studies proposed based on these maps [15, 17, 32, 33, 35, 44]. In Ref. [32], 1D Tent
map is used to encrypt the fingerprint images. The images would be transformed into DNA
sequence according to the DNA coding rules which is determined by the position of pixel
points. And then the sequence generated by Tent map would also be coded to DNA sequence
depending on the coding rules determined by the position of element. Finally, calculate these
two DNA sequences using DNA XOR operation and then obtain a cipher image after
converting the DNA sequence. Ref. [33] proposed a color image encryption image encryption
algorithm. In this encryption scheme, a new Piece-wise Linear chaotic map (PWLCM) is used
to generated the random number sequences. This encryption scheme includes row-column and
block based rotational permutation operations and diffusion operations. The proposed algo-
rithm is simple but efficient and owns low computing cost. The authors used four 1D chaotic
maps to encrypt gray and color images in Ref. [15], adopting a novel cryptographic primitive
operation. From the stimulation experiment results, it’s clear that this image encryption
algorithm has large key space, high information entropy, strong robust attack resistance and
can be competed with other schemes. Ref. [44] proposed an image encryption based on Cyclic
Redundancy Check (CRC) and nine palace map, in which a 1D Logistic map is used to
generate the random sequence. In the encryption algorithm, the plain image would be divided
into nine sub-images and scramble these sub-images based on nine palace map. Then diffuse
the scrambled image by using CRC method. In Ref. [35], a novel image encryption method
based on logistic chaotic systems and deep autoencoder has been proposed. The method uses
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logistic chaotic system to scramble the original image, and then encodes the random scrambled
image through a deep auto-encoder to generate the encrypted image. Ref. [17] introduced an
improved 1D Logistic map and used a simple encryption algorithm to demonstrate the validity
of this map. Two matrices in the paper are generated by improved map to confuse and diffuse
the plain text images respectively. To sum up, low-dimensional chaotic maps are widely used
due to their simple structure and low computing cost. But it should be noticed that simple
structure and single trajectory also means low security level. Some low dimensional chaotic
maps can be broken by using phase space reconstruction algorithm [36], etc.

Therefore, most researchers prefer to using high dimensional chaotic maps to encrypt the
images [3, 20, 24, 26, 30, 40, 47]. In Ref. [26], a color image encryption based on a 1D chaotic
map (piecewise linear chaotic map) and a Chen chaotic system has been proposed. The
PWLCM are used to scramble the binary matric transformed by original image, and the Chen
chaotic system is used to diffuse three components of scrambled image. Series experiments
shows this encryption scheme has great results. Ref. [40] proposed a new chaotic map named
LL compound chaotic map, which is constructed based on Logistic map and Lü system.
Combine the new chaotic map and adjacent-side XOR operation to obtain an improved ZigZag
transform algorithm, which would be used to encryption images. The position and value of
pixels are destroyed completely, resulting that this kind of scheme is effective and has high
security level. In Ref. [30], the authors improved the random sequence generated by 3D
Lorenz system. Use the equalization method to make the distribution of chaotic sequences
more even. The proposed image encryption in Ref. [30] is also designed based on confusion
and diffusion stages. Ref. [24] proposed an effective chaotic color/grayscale image encryption
algorithm. The algorithm uses a hybrid 2D composite chaotic map combined with a sine-
cosine cross-chaotic map for the permutation. Then, a 1D combined Logistic-Tent chaotic map
is used to generate a matrix, which is XORed with the scrambled image. And in Ref. [3], the
image encryption algorithm is implemented based on a compressive sensing (CS) algorithm
and a Lorenz system. In the Discrete Cosine Transform (DCT) domain, the plain image would
be compressed and sparse, and the dimension of the plain image can be reduced by the
combination of pixels. The sequences generated by Logistic map and Lorenz system are used
to encrypt images. The security analysis results show that this scheme owns low time
complexity and high encryption effect simultaneously. In Ref. [47], a color image encryption
algorithm based on DNA coding, DNA computing, Lorenz chaotic system, Logistic map and
hyper chaotic map. The R, G, B components are disordered by 2D hyperchaotic sequences and
then these components are scrambled by Logistic sequences. Encode the RGB images by
using DNA rules and then combine them with the DNA matrices generated by Lorenz chaotic
map to obtain the final cipher image. Nadeem et al. [20] proposed a new RGB encryption
scheme based on the Dynamic 3D scrambled image, 5D multi-wing-hyperchaotic-system and
DNA computing. In this scheme, the three parts of the color image are reconstructed into a 1D
matrix, and then the matrix is randomly assigned to different cells of the 3D scrambled image.
As for the diffusion phase, chaotic system and DNA method are used. Generally speaking,
using high dimensional chaotic maps to encrypt the images owns higher security than 1D
chaotic maps due to HD chaotic maps has larger key space and more complexity dynamical
characteristic.

