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Abstract
While the evolution of mobile computing is experiencing considerable growth, it is at the
same time seriously threatened by the limitations of battery technology, which does not
keep pace with the evergrowing increase in energy requirements of mobile applications. Yet,
with the limits of human perception and the diversity of requirements that individuals may
have, a question arises of whether the effort should be made to always deliver the highest
quality result to a mobile user? In this work we investigate how a user’s physical activity,
the spatial/temporal properties of the video, and the user’s personality traits interact and
jointly influence the minimal acceptable playback resolution. We conduct two studies with
45 participants in total and find out that the minimal acceptable resolution indeed varies
across different contextual factors. Our predictive models inferring the lowest acceptable
playback resolution, together with the reduced power consumption we measure at lower
resolutions, open an opportunity for saving a mobile’s energy through context-adaptable
approximate computing.

Keywords Mobile computing · Approximate computing · Video decoding ·
Context inference · Spatial information · Temporal information

1 Introduction

Mobile computing has been experiencing an overwhelming expansion in the last few
decades, with the smartphone – which was invented only slightly more than a dacade ago
– being owned today by more than three billion people (3.6 billion users in 2020, 4.3
billion users forcasted for 2023 [41]). In today’s world, mobile computing has become
ubiquitous, and the mobile applications and wireless technologies transformed the way we
communicate, do business, navigate in space, or find social contacts.

One of the staggering changes fostered by the proliferation of mobile computing and the
technological advances in smartphone technology is in the way information is consumed on
mobile devices, with the focus moving from the traditional voice and text media to video
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content. Surveys show that already 90% of the owners watch videos on their mobile devices
and that more than 70% of all YouTube content is consumed via mobile devices [49]. The
amount of content seen through mobile video is more than doubling every two years [7].
In 2019, mobile video traffic accounted for half of the total mobile data traffic and the
forecast indicates that almost 80% of the worldwide mobile data traffic will be video traffic
by 2022 [7]. This growth in mobile video streaming has been further exacerbated recently
by the COVID-19 pandemic, with the fields as diverse as the education, remote work, and
healthcare, rapidly jumping on the mobile video bandwagon [5].

Nevertheless, the proliferation of mobile computing in general, and even more specifi-
cally of mobile video streaming, is hindered by the physical constraints and limitations of
the underlying hardware. One key issue in this regard is related to one of the most critical
resources of a mobile device – its battery. Mobile video streaming applications are among
the most power-hungry smartphone apps [17] and the intensive growth in the amount of
mobile video streaming data continues to put significant pressure on the power consump-
tion of smart mobile devices [55]. At the same time, the battery technology is experiencing a
disproportionally slower growth – practically a stagnation — compared to the other mobile
resources including the CPU speed and computing power, storage space, and wireless trans-
mission speed [13]. The lack of a revolutionary solution for modest battery capacity calls
for further efforts towards the efficient use of limited resources available on mobile devices.

Inspired by approximate mobile computing (Section 2.1), in this work we aim to inves-
tigate the feasibility of implementing context-, content-, and user-dependent video quality
adaptation with the goal of improving the energy efficiency of mobile video playback.1

While building upon the general idea of [25], in the current manuscript we greatly expand
this research by thoroughly investigating how spatial and temporal properties of the video
modulate the relationship between the desired resolution and a user’s physical activity. Fur-
thermore, we for the first time examine the role of a user’s personality aspects on the mobile
video resolution requirements. The additional investigations are conducted through a sepa-
rate user study with 22 users who had not participated in the original study. Finally, we fully
revise the statistical methodology that now includes sophisticated hierarchical modeling of
the target relationships.

Our work is driven by the following hypotheses:

1. Video playback resolution represents a suitable “knob” for trading off video playback
quality and the corresponding energy usage;

2. A viewer’s requirements with respect to the video playback quality vary with the
physical context (i.e. the activity state) of the viewer;

3. A viewer’s requirements with respect to the video playback quality depend on the
content-related properties of the video;

4. Subjective factors pertaining to the viewer may influence the required video quality.
5. Significant energy can be saved by adapting the playback resolution according to the

minimal level that still satisfies a user’s quality expectations.

