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Abstract
In the last years, due to the availability and easy of use of image editing tools, a large amount
of fake and altered images have been produced and spread through the media and the Web.
A lot of different approaches have been proposed in order to assess the authenticity of an
image and in some cases to localize the altered (forged) areas. In this paper, we conduct
a survey of some of the most recent image forgery detection methods that are specifically
designed upon Deep Learning (DL) techniques, focusing on commonly found copy-move
and splicing attacks. DeepFake generated content is also addressed insofar as its application
is aimed at images, achieving the same effect as splicing. This survey is especially timely
because deep learning powered techniques appear to be the most relevant right now, since
they give the best overall performances on the available benchmark datasets. We discuss the
key-aspects of these methods, while also describing the datasets on which they are trained
and validated. We also discuss and compare (where possible) their performance. Building
upon this analysis, we conclude by addressing possible future research trends and directions,
in both deep learning architectural and evaluation approaches, and dataset building for easy
methods comparison.
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1 Introduction

The worldwide spread of smart devices, which integrate increasing quality cameras and
image processing tools and “apps”, the ubiquity of desktop computers, and the fact that all
these devices are almost permanently connected with each other and to remotely located
data servers through the Internet, have given ordinary people the possibility to collect, store,
and process an enormous quantity of digital visual data on a scale just until recently quite
unthinkable.

As a consequence, images and videos are often shared and considered as information
sources in several different contexts. Indeed, a great amount of everyday facts are docu-
mented through the use of smartphones, even by professionals [64]. Massive sharing of
visual content is enabled by a variety of digital technologies [79], such as effective com-
pression methods, fast networks, and specially designed user applications. These latter, in
particular, include Web platforms, e.g., social networks such as Instagram and forums like
Reddit, that allow the almost instantaneous spreading of user generated images and video.
On the other hand, user-friendly, advanced image editing software, both commercial like
Adobe Photoshop [3], and free and open source like GIMP [33], not to mention smartphone-
based apps that can apply basic image manipulations on the fly,1 are widely available to
everyone.

All these factors have contributed to the spread of fake or forged images and videos, in
which the semantic content is significantly altered. Sometimes this is done for malevolent
purposes, such as political or commercial ones [94]. As of 2022, all of the major social net-
work platforms are struggling to filter manipulated data, and so avoid that such fake content,
often directed to the most vulnerable users, could “go viral” [96]. Legal conundrums are
also emerging regarding where to put the responsibility for the possibly damaging fallout of
fake content spreading [34].

Such problems arise because most times humans are easily fooled by forgeries, and in
some cases they are even demonstrably not able to detect any but the less sophisticated
modifications undergone by visual content, due to the so-called change blindness cognitive
effect [73, 93]. Thus, there is the need for carefully designed digital techniques.

Semantic alterations can be carried out on all types of digital media content, like video
or even audio. However, the focus of the analysis presented in this paper is on methods and
algorithms specifically designed for forgery detection on still images, which is by far the
most common case.

In this context, the general problem of determining if a given image has not been altered
so as to modify its semantics is referred to as image authentication, or image integrity ver-
ification [48]. If the emphasis is put on expressly establish if a given image has undergone
a semantic alteration, or forgery, the same application is often referred to as image forgery
detection in the literature [29]. The objective of this paper is to provide a survey of selected
forgery detection methods, with particular attention to deep learning (DL) techniques that
have since come to the fore.

Before starting our analysis on forgery detection methods, in the rest of this Section we
frame why we think this comprehensive, performance-driven survey that describes the most
recent DL methods is both timely and necessary. We first provide a broad overview of the
considered application, mainly to fix some definitions. Next, we provide a concise summary

1For example Instagram, Snapseed, Prisma Photo Editor, Visage, and many more.
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of the most commonly found types of forgery. We finally provide the organization of the
remainder of the paper while also detailing the contributions of our present analysis.

1.1 Image forgery detection applications

Image forgery detection can mainly be divided into two categories: active and passive.
Sometimes these methods also give a localization of the altered/forged areas of the image,
and even provide an estimate of the original visual content.

Active methods for general visual content protection are based on technologies like
digital signatures [74] and digital watermarking [6]. Digital signatures are straight crypto-
graphic methods that authenticate the bit-stream. However, the authentication in this case
is fragile, meaning that any change in the bit-stream invalidates the signature, and thus it
is more tailored to alternative applications such as copyright protection. This is instead not
desirable when verifying image semantic content, since alterations that does not change
the semantics e.g., a mild amount of compression) should be tolerated. In other words, the
authentication method needs to be robust. Another serious drawback is that the signature
has to be attached as metadata to the image, and therefore could be discarded or sometimes
even substituted by a malicious user.

To address these shortcomings, robust methods have been proposed. For example, robust
digital watermarking embeds security information in the content itself by controlled imper-
ceptible modifications. Ideally, an attacker should not be able to alter the content of an
image without changing the embedded watermark, while being able to safely apply selected
processing such as compression, thus allowing the consumer of the image to detect the
manipulation.

Note that variants of the aforementioned approaches exist, namely, robust signatures
(based on content hashing techniques) [87, 92], and fragile watermarking [21]. Some-
times these variants have been cleverly combined [66]. However, they still inherit the same
problems associated to metadata presence and fragility that we have just outlined.

In the end, active methods have the advantage of being able to convey side information
which may be useful to detect the attempted forgery, but they need the watermark or sig-
nature to be computed on the unaltered version of the image, ideally at acquisition level.
This in turn requires the capturing camera to have specific hardware and/or in-board post-
processing software. Furthermore, any entity interested in verifying the semantic content of
a given image must be able to decode the authentication information, which means having
access to the (private or public) key of the creator and/or the watermark detector. How-
ever, leaving to potentially malicious users both the security information embedding and the
decoding devices is usually a threat to the entire framework.2

As an alternative, a trusted third party could be set up to verify the image integrity, for
instance, a Web site able to embed and decode the watermarks. However, scalability prob-
lems prevent such architecture to be feasible for everyday images shared on the Internet.
Recently, commercial solutions based on the blockchain paradigm aimed at image integrity
have also appeared to get rid of the trusted third party presence, though little details at the
present time are known of their inner workings.3 Blockchain methods can be considered

2The on-board image signature algorithm developed by Nikon, for example, has been long compromised
[10]. Another high profile case is Blu-Ray, which protection scheme used a combination of cryptography,
digital signatures, and watermarking [77]
3For example, Photo Proof Pro by Keeex [46] and Numbers Protocol [76]
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active only in the sense that a block needs to be generated for each protected image, but the
image itself is released without modifications. To the best of the authors’ knowledge, how-
ever, these techniques are not widespread for forgery detection. That may well be because,
while the distributed ledger paradigm does not need a trusted third party, fragile authentica-
tion is unavoidable since in the end blockchain has a cryptographic core, and furthermore
scalability issues are still present. Still, new solutions are being proposed in this field, for
instance [47].

Conversely, passive methods do not need the presence of additional data attached to the
image, and they are commonly known as forensics [81]. Their goal is thus to tell whether an
image is authentic or not by analysing only the image itself, searching for traces of specific
processing undergone by the image. In the case of massively shared, ordinary images, this
solution has been traditionally considered the only feasible one.

Often, an attacker can apply one or a set of successive manipulations on the target image,
either on the whole image or only on a tampered region, such as a semantic alteration,
e.g. object duplication, JPEG compression, geometric transformations, up-sampling, filter-
ing, e.g. contrast enhancement, and so on. When this chain of manipulations is used by an
attacker to disguise the original forgery it is referred to as anti-forensics.

The task of determining the history of attacks that a target image has undergone is some-
times called image philogeny [70]. Of course, this is a more challenging problem than
simply telling apart pristine and forged images, as it involves the detection of multiple kind
of attacks while also determining the order in which they were performed. Let us consider,
for example, a scenario in which the attacker can perform three different manipulations, and
assume for simplicity that each attack is applied at most once. The number N of possible
processing histories is thus the sum of simple dispositions of k attacks from the possible
three, as in:

N =
3∑

k=0

D3,k =
3∑

k=0

3!
(3 − k)! = 16 (1)

Note that k = 0 means that the image is pristine. As can be observed, the number of possi-
ble histories grows exponentially with the number of available attacks. A possible solution
can be found in [14, 60, 61], where the authors formulated the problem of determining the
processing history as a multi-class classification problem. Therein, each of the N histories
corresponds to a class, and a fusion-decision algorithm tries to combine the outputs of mul-
tiple forgery detection methods by means of an agreement function, which aims to give a
higher weight to decisions on which more forgery methods agree and less to the ones on
which there is less consensus.

As a final note, there is another possible forensics application, that is the trustworthy
attribution of the visual content to its creator, for example, the device that generated the
image. The forensics traces could be present all the way back at the acquisition level e.g.
the camera-specific acquisition noise, known as Photo Response Non Uniformity [32], or
PRNU) down to the post-processing stage (that is, after the original image has been stored
in digital form) [48].

Sometimes, however, forgery detection follows the “in-the-wild” assumption that the
creator of a particular image is not safely attributable to any entity, and thus it is to be
considered coming from a possibly anonymous, unreliable source.
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1.2 Image forgery types

We now present the most common forgeries and manipulations found in the context of the
just discussed applications. Visual examples are depicted in Fig. 1.

Copy-move The copy-move forgery is performed by copying one or more regions of an
image and pasting them in the same image in different locations. Copy-move forgeries are
typically used to hide information or to duplicate objects/people, thus severely altering the
semantic content of the target image. An example of copy-move forgery is shown in Fig. 1a,
where the right building tower has been inserted as a copy of the left one.

Splicing This forgery is similar to copy-move, with the difference that the pasted
regions/objects are cut from one or more other images. A splicing forgery can be done in
order to hide some content, or to show a fake situation. For example, in Fig. 1b, we can see
an image in which two famous people are depicted together, but the picture has been shown
to be the composition of two different images.

Inpainting This kind of attack consists in filling a region or a “hole” in the image with
plausible content. Inpainting is typically employed to restore damaged patches in images.
However, it can also be used by potential attackers as a malicious means to hide information
from an image, or to remove a visible watermark. The filled region can either be copied
from another part of the image, or synthesized with a specific algorithm, such as a GAN
network (Generative Adversarial Network [35], see also below). Note that, in the former
instance, this attack can be thought as a particular instance of copy-move.

A particularly interesting instance of inpainting is the reconstruction of deleted parts of
faces, such as the eyes or the mouth. Promising results in this regard have been obtained by
Nvidia [63] (an example is shown in Fig. 1c).

DeepFakes DeepFake is a particular kind of manipulation in which a deep learning model
is employed to synthesize fake content in images or videos. The “deep” term is used to
emphasize the difference between the pre-DL era, in which this task was manually done by
experts with professional editing tools, and the current era, in which this is automatically
done by deep models, such as GANs [35].

A typical application of DeepFake consists in the substitution of the face of a person with
the face of another person (usually a VIP) taken from a second image or video (see Fig. 1e).
In another kind of DeepFake attack the facial expressions of a donor person are extracted
and applied to the target person in another image or video. This is usually done by means
of synthetization methods (namely, GANs) or by merging algorithms that aims to maximise
the realism of the obtained face.

Even if most of the time DeepFakes are created for entertainment/comedy purposes,
there have been cases in which a VIP was shown to be in certain situations in which he/she
never was, thus damaging his/her image and leading to scandals. As a matter of fact, the vast
majority of DeepFakes with the latter purpose are created in the video domain, because this
kind of media usually poses a bigger semantic threat to the attacked person/VIP, especially
when an appropriate audio track is available and can be matched to the facial expressions
of the talking person. Furthermore, a number of easy-to-use tools have been developed to
produce convincing DeepFakes, such as FakeApp, faceswap-GAN, and that available at [27].
As a consequence, many DeepFake videos have been spreading through the Web in the last
few years.
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Fig. 1 Examples for each discussed forgery kind
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DeepFakes for static images are less common, but they are still worthy of interest for
forgery detection purposes. Note that this kind of attack can be thought as a particular case
of the aforementioned splicing.