Recently, DNA coding and DNA computing are widely used in many encryption algo-
rithms due to its good feature like high parallelism, massive storage and low power
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consumption [16, 39, 48]. However, some of these schemes are just use one DNA coding rule
in the whole process [2, 5, 19, 28, 42], which make it is easy for hackers to attack the cipher
images. Based on above, this paper proposes an idea of constructing high-dimensional cyclic
symmetric chaotic map by using 1D chaotic map. In this improvement model, multiple 1D
chaotic maps are coupled into a HD chaotic map, in order to prove the generality of the model,
we propose two examples 3D-CSLM and 3D-CSCM, respectively. Among them, 3D-CSLM
is implemented based on three Logistic maps. In the new map, the output of the first dimension
would be used as the input value of the third one, the output of the second dimension would be
used as the input value of the first one, and then the output of the third dimension would be
used as the input value of the second one. The 3D-CSCM is built on a similar principle and
will not be explained in detail here. The three state variables are used to perturb the sequences
generated by other dimensions, so as to enhance the correlation between the three dimensions
and further improve the dynamic performance of the newly generated chaotic map. Moreover,
a novel image encryption algorithm based on 3D-CSLM is used to demonstrate the practica-
bility of the improvement model. The advantages of this paper can be summed as follows:

1) The idea of constructing high-dimensional cyclic symmetric chaotic map proposed in this
paper is feasible after theoretical verification.

2) The proposed 3D-CSLM and 3D-CSCM own excellent chaotic performance. The space
of initial parameters is extended, and the sequences generated by new chaotic system
iteration are more random and difficult to predict than the sequences generated by original
one.

3) In image encryption algorithm, the DNA rules which would be used are not fixed. The
rules are adjusted by the sequence generated by 3D-CSLM, resulting that the image
encryption algorithm owns a high security level.

4) The initial parameters and values of 3D-CSLM are determined by the plain image and
secret keys. The correlation between plain images and encryption algorithm is high. It also
means that the proposed encryption algorithm owns high ability to resist plaintext attacks.

The rest of this paper can be described as follows. The model of construction a high
dimensional cyclic symmetric chaotic map is shown in Section 2. The new chaotic maps
improved by the improvement model (3D-CSLM and 3D-CSCM) and their chaotic behavior
are showed in Section 3. In Section 4, encryption/decryption process of novel image encryp-
tion scheme based on 3D-CSLM are proposed. In Section 5, the simulation experiment results
analyses are provided. Finally, the conclusion of this paper is presented in Section 6.

2 The model of construction high-dimensional cyclic symmetric chaotic
map

In this section, we will introduce the model of constructing a high-dimensional cyclic
symmetric chaotic map and prove its chaotic characteristics. Classical 1D chaotic map has
many good characteristics, such as low computing cost, simple structure and so on. But it’s
also easy to be attacked due to its single trajectory and small range of parameters.

17718 Multimedia Tools and Applications (2023) 82:17715–17740



Thus, in this paper, we propose a model of using multiple 1D chaotic maps to construct a
HD cyclic symmetric chaotic map. This keystone of the model is that coupling multiple 1D
chaotic maps into a high-dimensional chaotic map, and using the output of one chaotic map as
the input of another chaotic map. The specific formula is shown as Eq. (1).

X iþ1 ¼ F X ið Þ ¼

f x 2ð Þ
i

� �
f x 3ð Þ

i

� �
…

f x nð Þ
i

� �
f x 1ð Þ

i

� �

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð1Þ

where X i ¼ x 1ð Þ
i ; x 2ð Þ

i ;…; x nð Þ
i

� �
be the n-dimensional variable, f is a chaotic map, and F

represents the improved chaotic map. In the iterative process of chaotic map, the (i + 1)-th
dimension variable is controlled by the i-th dimension variable, where i = 1, 2,…, n − 1. And
the n-th dimension variable is controlled by the 1st dimension variable. Through continuous
correlation in this way, the n variables form a cycle, improving the performance of chaotic
maps.

Theorem 1 The map F is n-order cyclic symmetric.

Proof f is a chaotic map, the map F is a composite of multiple f maps. We could have
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From the above equation, the theorem 1 could be conducted.

Theorem 2 The improved map F owns high sensitivity to initial condition: For any x and y in
its neighborU, |x − y| < δ, there exist a positive integer N and a ε > 0, which satisfies |F(N)(x)
− F(N)(y)| > ε.

Proof |X − Y| < δ can be transformed into the following equation,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 1ð Þ−y 1ð Þð Þ2 þ x 2ð Þ−y 2ð Þð Þ2 þ…þ x nð Þ−y nð Þð Þ2

q
< δ ð3Þ

Therefore, |x(i) − y(i)| < δ would always hold for all i(i = 1, 2, …, n). Due to f is a chaotic
map, owns high sensitivity to initial conditions. Thus, there are positive integers Ni and εi,

satisfying f Nið Þ x ið Þ� �
− f Nið Þ y ið Þ� ��� �� > εi, i = 1, 2, …, n.