We start by performing fine-grain energy measurements in order to profile the role of
video playback resolution on the total energy consumption of a mobile device (Section 2.2).
We then conduct two studies, described in Section 3, to examine the remaining three

1This paper represents original work by its authors, yet the initial findings on the relationship between
the minimum tolerated video playback resolution and a user’s physical activity state were presented in our
Mobiquitous 2020 conference paper [25].
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assumptions. The first study is targeted at investigating the influence of contextual situations
(such as whether a user is still, running, walking, or riding in a car) on the video quality
requirements. The study confirms that these factors significantly impact the minimum play-
back resolution the user is satisfied with. In addition to this, findings further examined in
Section 4 uncover other aspects that can also play a role in the user’s tolerance of lower
video quality, such as the video’s content (described by its spatial and temporal complexity)
and user-related factors, confirming the last two assumptions. Building upon these initial
findings, we design the second study more rigorously targeted to investigate the impact of
the video’s spatial and temporal characteristics on the required playback quality. In addition,
we also examine other human factors that could influence user quality expectations, such
as the user’s personality traits. Thus, in the second study we also collect information on the
personality of the participants, more in-depth information about the properties of the video
content, and employ a more rigorous statistical analysis based on mixed linear models. Our
investigation clearly pinpoints the physical activity, but also the interplay between the phys-
ical activity and the video content, as well as the impact of personality and gender-related
factors on the opportunities for reducing the mobile video energy requirements through
controlled approximation.

The novelty of our work stems not only from identifying contextual factors that impact
the viewing requirements, but also from devising the predictive models (Section 4.5) that
would enable real time inference of the minimal desired viewing resolution. Merging mobile
systems design, mobile sensing, and human-computer interaction, our work opens a new
space for dynamic minimization of the gap between the users needs and the computational
effort delivered by mobile computers. The contextual information, including a viewer’s
mobility state, properties of the video content, and even personality traits, that we focus on
in our studies, is deliberately selected as it may be acquired with very little cost/overhead
in today’s ubiquitous mobile devices and apps. Therefore, our work remains readily imple-
mentable in practice, providing a new dimension to the existing, mostly statically applied,
approaches to resource-efficient multimedia described in Section 5.

The implications of our research focus on bridging the gap between what a user can really
process/perceive from the multimedia content which is being played and the actual QoS
(Quality of Service) delivered by the multimedia application. This enables energy savings
for existing mobile multimedia applications by exploiting information that is already avail-
able on a mobile device (e.g. the physical activity of the user), thus extending the already
very constrained battery capacity on such devices. At the same time, our work has important
implications for the existing and future pervasive ambient displays, such as embedded dis-
plays and multi-touch surfaces, flying (on-drone) displays, wearable and flexible displays,
and head-mounted AR/VR displays. Our solution can foster its context-aware adaptation
to enable energy efficient operation of these displays by adjusting the QoS to the different
contextual situations and the particularities of the user(s). In Section 7 we discuss future
research avenues in the area of mobile video adaptation, but also in the area of approximate
mobile computing in general.

2 Background & preliminaries

2.1 Towards approximatemobile computing

Approximate computing (AC) is a resource-efficient computing paradigm grounded in the
observation that the result of a computation often need not be perfectly accurate to satisfy the
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end-user’s needs [29]. Opportunities for AC frequently arise when the computation inputs
are noisy (e.g. sensor data), or when the output is further manipulated and interpreted by
the user (e.g. augmented reality rendering). In such situations, approximate computation
can deliver a fully satisfactory result while reducing the energy use. AC techniques have
already proven their efficiency in various desktop scenarios, with approaches ranging from
speeding up code execution through compiler-level optimizations that omit certain lines of
code [23] to performing neural-network based approximations instead of complex function
calculations [12], demonstrating significant energy savings while maintaining acceptable
result accuracy.

Building upon the idea of AC, approximate mobile computing (AMC) introduces approx-
imation on mobile devices [33]. The core difference from the conventional AC being the
context of use, which in mobile computing tends to vary over time. A user’s physical activ-
ity, location and collocation with other users, the outside brightness, and numerous other
factors may vary throughout the day and impact the user’s requirements with respect to
mobile computation. Significant challenges lay ahead before the full potential of AMC can
be exploited: 1) practical means of enabling approximation in mobile apps need to be pro-
vided; 2) the benefits of approximate execution need to be quantified; 3) opportunities for
approximation need to be identified and profiled, and 4) lightweight context recognition
relevant for AMC needs to be implemented.