CGI-generated images/videos This approach consists in creating photo-realistic content
as the rendering output of a computer graphics generated 3D scene. Thanks to the recent
advances in the video-gaming industry and in the GPU technology, techniques such as ray-
tracing have been much easier to implement, thus making possible to reach realism levels
unthinkable just a few years ago (an example is shown in Fig. 1d). In fact, in recent years a
certain number of graphic engines, such as Unity and the Unreal Engine, have been devel-
oped and can be freely (or rather cheaply) used by everyone. So, more and more convincing
rendered images/videos are being produced every day.

Consequently, the images generated through these engines can be almost indistinguish-
able from images taken with a real camera, and, of course, this can be used for malicious
intents by potential attackers that can use these renderings to depict false scenes. It is worth
noticing, though, that in the case of CGI generated content a certain level of expertise is still
required in order to produce convincing results.

In this case, there is no clear parallels with splicing since the generated scene is generated
from scratch.

GAN-based face synthesization Last, we introduce a particularly popular kind of fake con-
tent generation approach, which consists in the creation of a realistic face of a completely
non-existing person, employing the previously cited GAN networks. This is done by feed-
ing the trained model with a vector of random sampled noise, which is converted by the
model to a realistic face (theoretically) different from any existing one. Again, as for the
previously discussed CGI generated content, the fake image is synthesized anew instead of
being copied from another source.

In [45], Nvidia proposed a GAN architecture that is considered a breakthrough for this
technology. Interactive demos based upon this original work can also be found on the Web,
such as [39]. Apart from artifacts that can sometimes still be noticeable in the background,
the produced faces are really convincing and they are hardly detectable as fake by the naked
eye.

1.3 Contributions and paper organization

Since the early 2000s, a lot of approaches to image forgery detection have been proposed,
and many excellent reviews can be found [11, 29, 38, 48, 84, 103]. However, deep learning
techniques have proved to be a game-changer in many digital processing and computer
vision applications, especially when a lot of training data are available [56, 62, 109]. Even
if in the case of forgery detection this last assumption is not quite satisfied, nonetheless,
as discussed in what follows, the best performance on standard benchmarks were obtained
with algorithms that leverage DL models in one or more phases.

For this reason, we feel that it is very important to keep track of the breakthroughs made
possible by deep learning in forgery detection. In particular, it is crucial that some degree of
comparison between DL-based techniques that follow different perspectives is carried out.
This is especially true since it is challenging to identify future (and even present) trends in
a technology like DL, which is already vast and still expanding at a tremendous rate.

In this paper, we mainly focus our discussion on copy-move and splicing detection meth-
ods. Even if these attacks are not as recent as GAN-based ones or DeepFakes, they are very
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prominent in the literature and lots of algorithms for their detection are still being published
to date. The reason why these forgeries are so diffused is mainly because of their simplicity,
both related to end user employment and experimental dataset building, but also because
they are a very immediate threat to the image semantics integrity.

Even so, we discuss some of the DeepFake detection techniques, insofar as this kind
of attacks can be seen of a special (and more sophisticated) case of splicing, or at least a
manipulation that usually involves a source or donor image/video and a target one. However,
since this work aims to give an overview on image forgery detection methods, we do not
deal with approaches specifically designed for video content, i.e., that cannot be applied
to single images. In fact, video-specific methods typically do not analyze each frame as
a standalone image, but they also leverage temporal clues between different frames or, if
available, inconsistencies between the audio track and the facial expressions. We refer the
reader interested in DeepFakes seen as a standalone research field to the review in [102].

This paper is organized as follows. As stated before, the focus of this paper is on the most
recent methods for copy-move and splicing detection that are specifically based upon DL.
To better highlight the contrast with the previous state-of-the-art, it is useful to first recap in
Section 2 several of the established forensics-based techniques for image forgery detection
that instead follow traditional approaches. In Section 3, we describe the key-aspects of the
deep learning based methods, including their applicability and their limitations, and we
illustrate their properties such as the kind of attacks they can detect and whether they give
or not the localization of the forged areas. We concurrently discuss the datasets on which
they were trained/tested. Then, in Section 4 we discuss their performance, which are also
directly compared when possible (that is, tested on the same benchmark dataset). Finally,
in Section 5 we follow up on the previous discussion by drawing some conclusions, while
providing some insights on what we think should be the most important future research
directions.

2 Traditional passive forgery detectionmethods

We now briefly discuss some of the “conventional” passive image forgery detection
approaches that have been proposed since the early 2000s. Of course, what we present
here is not an exhaustive, nor in-depth review of these methods. For a more comprehensive
review, see [29, 38], and [103].

Conventional passive methods leverage techniques from the fields of signal processing,
statistics, physics, and geometry, and are usually also referred to as “classic” or “traditional”
approaches. In fact, they come from the pre-DL era that we are currently in and, as such,
they require little or no data to perform an eventual training phase. Those that still require
data for training are typically based on traditional machine learning techniques, such as
clustering, support vector machines (SVM), linear/logistic regression, random forests, and
so on. Here, we still consider those as belonging to the classic methods, because they rely
on models that have a relatively small number of parameters, and therefore do not require a
great amount of data for training.

We think it is useful to briefly describe some of the traditional approaches, for the
following two reasons:

1. As mentioned above, they typically do not require much data for training (or none,
even). Of course, this is an advantage when it is hard or impossible to collect a good
amount of labelled images to train a high parameterized deep learning model. Also,
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most of these methods are not as computationally expensive, and thus can be easily
deployed on commercial low-power hardware, like smartphones or tablets;

2. Some of the core ideas and principles these methods rely on can also be used in conjunc-
tion with deep learning models, in order to accelerate the training phase or to achieve
better performance. For example, in [86], a SVM model is used as final classification
phase applied on the output of a CNN. In [85], a YCbCr color space conversion and a
DCT transform are used as pre-processing stages before a CNN. In [97], a CNN takes
as input the Laplacian filter residuals (LFR) computed on the input images rather than
the images themselves. All of these methods, among several others, are discussed in
detail in Section 3.

Passive traditional methods can be usually grouped into five main categories. We discuss
each separately in the remainder of this Section.

2.1 Pixel based

These methods rely on the fact that certain manipulations introduce anomalies that can
affect the statistical content of the image at the pixels level. Some of these anomalies can be
detected in the spatial domain, while others in the frequency domain or in a combination of
both.

For copy-move attacks, it is common to observe a strong correlation between copied
regions in the image but, due to the fact that these can be of any size and shape, it is com-
putationally infeasible to explore the whole space of possible shape/size combinations. The
authors of [31] have proposed a method based on the Discrete Cosine Transform (DCT).
In particular, they divided the image into overlapping blocks and applied a DCT on each
block. The DCT coefficients were used as feature vectors that describe each block. Dupli-
cated regions then were detected by lexicograpycally ordering the DCT block coefficients
and grouping the most similar ones. Another approach, proposed in [82], consisted in apply-
ing a Principal Component Analysis (PCA) on image blocks’ features, and then comparing
blocks representation in this reduced-dimension space. These approaches have been shown
to be robust when minor variations in the copied regions are performed, like additive noise
or lossy compression. However, in general these methods do not perform well in the case of
geometric transformations like rotation or scaling.

Thus, let us consider now a situation in which a geometric transformation is used in order
to make a copy-move attack more convincing. Geometric transformations usually involve
some form of interpolation between neighbouring pixels, in particular, the most common
techniques are bilinear or cubic interpolation. Depending on the chosen technique, a specific
correlation pattern between these pixels is created. Statistical methods are then employed
with the aim of finding these patterns in order to detect regions in which a geometric
manipulation has been employed. An example of this approach is described in [83].

An example of frequency-based forgery detection is [28]. To detect spliced regions, the
authors observed that, even if the boundary between the spliced region and the original
image can be visually imperceptible, high-order Fourier statistics are affected by this kind
of manipulation and thus can be used for detection.

Another common type of methods, specifically designed for copy-move attacks detec-
tion, are the key-point based methods. They typically require the following steps:

1. Key-points extraction. Key-points are variously defined as “points of interest” of the
image, for example, local minima or maxima, corners, blobs, etc. Some of the most
commonly employed key-points extraction processes include the well-known Scale
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Invariant Feature Transform (SIFT) [65], Speeded Up Robust Features (SURF) [9], or
Features from Accelerated Segment Test (FAST) [89];

2. Descriptors extraction. One or more feature vectors (descriptors) are extracted from
each key-point. Usually, these vectors are a compact description of the region in the
vicinity of the key-point. In addition to the SIFT/SURF feature values, Histogram of
Gradients (HOG) and the FAST-based ORB [89] are other common ones;

3. Descriptors matching. In this step, descriptors are compared according to a distance
(or a complementary similarity) function. If the distance of two or more descriptors is
below a certain threshold, a match between these descriptors is declared;

4. Filtering step. In this phase, some form of filtering of the matching results is done in
order to rule out weak matches. This can be done by different criteria, such as Lowe’s
ratio [65], in which a match is considered valid only if the distance between the two
most similar descriptors is considerably smaller than that between the two next-best
ones. Other criteria can be employed, for instance, based on the spatial relationship
between the key-points.

One of the most cited key-point based methods for copy-move detection was proposed
by Amerini et al. in [5]. The authors showed that these methods are quite robust even against
rotation and scaling, but the performance are not as good when the copy-moved regions are
too uniform. In fact, in this case only few key-points can be extracted, and consequently the
matching phase provides weak results.

2.2 Format based

Usually, images captured by a digital camera are encoded in JPEG format. This means
that the image is divided into 8 × 8 pixel blocks, which are then DCT transformed and
quantized. As a consequence, specific artefacts are generated at the border of neighbouring
blocks. The authors of [67] observed that image manipulations like copy-move or splicing
result in alterations in the JPEG artefact pattern, and proposed a method in which they
used a sample region (which is supposed authentic) of the target image to estimate the
JPEG quantization table. Then, they divided the image into blocks, and a “blocking artefact”
measure is computed for each block. A block is considered tampered if the score given by
this measure is sufficiently distant from the average value on the whole image.

Obviously, a key limitation of these methods is that they are based on specific assump-
tions on the format of the stored image (e.g. JPEG), and therefore they are not universally
applicable.

2.3 Camera based

The basic idea exploited by these methods is that every digital camera leaves a particular
“footprint” or “signature” on each image they generate. This fact can also be useful to tie
an image to a specific capturing device. In [32], the authors used a set of images taken by a
known camera to estimate the parameters of the already mentioned PRNU, which is a cam-
era specific multiplicative term that models the result of in-camera processing operations.
These PRNU parameters are also extracted from the target image, which is supposed to be
taken with the same camera, and compared with the previously estimated ones. The idea is
that, if a splicing operation from a different camera type has been made, this results in a
discrepancy between the estimated parameters.
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One of the obvious limitations of this method is that it is camera-specific: this means
that a different training set of images must be used for each type of camera in order to build
its specific PRNU model. Also, this method is effective just for those splicing attacks in
which the spliced region is extracted from a source image taken with a different camera
with respect to the one used to acquire the target image, which is not always the case.

The authors of [41], instead, leveraged chromatic aberration to detect image forgeries.
The phenomenon of chromatic aberration arises from the fact that photographic lenses are
not able to focus light of different wavelengths on the same point on the camera sensor.
In fact, from Snell’s Law, the refraction index of a material depends on the wavelength of
the incident light too. As a consequence, each point of the physical scene is mapped, in the
RGB color channels, into points that are spatially slightly shifted one from another.