Firstly, set N = N1, ε = min {ε1, ε2, …, εn}. Assume that N = nk. Then we can conclude
that
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That is also to say that the equation |F(N)(X) − F(N)(Y)| ≥ ε is proved.
Then when N = nk + 1, we also can obtain,
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The equation |F(N)(X) − F(N)(Y)| ≥ ε could also be proved.
Finally, assume thatN = nk + j, 1 < j < n.
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According to Eq. (6), the equation |F(N)(X) − F(N)(Y)| ≥ ε could still be proved. Therefore,
there must exist a positive integerNand ε > 0, satisfying |F(N)(x) − F(N)(y)| > ε.

In conclusion, the theorem 2 holds.

Theorem 3 The new chaotic map F is bounded.
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Proof Since f is chaotic and bounded, we can assume that |f| < M, then

jFj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f x 2ð Þ

i

� �2
� 	

þ f x 3ð Þ
i

� �2
� 	

þ…þ f x 1ð Þ
i

� �2
� 	s

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þM2…þM 2

p

¼ M
ffiffiffi
n

p ð7Þ

That also means that Fj j≤M ffiffiffi
n

p
always holds, indicating that the newly generated chaotic map

F is bounded. The theorem is proved efficiently.

3 Two examples of high-dimensional cyclic symmetric chaotic maps

In this section, to prove the practicability and effectiveness of the model, we apply the model
to two simple 1D chaotic map, Logistic map and Chebyshev map, obtaining 3D-CSLM and
3D-CSCM, respectively. Then, take a series of simulation experiments to compare the two
newly generated chaotic maps with the original ones, showing the changes in performance of
chaotic maps.

3.1 Three-dimensional cyclic symmetric logistic map and its performances

The classical Logistic chaotic map owns a simple structure and low implementation cost, but
its trajectory is relatively simple and easy to predict, so that the security is insufficient. And HD
chaotic maps own high security level. Therefore, based on the concept of using low-
dimensional chaotic maps to construct high-dimensional chaotic maps, a new model of
constructing 3D cyclic symmetric chaotic map is proposed in this paper. Apply the model to
1D Logistic map, obtaining the new three-dimensional chaotic system (3D-CSLM) whose
mathematical definition could be described as follows,

xiþ1 ¼ f yi; a1ð Þ ¼ a1yi 1−yið Þ
yiþ1 ¼ f zi; a2ð Þ ¼ a2zi 1−zið Þ
ziþ1 ¼ f xi; a3ð Þ ¼ a3xi 1−xið Þ

8<
: ð8Þ

Where initial values x, y, z ∈ (0, 1), control parameters a1, a2, a3 ∈ (0, 4). Due to the 3D-
CSLM is constructed based on Logistic map and cyclic symmetric model, the state variables x,
y and z are correlated and cyclically symmetric. What’s more, the structure of 3D-CSLM is still
relatively simple, but the complexity and randomness will be improved. To prove this point,
we take a series of experimental analyses. In these experiments, the control parameter a1 would
be used as an independent variable, changing within the defined interval, the other control
parameters a2, a3 are fixed. The initial values x, y and z are generated randomly. Because the
experimental results of 3D-CSLM in x, y and z directions are similar, only the results in x
directions are taken for display here.

3.1.1 Phase diagram and bifurcation diagram analyses

Phase diagram can directly reflect the distribution of chaotic sequences in phase space. From
the phase diagrams, the ergodicity of chaotic maps can be roughly judged from the distribution
density and the space area occupied [31]. Figure 1 shows the phase diagram of the 3D-CSLM.
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From the figure, it’s easy to find that the chaotic sequence generated by 3D-CSLM distribute
randomly in the whole three-dimensional space with range 0 to 1, occupying a large area of
phase space, indicating that the chaotic sequence owns a strong randomness.

Bifurcation diagrams are often used to observe the changes in size of the range of chaotic
parameters. Figure 2 shows the bifurcation diagrams of the original Logistic map and the 3D-
CSLM, respectively. From it, it’s clear that 3D-CSLM has a larger parametrial range. It should
be noted that there exist periodic windows, in practice, we should avoid taking parameter
values in the periodic window.

3.1.2 Lyapunov exponent analysis

An important feature of chaos map is its high sensitivity to initial conditions, the feature is also
a reason why it could be widely used in cryptography field. High sensitivity to initial
conditions means that even if the initial conditions change slightly, the trajectories of generated
sequences would separate very quickly. The quickly the separation speed, the high the
sensitivity of chaotic maps to initial conditions. Lyapunov exponent (LE) is used to measure

Fig. 1 The phase diagram of 3D-CSLM

Fig. 2 The bifurcation diagrams of (a) original Logistic map, (b) 3D-CSLM
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the speed of separation, which shows the divergence or convergence rate of the system
trajectory. A positive LE means that even if the initial state changes slightly, the difference
in the final output is completely different [43]. Thus, the system is chaotic when LE > 0.
Figure 3a shows that the LE spectrum diagrams of classical Logistic map and 3D-CSLM.
From the figure, it is proved again that the chaotic parametrial domain is effectively expanded
and 3D-CSLM owns stabler chaotic behavior than the classical one when a ∈ [2.89,3.85) ∪
(3.85,4]. Therefore, 3D-CSLM has good chaotic feature.