This paper describes our efforts towards enabling AMC in the field of mobile video play-
back. This field represents not only one of the most prominent aspects of mobile computing,
but is also among the most energy hungry ones [50]. We hypothesize that the context of the
mobile video playback impacts the user’s perception and quality requirements. By “context”
one can understand a potentially unlimited number of dimensions, however, backed by the
prior work [39, 42, 45] in our experiments we focus on the three most relevant and intuitive
dimensions – a user’s physical activity, the characteristics of the mobile video, and the user’s
personality traits. In addition, we are interested in the potential of enabling energy savings
by adjusting video playback according to the current context. Consequently, we formulate
the following research questions (RQ) that our study aims to answer:

– RQ1: Does setting the video playback resolution on a mobile device enable a trade-off
between the energy usage and the video rendering quality?

– RQ2: Does the physical activity the user is engaged in when watching a video on a
mobile device influence the user’s quality expectations/requirements?

– RQ3: Does the video content (its spatial and temporal characteristics) impact the user’s
satisfaction with a given video playback quality and does the physical mobility state of
the user modulate the relationship between the video content properties and the desired
playback quality?

– RQ4: Do the user’s personality traits impact the quality requirements of a mobile video
playback?

To realize AMC the first step is to provide straightforward and efficient means of adjust-
ing approximation. In addition, the reduction in computations (e.g. decreased resolution)
should lead to a gradual decrease in the end-result accuracy (e.g. user quality perception),
without the loss of correctness (i.e. the result is usable at all times, and the approximation
“knob” always gives a correct result). Moreover, the reduction in computation should trans-
late to reduced resource usage (and thus energy savings). In our work we settle on video
decoding resolution adjustment. Virtually all video distribution frameworks (e.g. Youtube,
Vimeo), as well as mobile video players, support playback resolution adaptation. Further-
more, setting video resolution always leads to correct execution and the loss of quality is
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gradual as we dial down the resolution. In the following section we also confirm that the loss
of quality corresponds to lower resource usage making video decoding resolution a suitable
technique for approximate computing adaptation.

Our work takes one step further the previous research efforts in the field of energy-
efficient mobile multimedia, which include solutions that mostly focus on optimizations at
the hardware and network layer for video streaming such as: energy aware CPU scaling [18],
battery-aware streaming rate adaptation [1] or dynamic voltage and frequency scaling [24].
Compared to the existing solutions, we propose a context- and content aware, hardware-
agnostic approach with applicability for both network video streaming and on-device
playback.

2.2 Energy vs. Quality trade-off in mobile video decoding

The approximate computing philosophy has at its core the monotonically increasing rela-
tionship between the computation accuracy and the resource consumption. In this section
we chart the relationship between the video decoding quality and the mobile consumption.
When performing the energy measurements, we use a popular video decoding software VLC
Player [46] running on a Samsung Galaxy S3 (I9300) Android smartphone. Despite being
released nine years ago, the phone supports both hardware and software video decoding
and, importantly, has a detachable battery that allows us to connect the phone to a high-
frequency power meter. The VLC Player was chosen for the energy measurements due to
its flexibility in allowing rapid enabling/disabling of hardware accelerated decoding.

The experimental setup for measuring energy consumption relies on measurements from
the Monsoon High Voltage Power Monitor (HVPM) [30], a high sampling frequency plat-
form commonly used for power measurements in mobile computing [36]. This platform
generates energy readings at a sampling frequency of 5kHz. Each sample contains a times-
tamp in ms, voltage in mV and electrical current in mA. The HVPM is directly attached to
the battery interface of the mobile device, which is powered solely by the HVPM.

During the energy measurements, the HPVM output voltage was set to 4.2V correspond-
ing to the voltage of an almost full battery. The same 1-minute video was downloaded
from YouTube on the device in the following resolutions: 144p, 240p, 360p, 480p, 720p
and 1080p, in both WebM and MPEG-4 formats. The baseline for comparison was a ref-
erence energy measurement performed with just the phone screen turned on, without other
apps/services running. For each resolution, the video was played 10 times using VLC
Player and the energy readings were averaged over the 10 runs. During the measurements,
the screen brightness was set to the minimum, all non-essential services running on the
smartphone that could interfere with the energy measurements were shut down, and the
smartphone’s Airplane mode was turned on to avoid the effect of on-device communication
modules (e.g. GSM, Wi-Fi, Bluetooth, etc.).