So, the authors of [41] built a model that approximates the effect of the chromatic aber-
ration and estimated its parameters. Forged regions usually show inconsistencies with the
estimated model, and can thus be detected. In this case as well, the main drawback is that
this method is camera-specific. In fact, different cameras have different chromatic aberra-
tion levels (that typically depend on the kind of lenses), and consequently it is hard to set
a specific threshold for the anomalies detection, if the camera from which the target image
was taken is not known a priori.

2.4 Lighting based

Typically, when an attacker performs a copy-move or splicing attack, it is hard to ensure that
the lighting conditions of the forged region is consistent with that of surrounding image.
Compensating for this effect can be hard even using professional software like Adobe Pho-
toshop. Therefore, the basic idea of lighting (or physics) based techniques is to build a global
lighting model from the target image, and then to find local inconsistencies with the model
as evidence of forgery.

Different lighting models were proposed, such as those in [40] and in [44], for which least
squares error approaches are usually employed for parameters estimation. Techniques like
Random Sample Consensus (RANSAC) [30] are sometimes used in order to make the model
more robust to outliers. The positive aspect of these methods is their wide applicability. In
fact, they are not based on assumptions on the type of camera that generated the image,
and they can be used to detect both copy-move and splicing attacks. However, a downside
of these methods is the fact that they are dependent on the physical context present in the
image. In particular, if the lighting conditions are quite complex (for example, an indoor
scene), a global lighting model cannot be estimated, and thus the method cannot be applied.

2.5 Geometry based

Geometry-based methods rely on the fact that a copy-move or a splicing attack usually
results in some anomalies in the geometric properties of the 3D scene from which the image
is obtained.

The authors of [43] proposed a method to estimate the so-called principal point through
the analysis of known planar objects, and observed that this is usually near the center of the
image. They also showed that a translation of an object in the image plane results in a shift
of the principal point, and thus this fact can be used as evidence of forgery.

Another interesting approach was proposed in [42]. The idea was to consider specific
known objects such as billboard signs or license plates and make them planar through a
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perspective transformation. Once the reference objects are viewed in a convenient plane, it
is possible, through a camera calibration, to make real world measurements, which can then
be used to make considerations on the authenticity of the objects in the image.

Of course, these methods are based on strong assumptions on the geometry of the 3D
scene. They also require a human knowledge of the real world measures taken from specific
objects in the image. Consequently, their applicability is quite limited.

3 Deep Learning basedmethods

Deep learning methods have gained a huge popularity over the past decade, and indeed they
have been applied to a great variety of scientific problems. This is due to the fact that they
were shown to perform particularly well for classification problems, as well as regression
and segmentation ones. For certain tasks, these methods can even outperform humans in
terms of accuracy and precision. Another crucial factor that contributed to the spread of
deep learning techniques is that, in contrast to conventional machine learning approaches,
they do not require the researcher to manually create (craft) meaningful features to be used
as input to the learning algorithm, which is often a hard task that requires domain-specific
knowledge. Deep learning models, such as Convolution Neural Networks (CNN), are in fact
capable of automatically extract descriptive features which capture those facets of the input
data that are well tailored to the task at hand.

For image forgery detection too, deep learning techniques have been explored in the
recent literature in order to achieve better accuracy than previously proposed, traditional
methods. The techniques that we are considering can be grouped in distinct categories
according to different criteria, in this case:

A) Type of detected forgery: copy-move, splicing, or both;
B) Localization property, i.e. if the considered algorithm is able to localize the forged

areas. In the case of copy-move detection, an additional question is whether the algo-
rithm is able to distinguish between the source region and the target one, i.e. the region
on which the source patch is pasted. This property is useful, for example, in a scenario
in which a forensic expert is asked to analyze a tampered image in order to interpret
the semantic meaning of a copy-move attack;

C) Architecture type, that is, the algorithm is an end-to-end trainable solution, i.e. without
parameters that need manual tweaking, or not.

As discussed in Section 1.2, DeepFakes can be regarded as a particular case of splic-
ing attack. However, given the fact that the vast majority of DeepFake forgeries involve
face manipulations, methods that aim to detect these attacks can leverage domain-specific
knowledge e.g. face detection algorithms) that cannot be used by generic splicing detection
algorithms. As such, different datasets need to be used for evaluating and comparing these
methods. Therefore, DeepFake forgery detection performance cannot presently be directly
compared with generic splicing detection algorithms. Consequently, in this paper, the dis-
cussion on the former methods is conducted separately, both in regard to employed datasets
and experimental results.

For our analysis, we have selected some papers among the most recent ones that we think
are particularly representative of those that can be categorized into at least one of the distinct
groups that we have outlined above. A further principle that we have used for this selection
is performance driven, with the added objective of being able to do a meaningful compar-
ison (when possible), given in Section 4. These papers are described in some detail in this
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Section, with the further objective of identifying if any trend in the DL overall architecture
choice is emerging.

In particular, we have used the criteria A) and B) above to sort the presentation order of
the papers. Methods [1, 4, 25, 78], and [105] are copy-move-only specific, and are presented
first in Section 3.2. Then, methods [22, 68, 85, 86, 97, 105, 107], and [18], that are for both
splicing and copy-move detection, are discussed next in Section 3.3.

Besides this first separation through criterion A), we sort the techniques in each subset
using criterion B), namely, [1, 4], and [105] in the first subset possess the localization prop-
erty and are discussed first. For the second subset, such property is verified by [85, 107],
and [18], which are thus described before the others. Note that methods [1] and [105] are
also able to distinguish the source from the target regions.

Regarding criterion C), which is not used for sorting the methods, we remark here that
end-to-end architectures can be found in [25, 68, 105], and [78]. The reader is referred to
Table 5 for a summary of the characteristics of the described techniques.

Finally, DeepFake specific methods are discussed in Section 3.4.
For each described method, we also discuss:

– which datasets, whether public benchmark or custom ones, were used for the experi-
mental validation;

– the performance on one or more of the above datasets: metrics like accuracy, precision,
localization accuracy, etc.

Therefore, before diving into a detailed overview of the deep learning based approaches,
we proceed to first briefly describe in Section 3.1 some of the benchmark datasets that are
typically used in the most recent literature for evaluation of the considered forgery detection
methods, and summarize the employed performance metrics.

Finally, we mention that there are several other interesting works that involve deep learn-
ing as a means for forgery detection, which are however not analyzed here because their
characteristics are a mixture of the representative works that we have selected. Some exam-
ples are [71] and [106]. In the former, a copy-move-only method is presented that leverages
a pre-trained AlexNet (on ImageNet) as a block feature extractor and a subsequent feature
matching step that allows to localize the copy-moved regions. In [106], instead, a technique
for both copy-move and splicing detection is discussed, which is built upon the formulation
of the forgery detection and localization task as a local anomaly detection problem. In par-
ticular, a “Z-score” feature is designed that describes the local anomaly level and is used
in conjunction with a LSTM (long short term memory) model that is trained to assess local
anomalies. Note that both of these methods satisfy criterion B), i.e. they give the localization
of the forged areas.

As a further remark regarding the property of being able to distinguish between source
and target regions, we refer the reader to the recently published work in [7], in which a
DL-based method is presented as a post-processing phase to distinguish between source
and target regions, starting from the localization mask of any copy-move forgery detection
technique.

3.1 Datasets description

We now provide a comprehensive list of the benchmark datasets used by a majority of the
proposed copy-move, splicing and DeepFake (confined by the previously stated purposes)
detection methods. In fact, most of the deep learning methods that are presented in what
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follows are trained and/or tested on either one of these datasets, or a custom one built upon
the datasets themselves. The main characteristics of each dataset are summarized in Table 1.
Evaluation metrics are discussed next in Section 3.1.1.

CASIA v1.0 (CASIA1) [24] It contains 1725 color images with resolution of 384×256 pixels
in JPEG format. Of these, 975 images are forged while the rest are original. It contains both
copy-move and splicing attacks;

CASIA v2.0 (CASIA2) [24] It contains 7491 authentic and 5123 forged color images with
different sizes. The image formats comprise JPEG, BMP, and TIFF. This dataset is more
challenging than CASIA1 because the boundary regions of the forged areas are post-
processed in order to make the detection more difficult. It contains both copy-move and
splicing attacks;

DVMM [101] It is made of 933 authentic and 912 spliced uncompressed grayscale images
in BMP format, with fixed size of 128 × 128;

MICC-F220 [5] It is composed by 110 copy-moved and 110 original JPEG color images.
Different kinds of post-processing are also performed on the copied patches, such as
rotation, scaling, and noise addition;

MICC-F600 [5] It contains 440 original and 160 tampered color images in JPEG and PNG
formats. The tampered images involve multiple copy-moved regions, which are also rotated.
The image sizes vary between 722 × 480 and 800 × 600 pixels;

MICC-F2000 [5] It consists of 700 copy-moved and 1300 original JPEG images, each one
with a resolution of 2048 × 1536 pixels;

Table 1 Benchmark copy-move/splicing datasets overview

Dataset Ref. Manipulations # orig./forged Size Format

CASIA1 [24] copy-move, splicing 750/975 384 × 256 JPG

CASIA2 [24] copy-move, splicing 7491/5123 320 × 240 – 800 × 600 JPG, BMP, TIF

DVMM [101] splicing 933/912 128 × 128 BMP (grayscale)

MICC-F220 [5] copy-move 110/110 480 × 722 – 1070 × 800 JPG

MICC-F600 [5] copy-move 440/160 722 × 480 – 800 × 600 JPG, PNG

MICC-F2000 [5] copy-move 1300/700 2048 × 1536 JPG

SATs-130 [16] copy-move 10/120 various JPG

CMFD [17] copy-move 0/48 various JPG, PNG

CoMoFoD [100] copy-move 4800/4800 various JPG, PNG

DS0-1 [19] splicing 100/100 2048 × 1536 PNG

Korus [49] copy-move, splicing 220/220 1920 × 1080 TIF

DFDC [23] DeepFake 1131/4113 (videos) various MP4

FaceForensic++ [88] DeepFake 1000/1000 (videos) various MP4

Celeb-DF [59] DeepFake 590/5639 (videos) various MP4
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SATs-130 [16] It contains 130 images, generated by 10 source authentic images, with copy-
moved regions of different sizes. Various JPEG compression levels are applied, therefore
the images are stored in JPEG format;

CMFD [17] It is composed of 48 source images in which a total of 87 regions (referred by
the authors as “snippets”), with different sizes and content (from smooth areas, (e.g.), the
sky, to rough ones, (e.g.), rocks, to human-made, (e.g.), buildings) are manually selected
and copy-moved. The authors also provide a software that allows to apply different post-
processing steps on the forged images in a controlled way. The images are given in JPEG
and PNG formats;

CoMoFoD [100] This dataset contains 4800 original and 4800 forged images, with copy-
move attacks and post-processing operations such as JPEG compression, noise adding,
blurring, contrast adjustment, and brightness change. The images are stored in PNG and
JPEG formats;

DS0-1 [19] It contains 200 images, 100 of which are pristine and 100 are forged with splic-
ing attacks. All the images are in PNG format at a resolution of 2048 × 1536 pixels. Color
and contrast adjustment operations are applied as counter-forensic measures;

Korus [49, 50] This dataset is composed of 220 pristine and 220 forged RGB images in
TIFF format. The dataset contains both copy-move and splicing attacks, performed by hand
with professional editing software. The resolution of the images is of 1920 × 1080.