3.1.3 Approximate entropy analysis

Approximate entropy (ApEn) is a dynamic parameter used to quantify the regularity and
unpredictability of time series fluctuations. It can be said that the value of ApEn reflects the
degree of confusion of the sequence. For a sequence of data, the stronger the regularity, the
smaller the approximate entropy. On the contrary, the more complex and less regular, the
greater the approximate entropy. It can be seen from Fig. 3b that the ApEn values of the 3D-
CSLM is basically maintained above 1.6 in the effective chaotic parametrial range, which is
superior to the Logistic map, indicating that the chaotic map improved by proposed model
owns good complexity and randomness.

3.2 Three-dimensional cyclic symmetric Chebyshev map and its performance analyses

Similarly, using the same principle, we construct a high-dimensional circularly symmetric
chaotic map based on classical Chebyshev map, named 3D-CSCM. Its mathematical definition
is shown as follows

xiþ1 ¼ g yi; b1ð Þ ¼ cos b1arccos yið Þð Þ
yiþ1 ¼ g zi; b2ð Þ ¼ cos b2arccos zið Þð Þ
ziþ1 ¼ g xi; b3ð Þ ¼ cos b3arccos xið Þð Þ

8<
: ð9Þ

(a) (b)

Fig. 3 a Lyapunov exponent diagram of Logistic map and 3D-CSLM, b Approximate entropy diagram of
Logistic map and 3D-CSLM
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Where the initial values x, y, z ∈ (−1, 1), and the control parameters b1, b2, b3 ∈ (0, 6). To
relate the changes in performance of the original Chebyshev map and 3D-CSCM in detail,
some experiments are taken. In these experiments, the initial values are randomly generated. In
the three control parameters, two of the control parametersb2, b3 are fixed, the another one, b1,
would be used as an independent variable. Because the results of 3D-CSCM in x, y and z
directions are similar, only the experimental results in x direction is taken for display.

3.2.1 Phase diagram and bifurcation diagram analyses

The phase diagram of 3D-CSCM is shown as Fig. 4. It’s clear from the figure that the
distributed of the chaotic sequence generated by 3D-CSCM is even in the phase space,
basically covering the whole phase space region, indicating that its chaotic performance is
excellent. Figure 5 shows the bifurcation diagrams of classical Chebyshev map and 3D-
CSCM, respectively. From it, it is not difficult to find that 3D-CSCM owns a wider chaotic
parametrial range.

Fig. 4 The phase diagram of 3D-CSCM

Fig. 5 a Chebyshev map Bifurcation Diagram, b 3D-CSCM Bifurcation Diagram
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3.2.2 Lyapunov exponent analysis

Figure 6a displays the LE curves of classical Chebyshev map and 3D-CSCM. From the figure,
we can find that when b > 0.03, 3D-CSCM will enter a chaotic state and continue to the end.
The results of comparison prove again that 3D-CSCM has a wider chaotic range than classical
Chebyshev map.

3.2.3 Approximate entropy analysis

The ApEn value curves of classical Chebyshev map and 3D-CSCM are showed in Fig. 6b.
When 3D-CSCM is in chaotic state, it’s clear that the ApEn value of 3D-CSCM is higher than
that of classical Chebyshev map, and most of the ApEn value of 3D-CSCM remains above 1.6.
All the above experimental results show that that 3D-CSCM owns higher complexity and
would be more difficult to predict.

4 A novel image encryption algorithm based on 3D-CSLM

To prove the practicability of the improved map, a novel image encryption algorithm based on
3D-CSLM is also designed in this paper.

4.1 DNA rule

Deoxyribonucleic acid is composed of four nucleotides, which are adenine (A), thymine (T),
cytosine (C) and guanine (G). According to the Worson-Crick base pairing rule, A pairs with T
and C pairs with G. According to DNA coding rules, digital sequences can be transformed into
pseudo-DNA strands. For example, when encode number 124, it would firstly be converted to
a binary sequence, 01111100. And then the binary sequence would be transformed to (ACCG)
if choose Rule 8 as the encoding rule. The DNA coding rules have a total of eight rules, as

(a) (b) 

Fig. 6 a Lyapunov exponent diagram of Chebyshev map and 3D-CSCM, b Approximate entropy diagram of
Chebyshev map and 3D-CSCM
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shown in Table 1. What’s more, the DNA computation operation used here is the XOR
operation, whose concrete calculation rules are showed as Table 2.