The results of the energy measurements for video playback on the mobile device at dif-
ferent resolutions are shown in Fig. 1 (for the reference we also show the measurements with
the screen turned on, but no playback running). We observe a significant difference in power
consumption for playing videos using MPEG-4 vs. WebM decoding. This is expected since
MPEG-4 decoding is hardware-accelerated in modern smartphones, while WebM decod-
ing is performed in software. With both formats we see a generally increasing trend – the
higher the decoding quality (resolution), the higher the consumption is. Interestingly, in the
WebM case the lower resolutions (144p, 240p and 360p) have similar average current con-
sumption, while the consumption increases considerably as we move to higher resolutions
(480p, 720p and finally 1080p). Since there are no significant differences between the lower
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Fig. 1 Smartphone average current consumption during video playback at different resolutions together with
the standard deviation of the measurements. A monotonically increasing relationship between the video
decoding resolution and the current consumption is evident for both software (WebM) as well as hardware
(MPEG 4) decoding

three resolutions, from the energy efficiency point of view, lowering the resolution under
360p would have no positive impact on energy savings, moreover it would only potentially
decrease a user’s satisfaction.

3 Methodology

Based on the energy measurements and the analysis of the energy-quality trade-off
described in Section 2.2 we see that video decoding resolution represents a suitable knob
for controlling approximation – thus confirming RQ1. Yet, where on the trade-off line one
should operate in order to satisfy the user requirements while minimizing the energy use is
still an open issue that we will address in the next sections of this work.

Viewer perception of video playback is shaped by a multitude of factors, including
the quality of image, location and time availability and choice of content [22]. All these
dimensions vary according to the platform and context used for visualization (i.e. a mobile
device, which might be on the move, or a desktop device indoors). This in turn influ-
ences how the sensory, emotional, and cognitive factors influence the viewer’s engagement
level, and ultimately the perception and satisfaction with the viewing experience [39]. For
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example, the content type determines the availability of sensory experience and emotional
response, and the attention span required. Also, the platform and context impact the atten-
tion span, since for example mobile context has a much higher level of outside interruption
than fixed/desktop usage. In addition, the outside brightness impacts the contrast of the
OLED display preventing a viewer from discerning details in the picture. To summarize, the
influencing factors collectively form the context which, we hypothesize, impacts viewers’
requirements with respect to the video playback resolution.

While there are potentially infinite dimensions to the context, certain dimensions have
already been proven to impact the video perception. For instance, the perception of content
rendered on a mobile handheld device’s screen can be impacted by the physical activ-
ity of the viewer, as the ability to focus and interpret the picture may be disturbed [31,
47]. We therefore first focus on this dimension, which is also characterised by its practical
convenience.

A user’s physical activity can be acquired with the minimal use of the mobile’s energy.
For instance, in Android OS coarse-grained physical activity (e.g. “running”, “walking”,
“in vehicle”, “still”, etc.) can be acquired using Google Play Services’ classifier jointly
maintained for all apps on the device. Having in mind that activity detection is used across
a range of apps, from navigation, over exercise tracking, to health and wellbeing apps, and
that an average user has more than thirty apps installed on her phone [3], there is a high
probability that activity recognition pipeline would anyway be active and routinely queried
by other apps. Consequently, querying this classifier for our purpose would likely incur
negligible additional energy cost, which makes the physical activity context perfectly suited
for our goal of reducing the energy use.

Besides the physical activity, we also hypothesize that the content of the video impacts a
user’s decision to require a higher or a lower resolution decoding. Content information, too,
can be acquired with very little cost as no additional device components need to be powered
on. Therefore, we further calculate a video’s spatial and temporal information and inspect
their role on a user’s desired video playback resolution.

Finally, in addition to the outside contextual factors (user’s physical activity state) and
the video content, we hypothesise that other internal user factors play a role. As such, we
include in our investigation an additional dimension represented by the viewer’s personality
traits.