DFDC (DeepFake detection challenge on kaggle) [23] It contains 4113 DeepFakes videos
created from a set of 1131 original ones, involving 66 subjects from various ethnicity and
both genders. The video resolution varies from 180p to 2160p. All the videos are in MP4
format and the employed codec is H.264;

FaceForensic++ [88] It is an extension of the previous dataset FaceForensic, with a total
of 1.8 millions images created with 4 different DeepFake state-of-art generation methods
(DeepFakes [27], Face2Face [98], FaceSwap [51], and NeuralTexture [99]), starting from
4000 videos downloaded from YouTube. Compared to other previously proposed datasets, it
is bigger by at least one order of magnitude. The dataset contains videos of different sizes,
such as 480p, 720p, and 1080p. The videos are in MP4 format, and the codec used is again
H.264.

Celeb-DF [59] The authors of this dataset specifically created it in order to overcome the
lack of realism of a large portion of DeepFake videos in previously published datasets (such
as the original FaceForensic). It comprises a total of 5639 DeepFake videos and 590 pris-
tine videos in MPEG4.0 format (H.264 coded), with different resolutions and a standard
frame rate of 30 fps. The average length is about 13 seconds (corresponding to a total of
more than 2 millions of frames). Another feature that sets this dataset apart from previously
proposed ones is how it includes a pronounced variety of ethnicity and equilibrium among
genders.
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3.1.1 Evaluation metrics

Performance metrics in the considered forgery detection applications are the same used
for binary classification problems. There are two classes, authentic or forged, that can be
attributed either to the whole image or at the pixel level (through appropriate masks).

Table 2 recaps the terminology for binary classification evaluation using the so-called
confusion matrix. Starting from ground-truth classes and the labels output by the detec-
tion system, the 4 outcomes given as TP, FP, TN, and FN can be counted according to the
concordance or discordance of the labels with the corresponding classes.

The sum of every element in Table 2 is equal to the total number of queries T , namely
the population (or the number of objects in the ground-truth). Among these T queries, P

have a positive ground-truth class and N have a negative ground-truth class, therefore T =
P + N . In forgery detection, as in many other binary classification problems, each element
in Table 2 is suitably divided by P or N , and thus express the corresponding fraction, or
rate, as follows:

T PR = T P/P FPR = FP/N

FNR = FN/P T NR = T N/N (2)

Please note that in some papers the R (rate) part can be omitted, however, there is no
possible confusion as the given number is in the [0,1] interval. Given the outcomes in Table 2
and the rates in (2), additional metrics can be obtained as follows:

precision = T P

T P + FP

recall = T PR = T P

T P + FN

F1score = 2 · precision · recall

precision + recall

accuracy = T P + T N

T
(3)

An additional metric is the AUC (Area Under the ROC curve). The AUC is the two-
dimensional area under the whole Receiver Operating Characteristic (ROC) curve, that plots
FPR versus TPR varying the decision threshold of the detection algorithm.

These measures, or slight variations thereof, are extensively used in the papers described
in what follows. There are commonly used synonyms for some of them, for example, the
false alarm rate or fallout is the same as FPR and sensitivity is a synonym for recall. Such
occurrences have been adjusted for clarity’s sake.

Table 2 Confusion matrix and outcomes

Ground-truth classes

Positive (P) Negative (N)

Output labels Positive True False

Positive (TP) Positive (FP)

Negative False True

Negative (FN) Negative(TN)
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3.2 Copy-move specific methods

According to the grouping and sorting criteria of the DL-based techniques discussed in this
work, we begin in this Section by introducing copy-move only forgery detection methods.

3.2.1 R. Agarwal et al. [4]

The authors of [4] proposed a method specific for copy-move detection that uses deep learn-
ing in conjunction with a segmentation step and further feature extraction phases. First, the
M × N input image is segmented with the Simple Linear Iterative Clustering (SLIC) pro-
cedure [2]. In order to do so, a 5-D feature vector is built for each pixel, by concatenating
its RGB color values and spatial x, y coordinates. A clustering is then performed on these
features, and the segmented patches (referred to as “super pixels”) are given as output.

Then, multi-scale features are extracted from each super-pixel Sk with a VGGNet [95]
network. This process involves the following steps:

– Given the segmented image, a binary mask BM for each super-pixel is obtained as:

BMk(i, j) =
{

1 if pixel (i, j) ∈ Sk,

0 otherwise
(4)

– Let f ∈ R
M ′×N ′×D be the output of the first convolutional layer, where M ′, N ′ are

the spatial dimensions, and D is the number of output channels. RF(l, m) denotes
the receptive field on the input image in the (l, m) position. A continuous value mask
MConvk ∈ R

M ′×N ′
is then computed as follows:

MConvk(l,m) = 1

|RF(l,m)|
∑

(u,v)∈RF(l,m)

BMk(u, v). (5)

The super-pixel-level feature map gk is obtained by multiplying the output of the
convolutional layer with the mask:

gk(l, m, c) = f (l,m, c) · MConvk(l,m), c = 1, ..,D (6)

– The previous steps are repeated for each convolutional stage of the VGGnet. By
using Max-pooling after each convolutional layer, increasingly high-level features are
extracted for each super-pixel (see Fig. 2).

Next, a “relocation” phase of the higher-levels features (with lower spatial resolution) is
employed in order to find a pixel-level position of the features themselves in the input image.
In this way, a set of key-points, with the corresponding multi-level features, is obtained for
each patch.

Finally, a key-points matching phase is performed by comparing their associated fea-
tures, and the copy-moved patches are identified by a further comparison of the super-pixels
to which the key-points belong. This procedure is referred to as ADM (Adaptive Patch
Matching) by the authors.

The VGGnet is trained on the MICC-F220 dataset. The same dataset is used for testing,
though it is not specified which portion of it is used for training and which one is used for
testing. The metrics used for evaluation are TNR, FNR, FPR, precision, TPR (recall), and
accuracy. The reported results are:

– TNR: 97.1%;
– FNR: 9.2%;
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Fig. 2 In [4] the super-pixel segmentation map is given, along with the target image, as input to a VGGNet.
Features at different levels are extracted for each of the input super-pixels. Finally, high-level features
undergo a so called “relocation phase” to obtain a localization mask at the original resolution

– FPR: 55%;
– Precision: 98%;
– TPR: 89%;
– Accuracy: 95%.

Therefore, the reported accuracy of the method is high, but at the cost of a large number of
false positives.

Also, it should be noted that the reported performance is relative to the MICC-F220
dataset, that only has 220 images, with a limited number of types of copy-move attacks. For
these reasons, results obtained on just this dataset are not as statistically relevant as methods
tested on other, more populated copy-move datasets, such as MICC-F2000 or CoMoFoD.

3.2.2 Y. Abdalla et al. [1]

The authors of [1] proposed a 3-branches method for copy-move detection. An overview of
the considered architecture is shown in Fig. 3, which is in the end based on a GAN model.
To recap, the GAN is composed of two different deep learning modules: the Generator (G)
and the Discriminator (D).

– The generator is a Unet that takes as input an image I and gives as output a forged
version of the image itself I ′ = G(I);

– The discriminator is a CNN network that takes as input either an original image I or a
generated image I ′ = G(I). The output is a binary mask, in which each pixel is labelled
as either authentic or forged.

The purpose of D is to discriminate between original pixels and pixels that were manipulated
by G. Instead, G aims to generate forgeries I ′ = G(I), with I ′ � I , in order to fool the
discriminator into wrongly classify the forged areas of I ′ as authentic. The training of the
two modules can be seen as a competitive game between them, at the end of which the
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Fig. 3 Architecture of the GAN-based method in [1]. The upper branch implements a per-pixel binary clas-
sificator (forged/pristine), while the bottom one is used to find similarities between regions. The outputs of
these branches are then combined to obtain the final output mask in which, if the image is considered forged,
source and target regions can be distinguished

generator is able to create forgeries that are difficult to detect, and the discriminator is able
to correctly classify them.

In addition to the described GAN network, the authors used a custom CNN model specif-
ically designed to detect similarities between regions i.e. copy-moved areas). This CNN
is composed of different convolutional layers as well as custom ones that perform a self-
correlation operation on the input features. Then, different pooling steps are used to extract
more compact features that are fed to fully connected layers. Finally, a mask-decoder layer
is used to reconstruct, from the extracted features, a binary mask that represents the similar
regions in the image.

As a final decision step in the forgery detection pipeline, a linear SVM model is used for
classification. The SVM is fed with an input vector that combines the output of the GAN and
the output of the similarity detection CNN. If the image is classified as copy-moved by the
SVM model, an additional mask is given as output by comparing the two input binary masks
obtained by the GAN and the custom CNN, in which not only the forged areas are labelled,
but also the source region used for the copy-move attack is identified (with a different label).

Two datasets unrelated to forgery detection, namely, the CIFAR-10 [52] and MNIST
[55] datasets, were used to pre-train and test the GAN network. In detail, the CIFAR-10
dataset contains 60,000, 32 × 32 color images categorized as 10 distinct classes (airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck), while MNIST is composed
of 60,000 grayscale images depicting handwritten digits. After the pre-training phase, the
other two modules of the detection pipeline were trained and validated on a custom dataset
composed of a total of 1792 pairs of forged and corresponding authentic images, sampled
from MICC-F600 and two other datasets, the “Oxford Building Dataset” [80] and the “IM”
[12].

The obtained detection performances on this composite dataset are as follows:

– F1-score: 88.35%;
– Precision: 69.63%;
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– Recall: 80.42%;

In conclusion, it would have been interesting if the authors evaluated the performances of
their method on one of the public benchmark datasets (such as MICC-F2000, or CASIA2)
rather than a custom, composite one. One aspect of this method that should be further noted
is that it is one of the few that gives as output not only a localization of the forged areas, but
also the source regions of the copy-move attacks.

3.2.3 Y. Wu et al. [105]

In this paper, a pure end-to-end deep neural network pipeline (referred to as BusterNet by
the authors) is presented as a copy-move forgery detection solution. A key aspect of this
method, such as in [1], is the fact that it is able not just to give a pixel-level localiza-
tion of the copy-move attacks, but it also distinguishes between the source and the target
region.

The detection pipeline is composed of two branches and a fusion module (see Fig. 4):

– The first branch, called Mani-det, is responsible for the detection of manipulations in
the image, and it is composed of the following modules: a feature extractor, a mask
decoder, and a binary classifier. The feature extractor is a standard CNN that coincides
with the first 4 blocks of the VGG16 network [95].

The mask decoder is used in order to restore the input resolution of the image, via
a de-convolution process, and it uses the BN-inception and BilinearUpPool2D layers
[104].

The binary classifier, which is implemented as a convolutional layer followed by a
sigmoid activation function, produces a binary manipulation mask, in which the pasted
patches of the copy-move attacks are localized;

– The second branch, referred to as Simi-det, is used in order to generate a copy-move
binary mask, in which similar regions in the input image are detected. In particular, the

Fig. 4 Architecture of BusterNet. [105]. Mani-det branch is used to obtain a classification of each pixel of
the input image as forged or pristine. Simi-det branch instead, aims to find similarities between pixels in the
input image. Finally, a fusion module is employed that takes as input the outputs of the two branches and
outputs a classification for each pixel: source, target or pristine
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detection process can be summarized as follows: first, a CNN is used as feature extrac-
tor. Then, a self-correlation module is used to compute all-to-all feature similarities.
These are given, as input, to a percentile pooling unit, which collects useful statistics.
A mask decoder is used to up-sample the obtained tensor to the size of the input image.
Finally, a binary classifier is applied in order to obtain the copy-move mask;

– The fusion unit takes as input the computed features from the two branches. It is con-
stituted by a convolutional layer followed by a soft-max activation, that gives as output
a three-class prediction mask: pristine, source region, and target region.

Note that the CNN networks used in the Simi-det and in the Mani-det branches have the
same architecture, but they have different weights, since they are trained independently. The
same applies for the mask-decoder and the binary classification modules.