When convert a binary sequence to a DNA sequence, take 8-bit as a group, and then
convert each group to DNA sequence by using the DNA rules. Similarly, when convert a DNA
sequence to a binary sequence, take four bases as a group, obtaining the corresponding binary
sequence by using DNA rules. Both these two processes, the selection of the DNA rules
depends on the chaotic sequence generated by 3D-CSLM. Comparing with the fixed DNA
structure, it improves the security and complexity of image encryption.

4.2 Encryption process

The encryption scheme is mainly composed of image permutation, DNA operation, and
diffusion process. Figure 7 shows the detailed encryption flow chart. Assume that the plain
image is a grayscale image with size M × N, and the specific encryption steps could be
described as follows,

Step 1. Convert the plain image into a matrix P with the size of M × N, then set the initial
keys {a1, a2, a3, x1, y1, z1, u, T1}.

Step 2. Calculate the sum of pixel values Pi of the plain image by using the matrix P. And
then bring the sum of pixel values and the initial key {a1, a2, a3, x1, y1, z1} into 3D-
CSLM.

Step 3. Generate the parameters used in the second iteration. The algorithm uses Eq. (10) to
calculate the values of control parameters {a12, a22, a32} required by the second
round 3D-CSLM. The calculation of the initial value {x2, y2, z2}of the second round
3D-CSLM is consistent with the control parameters. Then bring the newly generated
control parameters and initial values into 3D-CSLM.

ai2 ¼ ai þ Pi� 10−14 ð10Þ

Table 1 DNA coding rules

1 2 3 4 5 6 7 8

00 A A T T C C G G
01 G C G C T A T A
10 C G C G A T A T
11 T T A A G G C C

Table 2 Operation rules of DNA XOR

XOR A C G T

A A C G T
C C A T G
G G T A C
T T G C A
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Step 4. Iterating 3D-CSLM generates multiple chaotic sequences {kx1, ky1, kz1, kx2, ky2, kz2},
the length of each sequence is M × N. Then treat these chaotic sequences as
following equations, where Pi = mod (Pi, 256).

K1 ¼ mod floor kx1 Piþ 1 : Piþ Nð Þ � 106
� �

;M
� � ð11Þ

K2 ¼ floor ky1 � 255
� � ð12Þ

K3 ¼ mod floor kz1 Piþ 1 : PiþMð Þ � 106
� �

;N
� � ð13Þ

K4 ¼ mod floor kx2 � 106
� �

; 8
� �þ 1 ð14Þ

K5 ¼ mod floor ky2 � 106
� �

; 8
� �þ 1 ð15Þ

K6 ¼ mod floor kz2 � 106
� �

; 8
� �þ 1 ð16Þ

Step 5. Permutation process. Input matrix P and sequence K1 and K3.

Firstly, perform column cyclic shift on matrix P. Perturb the pixel position of each column of
the matrix according to Eq. (17), obtaining the preliminary scrambled matrix Pc. Then the row
cyclic shift is carried out to change the pixel position of each row of the matrix, and the

Fig. 7 Encryption flow chart
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scrambled matrix Pl is obtained. Eq. (18) is the specific scrambling formula. circshift(⋅) is the
displacement function.

Pc 1 : M ; ið Þ ¼ circshift P 1 : M ; ið Þ;K1 ið Þð Þ ð17Þ

Pl i; 1 : Nð Þ ¼ circshift Pc i; 1 : Nð Þ;K3 ið Þð Þ ð18Þ

Step 6. Converts the digital matrix into DNA sequence. Input matrix Pl and sequence K4.

Firstly, convert the matrix Pl into a binary matrix, where each decimal value is converted to 8-
bit binary number. Every 8 bits of binary would be converted to four bases, and the conversion
rules are shown in Table 1. The conversion operation takes 8 bits as a group, M × N times in
total, and the rules of each conversion are determined by sequence K4. Finally, obtain the
transformed DNA sequence, DNA _ A. The operating formula could be described as follow,

DNA A ið Þ ¼ DNA Encode dec2bin Pl ið Þ; 8ð Þ;K4 ið Þð Þ ð19Þ

Step 7. Generate mask sequence. Input the initial key {μ, T1} into the Skew tent map, which
is described as Eq. (20). Depending on this equation, generate a chaotic random
sequence T. Then obtain mask sequence M by normalizing the values in sequence T
between 0 and 255,

T xð Þ ¼ x=μ; x∈ 0;μ½ �
1−xð Þ= 1−μð Þ; x∈ μ; 1ð �



ð20Þ

Step 8. Perform DNA coding. Input mask sequence M and sequence K5.

Reshape the mask sequenceM into a matrixMr with size ofM × N. Convert the mask matrix
Mr into DNA sequence as the operations in Step 6, named DNA _ B, as Eq. (21) shows.

DNA B ið Þ ¼ DNA Encode dec2bin Mr ið Þ; 8ð Þ;K5 ið Þð Þ ð21Þ

Step 9. Perform DNA XOR Operation. Input the DNA sequencesDNA _ AandDNA _ B.