In order to train their model, the authors built a dataset of 100,000 images by automat-
ically performing copy-move operations from source pristine images. For each tampered
image, they built three ground-truth pixel-level masks:

– A three-class mask Ms,t with the following labels: pristine, source copy-move, and
target copy-move;

– A binary mask Mman with the following labels: pristine and manipulated. Note that the
source region here is considered pristine;

– A binary mask Msim with the following labels: pristine and copy-move. Note that the
source and target regions are both labeled as copy-move.

The authors adopted the following three-stage strategy for training:

1. Each branch is trained independently. In order to do so, the copy-move mask Msim and
the manipulation mask Mman are used, as ground-truth, for the Simi-det and Mani-det
branches, respectively;

2. The weights of each branch are frozen and the fusion module is trained with the three-
class mask Ms,t as ground-truth;

3. A fine-tuning step is performed by un-freezing the weights of the two branches and
training the whole network end-to-end.

The performances of the method were evaluated on CASIA2. As CASIA2 contains both
copy-move and splicing attacks, the authors selected a total of 1313 copy-move-only images
along with their authentic counterparts, thus obtaining a test-set of 2626 images. The authors
used the following metrics: precision, recall, and F1 score, and they computed them both at
image level and at pixel level. For the latter, the authors used two different approaches: (i)
aggregate TPR, FPR, and FNR over the whole dataset, and (ii) compute precision, recall,
and the F1 score for each image and then average the results over all of them. The obtained
results are reported in Table 3.

Table 3 Performances of
BusterNet [105] on CASIA2 Eval. method Prec. % Recall % F1 %

Image level 78.22 73.89 75.98

Pixel level (i) 77.38 59.15 67.05

Pixel level (ii) 55.71 43.83 45.56
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3.2.4 M. Elaskily et al. [25]

In [25], a method for copy-move forgery detection is presented. It is purely DL-based,
that is, no separate features are pre-computed. In detail, the authors built a CNN with the
following architecture:

– Six convolutional layers, each one followed by a max pooling layer;
– A Global Average Pooling (GAP) layer, used to reduce the number of parameters of the

network and to limit the probability of overfitting. This layer acts as a fully-connected
dense layer;

– A soft-max classification with two classes: authentic or forged.

Therefore, the method does not give as output the localization of the forged regions, but
only a global classification of the image. It has been evaluated on 4 benchmark datasets:
MICC-F220, MICC-F600, MICC-F2000, and SATs-130. Since each of the listed dataset is
quite too small to train a CNN, the authors merged them into a new one that could be more
suitable for the training phase. The obtained dataset is thus composed of 2916 images: 1010
tampered and 1906 original.

The authors used the following metrics in order to evaluate the performance of the
method: accuracy, TPR, TNR, FNR, and FPR. The metrics were evaluated by a k-fold (with
k = 10%) cross-validation. To elaborate, for each validation a random split of the composed
dataset is performed: 90% for training and 10% for testing. Here, the 10% testing images is
selected all from one of the 4 constituting sets of the composed dataset.

The obtained metrics are presented in Table 4, and they are actually really high. However,
we observe that the testing was performed on a small percentage (10%) of the composed
dataset, which contains images from all the 4 benchmark datasets themselves. As a con-
sequence, test and training images are possibly highly correlated. Hence, they likely have
similar kind of forgeries, that is, with similar dimensions and types of post-processing oper-
ations. It could have been interesting if the authors trained their model on one dataset, like
MICC-F2000, and evaluated it on another one, such as MICC-F600, in order to better assess
the robustness and generalization capability of the model.

3.2.5 J. Ouyang et al. [78]

The method presented in [78] is an end-to-end deep learning approach that features a CNN
for binary classification (forged vs. authentic) of the whole image. The crucial aspect of this
approach is the use of the transfer learning technique, as follows:

1. A CNN with the same architecture as AlexNet [53] is used as base-model;
2. The classification layer is changed in order to have two classes as output: authentic or

forged;

Table 4 Performance metrics
of [25] Dataset TPR % TNR % FPR % FNR %

MICC-F220 100 100 0 0

MICC-F600 100 100 0 0

MICC-F2000 99.24 100 0 0.76
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3. The weights of the AlexNet model trained on the ImageNet dataset [20] are used as
initial weights for the training step;

4. A first training phase is carried out by freezing the weight values of the first levels of
the network;

5. A second training phase (which is often referred to as “fine tuning”) is performed by
de-freezing all the network weights, and by using a smaller learning-rate value than the
one used in the first training step (such as 10−5).

Since, as already mentioned before, these public forgery detection datasets are not extensive
enough for training a CNN without introducing overfitting issues, the authors artificially
created copy-move operations by randomly selecting rectangles from an image and pasting
them in different locations on the same image. By adopting this approach, they built the
following datasets:

– “data1”, that contains (i) all the 1338 color images from the UCID dataset [91], and
(ii) a total of 10,000 forgeries obtained by applying the above discussed copy-move
operations to the original images;

– “data2”, that contains (i) all the 8189 color images from the Oxford flower dataset [75],
and, again, (ii) a total of 10,000 forgeries obtained with copy-move operations on the
original images.

The training of the network was done on both the “data1” and “data2” datasets. Data-
augmentation with flipping and cropping operations was performed on the authentic images
in order to balance the distribution of the two classes.

For the model performance evaluation, the “data1”, “data2”, and CMFD datasets were
used. The obtained results are reported in terms of test detection error (which is the measure
complementary to accuracy). They are as follows: 2.32%, 2.43% and 42% for “data1”,
“data2” and CMFD, respectively.

From these results it is clear that, even if the model performs well on the custom datasets,
it has poor generalization capabilities for real-scenario forgeries, such as the ones contained
in CMFD, likely due to its basic approach in generating forgeries. However, this simple
approach could still be useful if richer copy-move datasets were available, or a more sophis-
ticated algorithm could be used to build synthetic forgeries, such as a GAN network (see
Section 3.2.2).

3.2.6 Amit Doegara et al. [22]

The authors of [22] proposed a simple yet effective method for copy-move detection.
A pre-trained AlexNet model [53] on MICC-F220 dataset is used to extract deep feature

vectors of 4096 elements from the input images (note that, in order to obtain the feature
vector, the classification layer of the AlexNet network is removed).

An SVM model is then fed with the extracted features and used to obtain a binary
classification on the whole image: either pristine or forged.

The training process is carried out in two phases (see Fig. 5). First, the pretrained AlexNet
CNN is used to extract features both from the pristine images and from the forged ones.
As a pre-processing step, the images are resized to match the input dimension required by
the AlexNet model, which is 227 × 227 pixels. Then, the SVM classifier is trained on the
obtained dataset of features and corresponding binary labels.
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Fig. 5 Detection approach of [22]. A pre-trained AlexNet is used as feature extractor. The extracted features,
either from pristine or forged images, are then used to train a SVM classifier to obtain the final decision on
the input image: forged VS pristine

The authors evaluated their method on the MICC-F220 dataset, and it obtained the
following results:

– FPR: 12.12%;
– TPR: 100%;
– Precision: 89.19%;
– Accuracy: 93.94%.

Even if the accuracy is quite high, there is still room for improvement as the number of
false positives is not really low, especially if compared with other approaches, such as [5],
in which the reported FPR ratio was of 8%, along with a TPR of 100%.

A final note on the choice of MICC-F220 dataset for performance evalutation is in order.
This dataset is also used for pre-training the AlexNet model used by the authors. In the
paper, it is not clear which portion of the dataset is used for training and which for testing.
Therefore, it is not possible to evaluate if and how much the reported results are affected by
bias due to correlation between training and testing sets. In order to clear up these issues,
the authors could have used different datasets for either phase instead, such as MICC-F2000
or MICC-F600.
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3.3 Copy-move and splicingmethods

We now move on to discuss those methods designed to detect both copy-move and splicing
forgeries.

3.3.1 Cozzolino and Verdoliva [18]

In this work, the authors presented a deep learning approach that aims to extract a camera
model noise pattern (referred to as “noise print”) as a means to detect forgeries.

A digital camera, due to the on-board processing operations carried out on the signal
received from the sensor, leaves on the generated picture a distinctive pattern of artifacts
that are model-specific. This can be exploited, in a forensic scenario, to estimate from which
camera model a certain picture was taken from. This idea can also be applied for the pur-
pose of forgery detection. For instance, in the case of a spliced image, if the patch used to
create the composition was extracted from a photo taken by a different camera model, then
inconsistencies between the camera model artifacts could be leveraged in order to detect the
tampering.

A useful property of the camera noise pattern is that it is not space invariant. This means
that two patches extracted at different locations from the same image are characterized by
different noise artifacts. By exploiting this property, this method can also be used for copy-
move detection, as the camera noise pattern at the target location of the copy-move attack
is hardly consistent with the expected one at that particular location. The authors used the
pre-trained denoising CNN presented in [108] as the starting point for their approach. This
network was trained with a great number of paired input-output patches, where the input is
a noisy image and the output is its corresponding noise pattern.

In order to estimate the camera model noise print, a further training of the previous archi-
tecture was performed. Since a mathematical model describing the camera noise pattern is
not available, it is not easy to build a dataset with pairs of an input image and its corre-
sponding desired camera noise print. In order to overcome this problem, the authors used the
following key idea: patches extracted from images taken with the same camera model, and
at the same location, should share similar camera noise print, while this should not be true
for patches coming from different camera models or from different spatial locations. Fol-
lowing this insight, the authors built a Siamese architecture, in which two identical Residual
CNNs (initialized with the optimal weights computed in the first training phase) are coupled
and the prediction of one network is used as desired output for the other one and vice-versa.
The overall architecture is shown in Fig. 6.

In the training phase, the two CNNs are fed with patches xa
i and xb

i , respectively. These
patches can be:

1. extracted from images taken from different camera models;
2. extracted from images taken from the same camera model, but at different spatial

locations;
3. extracted from images taken from the same camera model, at the same location.

The input pair (xa
i , xb

i ) is assigned, as expected output, a positive label yi = +1 (“similar
camera noise print”) in the third case, while a negative label yi = −1 (“different camera
noise print”) in the first and second cases. The output of the Siamese architecture is obtained
by means of a binary classification layer that takes as input the noise print extracted by the
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Fig. 6 Architecture of the Siamese network proposed in [18]. Two residual networks (with shared weights)
are trained to extract noise patterns that are given as input to a binary classificator. The model learns to extract
similar noise patterns for positive labels (patches from same cameras) or different ones for negative labels
(patches from different cameras and/or different spatial locations)

two CNNs. This output is then compared to the expected label yi and the error is back-
propagated through the network. This way, the network is pushed towards generating a
similar noise print for patches from the same camera model (and at the same location), and
different ones for patches corresponding to different camera models and/or locations. As a
result, the network learns to enhance the specific model artifacts and discard the irrelevant
features, while reducing the high level scene content of the images. Once the network is
trained, the noise print can be obtained as output of one of the two CNNs from an input
target image.

In order to detect and localize forgeries, the authors used the EM (Expectation - Max-
imization) algorithm. With the assumption that the pristine and manipulated parts of the
target image are characterized by different camera noise models, the algorithm searches for
anomalies with respect to the dominant model. This is done by extracting features from the
noise print image at a regular sampling grid, that are then used to train the EM algorithm. A
heat-map with the probability of manipulation for each pixel is given as output.

The authors tested their method on 9 different datasets for forgery detection, containing
many kind of tampering, such as copy-move, splicing, inpaiting, face-swap, GAN generated
patches, and so on. Here, we only report the results on the DS0-1 [19] and Korus [49]
datasets, as they contain only splicing and copy-move attacks (with possible post-processing
operations). The obtained F1-score is 78% for DS0-1 and 35% on Korus. The authors also
computed the AUC score, which is 82.1% and 58.3%, respectively.

3.3.2 Y. Zhang et al. [107]

The authors of this paper proposed the following approach for image forgery detection:

1. Feature extraction and pre-processing. The image is first converted into the YCbCr
color space, then it is divided into 32 × 32% overlapping patches. For each component
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of the YCbCr space a total of 450 features are extracted from each patch by leveraging
the 2-D Daubechies Wavelet transform;

2. The extracted features from each patch are used to train a 3-layers Stacked AutoEncoder
(SAE), which is an unsupervised model. On top of the SAE, an additional MLP (Multi-
Layer Perceptron) is employed for supervised learning and fine tuning;

3. Context learning. In order to detect forged regions that span across multiple 32 × 32%
patches, each patch-level prediction from the MLP is integrated with the predictions of
the neighboring patches. Specifically, for each patch p, a neighbouring patch set N(p)

with cardinality k + 1 is defined as:

N(p) = [y0
p, y1

p, . . . , yk
p] (7)

where y0
p is the output feature of the SAE for the patch p, and yi

p , with i ≥ 1 is the
feature of its i-th neighbouring patch;

4. Finally, a binary output Z(p) (forged/authentic) is obtained by computing the average
of the MLP predictions of the neighbouring patches and comparing it to a threshold, as
follows:

Z(p) =
{

1 if 1
k+1

∑
yi
p∈N(p)MLP(yi

p) >= α

0 otherwise
(8)

where the authors set k = 3 and α = 0.5.

For the training and testing stages of the model, a total of 1000 images were randomly
extracted both from the CASIA1 and the CASIA2 datasets. In particular, 770 images were
used for training and the remaining 230 for testing. The authors manually built a pixel-wise
ground-truth mask for each image in order to train their model at the patch level. Likewise,
a patch-level ground-truth mask for each of the test image was also built, as shown in Fig. 7.

In order to evaluate the performance, the authors used the following metrics: accuracy,
FPR (fallout), and precision, where the usual rates are again defined at patch-level. The
method can be applied for copy-move detection, as well as splicing detection. Note that this
method gives a coarse localization of the forged areas (at patch-level).

The reported performance is 43.1%, 57.67% and 91.09% for fallout, precision, and accu-
racy metrics, respectively. Even if these performance are not quite satisfactory at a first
glance, it should be considered that these metrics are evaluated at patch level, and hence are
most restrictive than the the same metrics evaluated at image level.

Fig. 7 Construction of patch-wise ground-truth from the pixel-level mask as in [107]
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3.3.3 N. H. Rajini [85]

This technique involves two separate CNN models that are used for different purposes in
the forgery detection pipeline. It is able to detect both splicing and copy-move attacks. A
schematic view of the method is shown in Fig. 8, and it can be summarized as follows:

1. Pre-processing stage. The image is first converted into the YCbCr space. Then, a Block
DCT is applied on each Y, Cb, and Cr component. In order to reduce the effect of the
actual image content, horizontal and vertical de-correlation is computed from the DCT
coefficients. Finally, a set of features are extracted from these values by means of a
Markov Random Chain model;

2. Forged/authentic decision. The extracted features are given as input to the first CNN
model, which gives a binary classification of the image as either forged or authentic;

3. Type of attack recognition. In the case that the image is recognized as forged, a second
CNN is then employed to classify the type of attack: copy-move or splicing;

4. Post-processing. If a copy-move attack is detected by the second network, further
features are extracted and used in order to localize the forged regions.

The authors evaluated their method on the CASIA2 dataset. In particular, they used 80%
of the images for training and the remaining 20% for testing. The procedure was repeated
50 times with differently extracted training and testing sets, and the reported performance
were computed as an average between all the experiments. The TPR, TNR, and accuracy
are used as evaluation metrics.

Although the described method can provide as output the localization of the forged areas,
the authors only reported performance at a global level (that is, the forged vs. non forged
image assessment). The obtained results are the following:

– 98.91%, 99.16%, and 99.03% for TPR, TNR, and accuracy, respectively, in the case of
copy-move attacks;

Fig. 8 Multi-step strategy proposed in [85]. First, features are extracted from the YCbCr converted image to
classify the image as authentic or forged. If the image is classified as forged, a CNN is used to distinguish
between copy-move and splicing attacks. Finally, in the case of copy-move attack, another feature extraction
and localization procedure is employed to obtain a map of the forged regions
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– 98.98%, 99.24%, and 99.11% for TPR, TNR, and accuracy, respectively, in the case of
splicing attacks.

The reported performance metrics are really high. In addition, they are meaningful from
a statistically point of view, as they are evaluated on the sizable CASIA2 dataset. It would
have been interesting, though, if the authors evaluated the localization accuracy of their
method too, in a similar manner to [107].

3.3.4 F.Marra et al. [69]

The authors proposed a full-resolution, end-to-end deep learning framework for forgery
detection.

Typically, due to limited memory resources, deep learning models, such as CNNs, are
designed to take as input images with small sizes. So, in order to process high resolu-
tion images, either a resize to match the network input size or a patch-level analysis (with
possible overlapping) is needed. For computer-vision tasks in which only a high level under-
standing of the image content is required, such as object recognition, this is usually not an
issue. But, for the purpose of forensic analysis, resizing is not recommended, as it tends to
destroy important information that is usually stored at high frequencies. Patch-level analy-
sis can also be a limiting factor, as usually the context of the whole image is important as
well for forgery detection purposes.

In order to address these problems, the authors built a deep learning framework that takes
as input full-resolution images and perform image-level predictions: “forged” or “pristine”.
The framework is composed of three consecutive blocks:

1. Patch-level feature extraction. This is a CNN that takes as input a patch extracted from
the target image and gives as output a feature vector;

2. Future aggregation module. This block takes as input the extracted feature vectors
from the overlapping patches and aggregate them together in order to obtain an image-
level feature. The authors considered different methods for feature aggregation, such as
average pooling, min/max pooling, and average square pooling;

3. Decision step. It is a binary classification process, that was implemented with two fully-
connected layers.

The whole framework is trained end-to-end. This is not the case for other similar
approaches, in which the patch feature extractor, the feature aggregation module, and the
classification layers are trained independently one from the others.

Note that, when an input large size image is processed during training, a great amount
of memory is required to simultaneously store all the overlapping patches and to compute
their corresponding feature vectors. Also, in the forward pass, the activations in all the
intermediate layers need to be memorized for the computation of the loss gradients (needed
to update the network weights) in the subsequent back-propagation pass. In order to solve
this issue, the authors exploited the gradient check-pointing strategy [13]. This technique
consists in saving the activations only at certain check-point layers during the forward pass.
In the back-propagation phase, the activations are re-computed up to the next check-point
layer and used to compute the gradients. As a consequence, less memory is required at the
cost of an increased computational time during the back-propagation.

The authors evaluated their method on the DSO-1 and Korus datasets, obtaining an AUC
score of 82.4% and 65.5%, respectively.
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3.3.5 Y. Rao et al. [86]

An overview of the architecture of this method is shown in Fig. 9. It starts by taking an
input RGB image of size M × N and dividing it into p × p, p = 128, overlapping patches
Xi, i = 1, . . . , T , where T is the total number of patches. Each patch Xi is given as input
to a 10-layer CNN that gives a softmax binary output Yi , as follows:

Yi = f (Xi) ∈ R
2 (9)

The Yi vector represents a compact feature that describes the patch i. A global feature vector
is then obtained by concatenating the Yi of each image patch:

Y = [Y1...YT ] ∈ R
T ×2 (10)

A mean or max function is then applied for each of the 2 dimensions:

Ŷ (k) = Mean/Max{Y1(k)...YT (k)}, k = 1, 2 (11)

Finally, Ŷ is given as input to a SVM classifier that performs a global two-class prediction
on the whole image: authentic vs. forged.

A key aspect of this technique is the following: in order to suppress the image perceptual
content and instead focus the detection phases on the subtle artefacts introduced by the
tampering operations, the authors initialized the first CNN layer weights with a set of high-
pass filters that are used for residual maps computation in SRM (Spatial Rich Models). This
step also has the benefit of speeding up the training phase of the network.

The CNN was trained on the CASIA1, CASIA2, and DVMM datasets. This method can
be applied both for splicing and copy-move detection, because the CNN and the SVM are
trained on the aforementioned datasets, which contain both type of forgeries. Note that the
SVM classification step is only used for the CASIA datasets.

The detection performance, in terms of accuracy, is 98.04%, 97.83%, 96.38% on
CASIA1, CASIA2, and DVMM datasets, respectively. These accuracy values are objec-
tively high. This is true in particular in the case of CASIA2, which is the dataset with not

Fig. 9 Architecture of the technique in [86]. Overlapping patches are extracted from the input image and
feature vectors are extracted from each of them. A global feature, computed by averaging along the spatial
dimension, is then fed to an SVM model, which is used to obtain the final global classification: forged VS
authentic

17550 Multimedia Tools and Applications (2023) 82:17521–17566



only the most images (and consequently it is the most statistical relevant, as we said before),
but it also contains both splicing and copy-move attacks. It should be noted, though, that
this method only gives a global binary prediction on the image, and no localization of the
forged areas is performed.

3.3.6 M. T. H. Majumder et al. [68]

The approach described in [68] is also based on a CNN to classify an image as authentic
or forged. In contrast to the previously discussed methods, however, in which deep learning
networks were composed of a high number of layers, in this case a shallow CNN model,
composed of just two convolutional layers, was employed. Also, no max-pooling steps
were used for dimensionality reduction, as this goal was achieved by exploiting large con-
volutional filters, with size of 32 by 32 and 20 by 12 for the first and the second layer,
respectively.

This strategy is based on the following idea: in deep neural networks, complex high-
level features are learnt at deeper levels, while more simple visual structures, such as edges
and corners, are learnt at the first ones. Hence, in order to detect the artefacts introduced by
forgery operations, low-level features are more likely to be useful. As a consequence of this
choice, the number of parameters of the network is limited, thus allowing for training with
less over-fitting risk.

The CASIA2 dataset was used both for training and testing. The authors trained their
shallow network multiple times in an independent fashion, using different pre-processing
strategies, such as: raw input (that is, no pre-processing), DCT-based transformation, and
YCbCr space conversion. They showed that the best results were obtained without any kind
of pre-processing.

To further reduce the risk of overfitting, real-time data augmentation was applied during
training, with transformations such as shearing, zooming, and vertical and horizontal flip-
ping. An accuracy of 79% was obtained with this training strategy, and, as we said, without
pre-processing.

As a comparative experiment, the authors also applied the aforementioned transfer learn-
ing technique, by using two deep learning models with a high number of layers that were
pre-trained on the ImageNet dataset: the VGG-16 [95] and the well-known ResNet-152.
Despite the fact that these models perform well on standard image classification problems,
they were not able to transfer the acquired knowledge to this specific task, and a substantial
underfitting issue was observed in the training phase. The outcome of this test validated the
choice of a shallow model instead of a deep one.

The main contribution of this work is therefore the usage of a shallow network, in which
low-level features are exploited as a mean to detect subtle artefacts generated by tampering
(rather than high-level ones), which thus can be used for the forgery detection task. Also, the
authors showed that large convolutional filters can be exploited in place of max-pooling lay-
ers to reduce the number of network parameters, therefore reducing the risk of overfitting.
Despite this, the obtained accuracy still leaves room for improvement.

3.3.7 R. Thakur et al. [97]

In [97], a filtering scheme based on image residuals is exploited. Therefore, the residuals,
rather than the raw images, are fed as input to a CNN network for classification (as usual,
original/forged). This approach is tailored to pursue high frequencies in the image data,
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which, as often assumed even by the other approaches, carry most of the possible tampering
traces. The image residuals are computed as follows:

1. The image is resized at the 128 × 128 size, and converted to grayscale;
2. The second-order median filter residuals (SDMFR) are then calculated as follows.