According to the computation rules showed in Table 2, two DNA sequences of the same size are
subjected to the DNAXOR phase.DNA _ A is bitwise XORed withDNA _ B to produce a new
DNA sequence DNA _ C. The operation could be described as follows in mathematically,

DNA C ið Þ ¼ DNA XOR DNA A ið Þ;DNA B ið Þð Þ ð22Þ
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Step 10. Perform DNA decoding operation to transform the DNA sequence DNA _ C into a
decimal sequence D. Take every four bases as a group, using the DNA rules as
showed in Table 1. The selection of DNA rules is determined by the sequence K6.
After all bases are converted, a binary matrix will be obtained. Then convert the
binary matrix into a decimal matrix D with size of M × N by using following
equation,

D ið Þ ¼ DNA Decode DNA C ið Þ;K6 ið Þð Þ ð23Þ

Step 11. Diffusion operation. Input matrix D, the sum of plain pixel values Pi, and sequence
K2.

The purpose of this step is to associate with plain image information and improve the
complexity of encrypted image C by adding random sequence K2. Firstly, calculate the values
of C(1), then use these values to obtain the final encrypted image C.

C 1ð Þ ¼ D 1ð Þ⊕K2 1ð Þ⊕Pi ð24Þ

C ið Þ ¼ D ið Þ⊕K2 ið Þ⊕Pi⊕C i−1ð Þ ð25Þ
The decryption process can be thought of as the inverse of the encryption process. Firstly,
bring the transmitted key sequences into 3D-CSLM, generating multiple chaotic sequences.
And then use Eqs. (11)–(16) to generate the needed random sequences. The second step is the
inverse process of diffusion operation. Then the DNA coding step is carried out, the decimal
matrix is converted into DNA sequence. Next, the reverse operation of DNA XOR is
performed. After it, start the decoding step, obtaining the decimal matrix. Finally, the image
pixels are restored to their original position by reverse permutation operation. The cipher
image C would be decrypted as the original image P.

5 Experimental results and security analysis

All of the following experiments are performed in a computer with an Intel(R) Core (TM) i5-
10210U CPU@ 1.60GHz 2.11 GHz and 8 GB of RAM, and the operating system is Microsoft
Window10. And the software is MATLAB 2019a. The plain images which are used as
examples, their size is 256 × 256. The encrypted and decrypted results are showed in Figs.
8 and 9. From the figures, it’s clear that whether ordinary grayscale images, all-white image or
all-black image, the image encryption algorithm shows good performance.

5.1 Key space analysis

The key space refers to the size of the digital space that can be used as the key. A good
encryption algorithm should own large enough key space to resist exhaustive attack. The key
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values of the algorithm proposed in this paper are composed of the initial conditions of 3D-
CSLM (a1, a2, a3, x1, y1, z1) and skew tent map (μ, T1). Assume that the current computer
accuracy is 10−14, the key space would be (108)14 = 10112, which is more than the required 2100

[43]. Therefore, the proposed encryption scheme is strong enough to resist exhaustive attack
and has high security.

5.2 Key sensitivity analysis

Key sensitivity refers to the degree of change of encrypted and decrypted images when the key
is slightly changed. An excellent encryption algorithm owns a great difference in its encryption
and decryption effect with small changes in the key. Figure 10 shows the key sensitivity

Fig. 8 Experimental results: (a) Lena; (b) cipher Lena; (c) decipher Lena; (d) Peppers; (e) cipher Peppers; (f)
decipher Peppers; (g) Camera; (h) cipher Camera; (i) decipher Camera
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experiment results of the encryption algorithm in this paper. The results indicate that when the
precision is 10−14, the correct decryption image could not be recovered from the cipher image
with slightly modifying keys, such as a1 = a1 + 10−14, x1 = x1 + 10−14, T1 = T1 + 10−14.

5.3 Histogram analysis

The histogram shows the distribution of image pixel values. Ideally, the histogram of the
encrypted image should be evenly distributed [40]. If the pixel value distribution is not uniform,
the scheme is vulnerable to statistical analysis attack. A good encryption algorithm should make
the cipher histogram tend to be balanced. The histograms of Lena, Pepper and Camera are showed
as Fig. 11. It can be easily seen that the image histogram tends to be uniform after encryption
process, indicating that the proposed scheme can resist statistical analysis attacks.

(d)                        (e)                        (f)

(a)                        (b)                        (c)

Fig. 9 Experimental results: (a) All-Black; (b) cipher All-Black; (c) decipher All-Black; (d) All-White; (e) cipher
All-White; (f) decipher All-White

Fig. 10 a Decryption with correct key, b Decryption with a1 + 10−14, c Decryption with x1 + 10−14, d
Decryption with μ + 10−14, e Decryption with T1 + 10−14
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5.4 Correlation analysis

There is a high correlation between the adjacent pixels of the original image, which would
influence greatly the security of encryption algorithms. In order to resist the attack of statistical
analysis, the proposed encryption scheme should make the correlation coefficient of adjacent

Fig. 11 Histograms of the plain and cipher images. a Plain Lena, b Encrypted Lena, c Plain Peppers, d
Encrypted Peppers, e Plain Camera, f Encrypted Camera
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pixels in the encrypted image low enough. We utilize Eqs. (26)–(29) to calculate the
correlation coefficient between adjacent pixels [39].