Given an image, a first median filtering is applied:

y(i, j) = medw[x(i, j)] (12)

where w is a 5 × 5 window and xi,j is the (i, j) pixel intensity. Then, a second median
filtering is applied to the median-filtered image:

z(i, j) = medw[y(i, j)] (13)

Finally, the residuals are obtained by subtracting the second order median filtered image
from the first order filtered image:

MFR(i, j) = z(i, j) − y(i, j) (14)

3. Laplacian filter residuals (LFR) are also computed, with the following algorithm. Let:

K =
⎡

⎣
0 1 0
1 −4 1
0 1 0

⎤

⎦ (15)

be the Laplacian kernel filter. The Laplacian-filtered image is obtained by convolving
the original image with K , that is:

L(i, j) = (x ∗ K)(i, j) (16)

The residuals are then calculated as the difference between the filtered image and the
original one:

LFR(i, j) = L(i, j) − x(i, j) (17)

Both the SDMFR and the LFR residuals are fed to the CNN classification network as a
combined input. The CNN model comprises 6 convolutional layers, each one followed by a
max pooling step (except the first one). Two fully connected layers are then used before the
final binary softmax classifier.

The authors trained and tested their network on two different datasets: the CoMoFoD and
the BOSSBase [8]. In the case of the first dataset, a split of 70% and 30% has been made
for training and validation, respectively. In the case of the second one, as it is composed
of 10,000 raw pristine images, the authors applied median filtering to each image in order
to simulate a tampering operation, thus obtaining a total of 20,000 images (half authentic
and half filtered). Then, they split the obtained dataset into 70% for training and 30% for
validation.

The accuracy obtained on both datasets is high: 95.97% for the CoMoFoD dataset, and
94.26% for the BOSSBase. However, it could have been interesting if the authors tested their
method, without retraining, also on other benchmark datasets for forgery detection, such as
CASIA2, MICC-F2000 or MICC-F600, in order to assess its generalization capability.

3.4 DeepFakemethods

We now present a few of the most recent DeepFake-specific detection methods, that
achieved the best results on the previously introduced datasets for DeepFakes detection eval-
uation (see Section 3.1). The selection has been made according to the criteria previously
outlined, namely, suitability for the still images case.
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3.4.1 A. Rössler et al. [88]

In [88], the authors developed a method to detect image DeepFakes that is based upon the
XceptionNet architecture proposed by Google in a previous paper [15]. The main peculiarity
of this model is the employment of a custom layer, called SeparableConv, whose purpose
is to decouple the depth-wise convolution from the spatial one, thus reducing the number of
weights of the model itself.

The detection pipeline can be summarized as follows: a state-of-art face detec-
tion/tracking method [98] is used to extract the face region from the image/frame, which
is cropped as a slightly larger rectangle than the size of the face in order to include some
contextual information.

The obtained bounding box is then fed to a modified XceptionNet for binary classifi-
cation. In order to do this, the final fully-connected layer of the original XceptionNet is
substituted with a fully-connected layer with binary output.

The authors adopted the following transfer-learning strategy to train the model:

1. The weights of each layer from the original XceptionNet are initialized with the
ImageNet ones, while the fully-connected layer is random initialized;

2. The network is trained for 3 epochs, with all the weights freezed except the ones in the
fully-connected layer;

3. All the weights are un-freezed and the network is trained for other 15 epochs (fine-
tuning step).

The authors released three different versions of their model: the first one is trained on
uncompressed videos, while the second and the third one were trained on videos compressed
with H.264 codec at quantization levels of 23 and 40, respectively. We denote these variants
as Xception a, Xception b, and Xception c, respectively.

While Xception a achieved the best results on FaceForensic++ dataset, with a detection
accuracy of 99.7%, its performance dropped when evaluated on DFDC and CelebDF, with
accuracy scores under 50% in both cases. Xception b achieved the best accuracy on DFDC
(72.2%), while Xception c performed better on CelebDF, with an accuracy of 65.5%.

3.4.2 Huy H. Nguyen et al. [72]

In this paper [72], a novel forgery detection framework, called Capsule-Forensic was pro-
posed. Its main feature is that it uses a particular kind of neural network, Capsule Network
(first introduced in [37]), as the binary detector, instead of the more usual convolutional
neural networks.

Capsule Networks were designed in order to efficiently model hierarchical relationships
between objects in an image, and to infer not only the probability of observation of objects,
but also their pose estimation.

The main idea behind Capsule Networks is the concept of “capsule”. A capsule is an
ensemble of neurons that describe a set of properties for a given object. In contrast to single
neurons, in which the scalar output represents the probability of observation of a certain
feature, the output of a capsule is an activation vector, in which each element represents the
activation of one of the capsule’s neurons, i.e., the value corresponding to the associated
feature.

Capsules are arranged in different layers in a hierarchical fashion: a parent capsules
receives, as input, the output of different child capsules. The connections between child and
parent capsules i.e., which outputs are kept and which are discarded for the next layer) are
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not fixed at the beginning, such as for max/average pooling layers (usually employed in
standard CNNs), but they are dynamically computed by means of a routing by agreement
algorithm.

Thanks to this procedure, child capsules whose predictions are closest to the predictions
of certain parent ones become more and more “attached” to these parents, and a connection
can be considered established. The interested reader is referred to the original paper for a
more detailed explanation on how the hierarchical connections are built.

Among the advantages of Capsule Networks compared to CNNs, a remarkable fact is that
they have less parameters, as neurons are grouped in capsules and the connections between
layers are between capsules and not directly between neurons. Also, thanks to the presence
of pose matrices, they are robust against viewpoint changes under which objects are seen in
the image. This is not true for CNNs, that need to be trained on lots of possible rotations
and transformations in order to generalize well to unseen transformations.

The proposed method is designed for different forensics tasks, such as (i) DeepFakes
detection, and (ii) computer-generated frame detection, both for image and video content.

The detection pipeline (shown in Fig. 10) comprises the following elements:

– Pre-processing phase. It depends on the specific forensic task at hand, e.g., for Deep-
Fakes detection it involves a face detection algorithm in order to extract the face region,
while for CGI detection it consists in patch extraction from the input image. For video
content the frames are separated and fed one by one to the subsequent steps;

– Feature extraction. This is done by using the first layers of a VGG 19 network pre-
trained on ILSVRC dataset [90]. These weights are fixed during training;

– Capsule Network. It is the core of the detection method, involving three primary cap-
sules (children) and two output capsules “Real” and “Fake” (parents). The predicted
label is computed as in (18):

ŷ = 1

M

M∑

i=1

softmax

([
v1

v2

]

:,i

)
, (18)

where V1 ∈ RM and V2 ∈ RM represent the output capsules, and M is their dimension;
– Post-processing phase. As the pre-processing step, this is task-specific: the scores are

averaged among patches for computer generated image detection, or among frames for
video input.

The achieved detection accuracy is very high on FaceForensic++, with a score of 96.6%,
but it is lower on the more challenging datasets DFDC and CelebDF, with accuracies of
53.3% and 57.5%, respectively.

Fig. 10 Overview of method [72]. Note that pre-processing and post-processing stages are task-dependent,
e.g. for DeepFake detection in the former a face tracking algorithm is used to extract and normalize the face
region, while for CGI detection this step consists in the extraction of overlapping patches
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3.4.3 Y. Li et al. [57]

In [57], the authors proposed a deep learning method to detect DeepFakes based on the
following observation: typically, DeepFakes generation algorithms tend to leave distinctive
artifacts in the face region due to resolution inconsistencies between the source image/video
and the target one. In particular, GAN-synthesized face images are usually of a fixed low
resolution size and, in order to be applied to the target video, an affine warping needs to
be performed in order to match the source face to the facial landmarks of the target face. If
the resolutions of the source and target videos do not match, or if the facial landmarks of
the target person are far from the standard frontal view, these artifacts are more and more
evident.

The authors trained four different CNNs, namely a VGG-16, a ResNet50, a ResNet101,
and a ResNet152 to detect these kinds of artifact. In particular, they used a face-tracking
algorithm to extract regions of interest containing the face as well as the surrounding area,
which are then fed to the networks. The reason why also a portion of the surrounding area
is included is to let their model learn the difference between the face area, that contains
artifacts in the case of positive (fake) examples, and the surrounding one, which does not
contain artifacts.

The authors used the following training strategy. Instead of generating positive examples
by means of a GAN-syntesization algorithm, which in turn requires a good amount of time
and computational resources to train and run, they generated positive examples by simulat-
ing the warping artifacts with standard image processing approaches, starting from negative
(real) images. The processing steps are summarized as follows:

1. The face region is extracted with a face tracking algorithm;
2. The face is aligned and multiple scaled versions are created by down/up-sampling the

original one. Then, one scale is randomly selected and Gaussian-smoothed. This has
the effect of simulating the mismatch in resolutions between source and target videos;

3. The smoothed face is then affine-warped to match the face landmarks of the original
face;

4. Further processing can be done in order to augment the training data, such as brightness
change, gamma correction, contrast variations, and face shape modifications through
face landmarks manipulation.

The detection accuracy obtained are: 93.0% for FaceForensic++, 75.5% for DFDC and
64.6% for CelebDF.

4 Performance comparison

In this Section we proceed to compare the previously described forgery detection methods
from a performance perspective.

We begin by comparing techniques specific for copy-move and splicing, while Deep-
Fake detection algorithms are discussed in a separate section. In fact, even if the DeepFake
methods that we previously discussed can be seen as a particular kind of splicing attack,
they are mostly performed on faces. As a consequence, DeepFake detection techniques must
be evaluated with datasets specialized on face manipulations, while the standard splicing
datasets, such as CASIA, contain pictures of generic scenes. Furthermore, these methods
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can successfully exploit domain specific knowledge, such as face landmarks, mouth/eyes-
based features, and so on, while of course this is not the case for generic splicing detection
algorithms.

4.1 Splicing and copy-movemethods

In Table 5 the performance of all previously discussed copy-move and splicing detection
techniques are reported. For each method, we also indicate the type of detected attacks
(splicing, copy-move, or both) and the capability or lack thereof to give as output the
localization of the forged areas.

As a first comment, from the sparseness of the table it is easy to see that it is very
challenging to compare the different techniques strictly in terms of performance. This is
due to a number of reasons. The first and most obvious one is that approaches designed
specifically for copy-move detection cannot be easily evaluated on CASIA (both v1.0 and
v2.0) datasets, as these also contain splicing attacks (an exception can be made for method
[105], that was evaluated on a copy-move-only subset of the dataset itself, see Section 3.2.3).
In this case, copy-move specific datasets, such as MICC-F220, MICC-F600, and MICC-
F2000 should be considered for evaluation.

The second reason is that the presented methods, especially in the case of copy-move
specific ones, are mostly not trained nor tested on the same benchmark sets. This is due to
the fact that some of the standard datasets are either too small for training a highly param-
eterized deep learning model, or contain only naive attacks (such as MICC-F220, in which
copy-moved regions are square or rectangular patches). For this reason, different authors
instead built their own custom datasets to fulfill their specific requirements, either by merg-
ing together the benchmark ones or by artificially generating them. However, the downside
of this approach is the difficulty of comparing the results achieved by other techniques.

Therefore, the comparison between different techniques, when it is possible, is per-
formed by grouping them on the basis of specific criteria, such as the type of detected
attacks, the dataset used for evaluation, and the localization property.

We start by focusing our analysis on the methods designed for copy-move only forg-
eries, then proceed to both copy-move and splicing detection techniques, and conclude with
DeepFake specific ones.

4.1.1 Copy-move detection methods

We start the present analysis by first comparing methods [4, 25], and [22], as they have been
all tested on the MICC-F220 dataset. The first method achieved a slightly better accuracy
and a considerable better FPR (see Table 4) than the other two, along with a considerably
better accuracy. In addition, [25] has been shown to achieve perfect results on MICC-F600
and almost perfect ones on MICC-F2000, which are more significant evaluation datasets
(see Section 3.2.4). However, it should be considered that [25] only gives as output a global
decision on the authenticity of the image, while [4] also provides the location of the forgery.

Regarding the forgery localization property, it is worth noting that the techniques pre-
sented in [1] and [105] allow not only to detect the copy-moved regions, but also to
distinguish them from the source patches used to perform the attack. This property is useful
in real forensic scenarios, in which it is important to understand the semantic aspects of an
image manipulation.

A further interesting feature of [1] is the adoption of a GAN network to generate increas-
ingly hard-to-detect forgeries, that are used to train the discriminator network. This is an
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original approach to address the problem of data-scarcity that plagues many different exist-
ing standard datasets. However, from a performance point of view, it is hard to compare
this method to the other ones, as it was evaluated on a custom dataset and not on one of the
benchmark datasets. This is not the case for [105], which was evaluated on CASIA2. Note
that, even if its accuracy is slightly worse than [68], it has the source plus target localization
property mentioned before, while the latter gives as output only a global classification on
the image.

4.1.2 Splicing and copy-move detection methods

These techniques fit the best in a general application context, in which the type of attack
is not known a priori, so it is better to cover as many attacks as possible. In particular,
we consider the methods tested on CASIA2, which is likely the most significant dataset
for copy-move and splicing detection evaluation, both for its sheer size and for the various
applied post-processing operations.

Among the methods that we discussed, the one presented in [85] obtained the best overall
accuracy. It also gives as output the localization of the forged areas, which as we men-
tioned is of course relevant in many application contexts. Looking at its forgery detection
pipeline, it features both a pre-processing stage, in this case based on YCbCr space conver-
sion and DCT compression, as well as a post-processing phase that through further features
extraction allows to perform localization. Therefore, the good performance that it achieved
indicate that an exclusively end-to-end deep learning model, without any pre-processing or
post-processing, could be indeed a sub-optimal choice for the task of forgery detection.

On the same note, another comment can be made about the method in [68]. Even if its
performance are worse than the others in terms of accuracy, the proposed approach is quite
interesting because it involves a “shallow” deep learning model. This allows reducing not
only the number of network parameters (and consequently the training time), but also the
risk of over-fitting. This idea is in contrast to the common trend in computer vision to use
ever deeper networks to achieve high accuracy on specific datasets, that usually cannot be
achieved on slightly different ones, which is a clear indicator of over-fitting issues.

A remark should be made on the approach proposed in [18]. This method has a wide
applicability even outside the field of forgery detection. In fact, the possibility to extract
the noise camera pattern and suppress the high-level scene content of a target image is of
great utility in other forensic scenarios as well as for sophisticated camera-specific denois-
ing applications. It is important to also note that the authors evaluated the performance of
their algorithm on different datasets, which contain a wide set of forgery attacks such as
copy-move, splicing, inpainting, GAN-synthesized content, face-swap, etc., thus proving its
wide applicability and robustness. Still, it would have been interesting to have the detection
results on other more classic benchmark data, such as the CASIA2, thus allowing a better
comparison with other existing methods.

4.1.3 DeepFake detection methods

In Table 6, the performance of DeepFake detection methods are reported.
As it can be immediately observed from the table, there is not a method that performs

better on all three considered benchmark datasets: [57] reports the best accuracy on DFDC,
while [88](a) performs better on FaceForensic++, and [88](c) achieved the highest accuracy
on Celeb-DF. It must be considered, though, that FaceForensic++ was built by the same
authors of [88] (all three versions). As such, it is, to some extent, expected that these are
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Table 6 DeepFake detection methods performance comparison. The best results for each dataset are
highlighted in bold

Method DFDC acc.% FaceForensic++ acc.% Celeb-DF acc.%

Rössler et al. [88] (a) 49.9 99.7 48.2

Rössler et al. [88] (b) 72.2 99.7 65.3

Rössler et al. [88] (c) 69.7 95.5 65.5

Nguyen et al. [72] 53.3 96.6 57.5

Li and Lyu [57] 75.5 93.0 64.6

the methods that perform better on that particular dataset. Nonetheless, [88](c) still has the
best results on Celeb-DF, while [88](b) has only slightly worse performance than [57] on
DFDC, thus showing how the XceptionNet-based strategy can be the to-go choice for its
generalization capability on different datasets.

Finally, we observe that, when evaluated against challenging and realistic datasets such
as Celeb-DF, DeepFake detection methods still need to be improved, as the best accuracy
obtained is just around 65%. This allows us to infer that the research field of DeepFake
detection is still lagging behind, especially considering the fact that DeepFake generation
algorithms are still largely improving year after year.

5 Conclusions

In this work we provide a survey of some of the recent AI-powered methods (from 2016
onward) for copy-move and splicing detection that achieve the best results in terms of
accuracy on the standard benchmark datasets. Several reviews and surveys have been pub-
lished on this topic, but most concerned mainly traditional approaches like those based on
key-points/blocks, segmentation, or physical properties. Instead, we focused our analysis
on recently published, deep learning based methods, because they have been shown to be
more effective in terms of performance and generalization capability than the traditional
approaches. As a matter of fact, they are able to achieve really high accuracy scores on the
benchmark datasets.

We separated the performance analysis between copy-move only, both copy-move and
splicing, and DeepFake detection methods. In the case of copy-move only detection, the
method in [25] shows an almost perfect accuracy on all three standard benchmark datasets
(MICC-F220, MICC-F600, and MICC-F2000). The technique presented in [4] is able to
achieve a similar accuracy, while also giving the identification of both the copied regions
and the original ones used as source for the attacks. In the case of both copy-move and splic-
ing detection, similar results were achieved on the CASIA2 dataset. In particular, method
[85] shows the best accuracy and gives the localization of the forged regions as well.

Concerning DeepFake detection, from the reported performance (see Table 6) we infer
that there is not a clearly winning approach, in particular no method is general enough for
different kinds of DeepFake content. However, we can conclude that the XceptionNet-based
models proposed in [88] are able to achieve better performance on at least two out of the
three considered benchmark datasets.

From a general point of view, it can be easily inferred from the DL-based methods sur-
veyed in this paper that a clear trend has not yet emerged. Most works have been more or
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less independently proposed, in the sense that the vast possibilities offered by DL architec-
tures are still being explored, without a clear winning strategy indication. Nonetheless, we
showed that, in the case of splicing and copy-move detection methods, the best accuracy
scores were obtained by the techniques that involve some form of pre-processing and post-
processing in addition to a deep learning network. For this reason, we think that this appears
to be the most promising approach, and so we believe that further research should be con-
ducted on algorithms that combine deep learning approaches with traditional techniques
from all over the field of (statistical) signal processing.

As a further consideration, it can be noted that in the case of techniques aimed at “classic”
forgery detection (splicing and copy-move), most of state-of-art methods are able to achieve
good performance (on different datasets). Instead, this is not the case for newer challenges
like DeepFake detection, whose methods report accuracy performance which is still not
satisfactory on complex datasets, like Celeb-DF. As such, further research efforts and ideas
still need to be explored in this particular direction.

Further remarks are in order on the problem of performance evaluation of deep learning
based methods. Different authors built custom datasets or merged different ones in order
to train and test their algorithms. While this can be a solution to overcome issues of data-
scarcity (over-fitting), it makes the comparison with other methods more difficult, or even
impossible. Even when the same dataset is used to evaluate different approaches, the authors
do not always specify which and how many images were used as testing set.

This problem could be addressed by building a custom dataset for training, and using
one or possibly more benchmark datasets in their entirety for testing. In this way, not only
it would be possible to easily compare different deep learning based approaches, but also to
compare them to traditional, non-learning based ones.

Of course, building a custom dataset with thousands of images, with realistic forgeries
and post-processing operations on the forged areas, such as blurring, JPEG-compression,
smoothing, and so on, is not a simple undertaking. For this reason, we point out that another
possible future research direction could be the automation of this task, for example by
leveraging a GAN network (as done in [1]), or encoder-decoder models such as a Unet.

A wholly different comment on the subject of datasets building should also be made
on the meaning of the forgery attacks currently contained in the benchmark datasets. As
these have always been generated in a laboratory environment (whether manually or not),
they typically contain copy-move and splicing attacks that hardly bring a particular seman-
tic value to the altered images. For example, when a tree is copied and pasted in a wood
landscape, or a cloud is pasted into a blue sky, the obtained image could hardly be used
for malicious purposes. This is clearly not the case for many manipulated images that can
be found on the Web. Let us consider for example the splicing shown in Fig. 1b: the fact
that the 2004 presidential election candidate John Kerry was (falsely) immortalized together
with pacifist actress Jane Fonda, who was viewed by many as an anti-patriotic celebrity,
could have seriously influenced the elective campaign (in this case, the image was shown to
be false, but not quickly enough to avoid some damage to the candidate’s reputation).

Of course, in such real-world cases, the context adds a lot to the meaning of the forgery,
and thus it can hardly be taken into account by a forensic tool without a human supervision.
Nevertheless, we feel that it could be interesting to build a database that collects more real-
istic, manually made, “in-the-wild” forgeries, like the ones that routinely spread on social
media these last years, and so present potentially malicious attacks from a purely semantic
point of view. Also, this database should contain, for each forgery, the associated ground-
truth mask, in order to better assess and compare the forgery localization capability of the
forensic tools.
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We would like to conclude adding a final, more philosophical observation. As is typical
in the case of security-related fields, attackers usually embody, in their attacks, ideas and
“hacks” that are specifically designed to counterpoise the latest state-of-art detection meth-
ods, e.g., so-called adversarial attacks [26, 36, 54], which are used to fool deep learning
classification systems. For example, a possible strategy to achieve this confusion consists
in using a certain CNN architecture as a discriminator in a GAN model, in order to produce
synthesized content which is, by construction, hard to be detected as fake by that particular
CNN. Another interesting example of this kind involves DeepFake detection: in [58], the
authors observed that, in DeepFake videos, it was common to see unnatural eye-blinking
pattern (or no blinking at all), because DeepFake generation algorithms were trained mostly
on pictures of people with open eyes. As expected, attackers immediately adapted DeepFake
methods in order to generate realistic eye-blinking, either by including pictures of people
with closed eyes during training, or by synthetically correct this issue altogether.

As a consequence, it is probably an illusion to consider a certain forgery detection
method to be “safe” forever, even if it has been shown to achieve great detection accuracy on
different datasets. For this reason, we think that continuous research efforts should be made
in order to develop methods that can, at least to some extent, keep up with the attackers’
pace in developing more and more sophisticated and hard-to-detect forgeries. One possi-
ble strategy, that tries to anticipate potential attacker moves, could be to actively implement
new forgery techniques while developing detection algorithms, this way understanding and
leveraging their flaws and thus to allow the creation of possible counter-measures.
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Agreement. No funding was received to assist with the preparation of this manuscript.

Availability of Data and Material No additional data or material has been used for this work other than the
referenced papers.

Code Availability No code has been developed by the authors for this work.

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abdalla Y, Iqbal T, Shehata M (2019) Copy-move forgery detection and localization using a genera-
tive adversarial network and convolutional neural-network. Information 10(09):286. https://doi.org/10.
3390/info10090286

17561Multimedia Tools and Applications (2023) 82:17521–17566

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info10090286
https://doi.org/10.3390/info10090286
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