E xð Þ ¼ 1

K
∑
K

i¼1
xi ð26Þ

Fig. 12 Correlation analysis diagrams: Horizontal direction of (a) plain Lena, (b) cipher Lena, Vertical direction
of (c) plain Lena, (d) cipher Lena, Diagonal direction of (e) plain Lena, (f) cipher Lena

17733Multimedia Tools and Applications (2023) 82:17715–17740



D xð Þ ¼ 1

K
∑
K

i¼1
xi−E xð Þð Þ2 ð27Þ

Cov x; yð Þ ¼ 1

K
∑
K

i¼1
xi−E xð Þð Þ yi−E yð Þð Þ ð28Þ

rxy ¼ Cov x; yð Þffiffiffiffiffiffiffiffiffiffi
D xð Þp ffiffiffiffiffiffiffiffiffiffi

D yð Þp ð29Þ

In the formula, x and y represent the pixel values of adjacent pixels, and K is the total number
of pixels calculated. 3000 pairs of adjacent pixels in the horizontal, vertical and diagonal
directions are randomly selected from the plain image and the cipher image, respectively, to
compare the correlation between the adjacent pixels in the plain image and the cipher image.
Figure 12 shows the pixel distribution of the plain image Lena and its encrypted image in all
directions. Table 3 lists the experimental results of the correlation analysis. Table 4 compares
the correlation coefficients of encrypted Lena images with other algorithms. Judging from the
experimental results, the proposed algorithm is closer to zero compared with other algorithms.
Thus, the proposed scheme can effectively reduce the correlation between pixels and has a
better encryption effect than other schemes.

5.5 Differential attack analysis

The ideal encryption algorithm should have a significant difference in the encryption effect for
the slight change of the plain image, resulting a good ability to resist the differential attack.
NPCR (rate of change of pixel number) and UACI (uniform mean change intensity) are
usually used to analyze the ability of the algorithm to resist differential attack [38]. The specific
calculation equations are shown in Eqs. (30)–(32).

Table 3 Correlation analysis

Lena Peppers Camera All-Black All-White

Plain Horizontal 0.9350 0.9486 0.9323 NaN NaN
Vertical 0.9588 0.9556 0.9559 NaN NaN
Diagonal 0.9026 0.9135 0.9051 NaN NaN

Cipher Horizontal −0.0043 0.0044 −0.000368 −0.0064 −0.0057
Vertical −0.0044 −0.0042 −0.0022 −0.0121 −0.0018
Diagonal −0.0011 0.0015 0.000976 0.0037 −0.0014

Table 4 Comparison of correlation coefficients for encrypted Lena image

Proposed Ref. [35] Ref. [20] Ref. [39] Ref. [29] Ref. [51] Ref. [49]

Horizontal −0.0043 −0.0209 −0.0052 0.0085 0.0049 −0.0081 0.0082
Vertical −0.0044 0.0528 0.0086 0.0054 0.0037 0.0035 0.0032
Diagonal −0.0011 −0.0099 −0.0020 0.0049 0.0089 −0.0368 0.015
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NPCR ¼
∑
i; j
D i; jð Þ

M � Ν
� 100 ð30Þ

UACI ¼ 1

M � N
∑
i; j

jC1 i; jð Þ−C2 i; jð Þj
255

" #
� 100 ð31Þ

D i; jð Þ ¼ 1;C1 i; jð Þ≠C2 i; jð Þ
0;C1 i; jð Þ ¼ C2 i; jð Þ



ð32Þ

whereM and N are the length and width of the original image, C1 and C2 are the cipher images
whose plain images only with a pixel value difference. We randomly select a pixel from the
plain image and add or subtract 1 from the original pixel value to achieve a tiny change effect
of the image, obtaining two plain images which are used above. For a grayscale image with the
size of 256 × 256, the ideal values of NPCR and UACI are 0.996093 and 0.334635,
respectively. Tables 5 and 6 list the experimental results and comparisons with other algo-
rithms. From the tow tables, it’s easy to find that the experimental results of our encryption
algorithm are closer to the ideal value than others, so this scheme owns a good anti-differential
attack performance.

5.6 Information entropy analysis

Information entropy can be used to evaluate the randomness degree of the image. The greater
the randomness of the image pixel distribution, the higher the security. The information
entropy is calculated by,

H sð Þ ¼ − ∑
2L−1

i¼1
p sið Þlog2p sið Þ ð33Þ

where L is the total number of pixels, S is the gray value, and p(si) is the probability of si
occurrence. The theoretical value of information entropy of gray image is 8. Table 7 lists the
information entropy results of this scheme, and Table 8 compares the information entropy of

Table 5 Experimental results of NPCR and UACI

Lena Peppers Camera Horse Relief

NPCR 0.996124 0.996231 0.996140 0.996200 0.996139
UACI 0.333967 0.333507 0.333032 0.334792 0.333689

Table 6 Comparison results of NPCR and UACI for Lena

Proposed Ref. [24] Ref. [20] Ref. [51] Ref. [21] Ref. [45] Ref. [1]

NPCR 0.996124 0.9962 0.996302 0.996048 0.996000 0.991841 0.999100
UACI 0.333967 0.3359 0.334277 0.332966 0.333530 0.335284 0.334800
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Lena image with other schemes. The experimental results in Tables 7 and 8 both show that the
cipher image pixels are more random, and the proposed scheme has sufficient security.

5.7 Robustness analysis

The encrypted image may receive various interference factors during transmission, which will
lead to the distortion of the encrypted image. Ideal encryption algorithm should have good
robustness to resist various interference attacks. To prove the robustness of the image
encryption, we perform the occlusion attack and noise attack to the encrypted image,

Table 7 Information entropy of plain images and cipher images

Image Lena Peppers Camera All-Black All-White

plain 7.5703 7.5727 7.0622 0 0
cipher 7.9976 7.9973 7.9971 7.9973 7.9975

Table 8 Comparison of information entropy of Lena

Proposed Ref. [41] Ref. [35] Ref. [24] Ref. [20] Ref. [21] Ref. [29]

Lena 7.9976 7.9972 7.9661 7.9973 7.9974 7.9832 7.9967

Fig. 13 Occlusion attack analysis: (a) encrypted image with 12.5% data loss, (b) encrypted image with 25% data
loss, (c) encrypted image with 50% data loss, (d) decrypted image of (a), (e) decrypted image of (b), (f) decrypted
image of (c)
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respectively. Firstly, selecting the Peppers image as an example, we used 12.5%, 25%, and
50% occlusion attacks to it. The experimental results are showed as Fig. 13. It is not difficult to
find that even if a large amount of data is lost in the central part of the encrypted image, the
decrypted image can still recover many details of the original image.

Then, perform the noise test. Noise interference was added to the encrypted images, where
salt & pepper noise (SPN) with intensity of 0.01, 0.03 and 0.05 was added to the Peppers
images, respectively. Figure 14 shows the experimental effect. Although adding different noise
interference, the decrypted image can still clearly show the original image details. Experimen-
tal results show that the algorithm in this paper has excellent robustness and can effectively
resist jamming attacks.

5.8 Algorithm complexity analysis

The time complexity analysis is carried out for the encryption operation of the image with the
size of M × N. The first stage is the sequence generation stage of the chaotic system, which
produces random sequences with the length ofM × N. In the permutation stage, the number of
calculated execution operations is M + N. The time complexity of the encoding and decoding
of DNA sequence and the process of DNA XOR operation is still O(M × N). The final XOR
operation is executed forM × N times in total. Overall, the time complexity of the algorithm in
this paper is O(M × N).

Fig. 14 Noise attack analysis: (a) encrypted image with 0.01 SPN, (b) encrypted image with 0.03 SPN, (c)
encrypted image with 0.05 SPN, (d) decrypted image of (a), (e) decrypted image of (b), (f) decrypted image of (c)
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6 Conclusions

In this work, a model of constructing high-dimensional chaotic cyclic symmetric chaotic map
by using low dimensional chaotic map is proposed. The model is generated by the cyclic
symmetry of one-dimensional chaotic map. According to this model, two new chaotic
maps 3D-CSLM and 3D-CSCM are proposed. Phase diagram, bifurcation diagram, Lyapunov
exponent and Approximate entropy are provided to evaluate that the new maps have better
ergodicity, wider chaotic range and higher complexity. Then we apply the new chaotic map,
3D-CSLM, to image encryption, designing a new image encryption algorithm based on it. In
this algorithm, 3D-CSLM is used to generate chaotic sequences,combined with DNA method
to improve the computational efficiency, and uses DNA XOR process to complete the
diffusion operation between DNA elements. Simulation experiments were performed to
illustrate that the algorithm has strong anti-attack ability and can resist different types of
attacks such as differential attacks and noise attacks. Performance analysis shows that the
algorithm has an excellent performance in terms of key space, key sensitivity, histogram,
correlation analysis and information entropy.

The above conclusions and analysis indicates the good effects and the prospects for the real
world application of the model, but there are still spaces to be explored and improved. Firstly,
the model is more suitable for simple 1D chaotic mapping, and there are limitations for some
complex 1D chaotic mappings. In addition, the proposed algorithm is mainly for gray image.
For color image, it needs to be converted into gray image first. In the future, we will further
study and optimize the proposed model and algorithm.
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