Fig. 2 Timeline of the research process, starting from the initial hypothesis, going through the two studies
that were conducted, and concluding with the final findings
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The outline of the entire research process is illustrated in Fig. 2. We first start our investi-
gation from the hypothesis that physical activity impacts the quality requirements of mobile
video rendering. We conduct the first study which confirms this hypothesis, but also indi-
cates that the video content (more specifically, its spatial and temporal complexity) also
plays a significant role in the end resolution required by the viewers. However this study
reveals that other viewer-related factors might be important. As such, we conduct the second
study, which focuses on the influence of the viewer’s personality on the quality expectations.
The results of this second study confirm that personality impacts the quality requirements,
in addition to the viewer’s interest for the content of the video. In addition, the second study
also reveals that other subjective factors impact the quality expectations – which will require
future investigation. Based on these statistical findings, we conclude by building and evalu-
ating machine learning models for predicting the appropriate viewing resolution, a key step
towards a future real-world on-device mobile video self-adaptation framework.

3.1 Mobile videomanagement application

For video rendering during the user experiments we use NewPipe – an open source
YouTube-streaming frontend for Android [32] – which allows both online and offline video
playing. We choose this app due to its simplicity of use and also flexibility – being open
source it allows us to quickly add new functionalities needed for our experiments. For the
scope of the two user studies we conducted, the videos were preloaded to avoid any net-
working effects that might impact the user perception when watching the videos. We add
logging functionalities to the app, thus in each experiment we record the initial resolution,
physical activity state, the video played, and each event of a user changing the resolution.
For resolution change events we record the new resolution and the timestamp marking the
moment the change took place. In this paper we describe controlled experiments, where the
users were instructed to perform a certain activity at a certain time, so we could acqure a
stratified dataset. Thus, we do not use on-device classifier for recognising activities, but log
them manually. Yet, we have also implemented automatic activity recognition and plan to
run an in-the-wild study as a part of our future work on automatic resolution adaptation.

3.2 Video content analysis metrics

To assess the influence of video content on user satisfaction in different mobility states, for
each video we computed two metrics: the average Spatial Information (SI) and the average
Temporal Information (TI) indices [20]. SI represents the spatial detail in a video frame
(complexity) while TI relates to the amount of temporal changes in a video scene (motion),
and the two metrics are used for objective video quality prediction [11]. The perceived
quality of the video after passing through a given digital compression system is a function
of the input scene: the amount of motion and spatial detail in a scene correlated with the
compression rate of the video influences how the quality of the video is being perceived
(e.g. for the same compression rate, a scene with limited motion and spatial detail will be
perceived to have higher quality compared to a scene with a large amount of motion and
spatial detail, which will appear to be distorted) [26].

SI is based on the Sobel filter. Each video frame (its luminance plane) at time n (Fn)
is first filtered with the Sobel filter [Sobel(Fn)]. The standard deviation over the pixels
(stdspace) in each Sobel-filtered frame is calculated. This step is repeated for each frame
in the video sequence and results in a time series of spatial information of the scene. The
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Fig. 3 Thumbnails of the 12 videos watched by users in the first study. Thumbnails are ordered along the SI
and TI dimensions

maximum value in the time series (maxtime) is chosen to represent the spatial information
content of the scene [20]. This process is described by the following equation:

SI = max
t ime

{
stdspace [Sobel(Fn)]

}
(1)

TI measures temporal changes (motion) in a sequence of video frames [20]. TI is based
on motion differences between the pixels in the luminance plane of two consecutive frames
Fn(i, j) and Fn−1(i, j), i.e., discrete time n and n − 1, at pixel position (i, j):

Mn (i, j) = Fn(i, j) − Fn−1(i, j) (2)

TI is defined as the maximum value of the standard deviations obtained for the sequence
of motion differences in the spatial domain [20]:

T I = max
t ime

{
stdspace[Mn(i, j)]} (3)

3.3 User study 1: Mobility state vs video resolution requirements

The volunteers in the first study were 22 students from our institution with both technical
and non-technical backgrounds. The group consisted of 13 male and 9 female participants.
We select 12 one-minute-long YouTube videos to be watched by the users (a preview of
these videos is shown in Fig. 3). The video content varied among the videos from music,
sports, outdoor/indoor activities, and others, resulting in various spatial and temporal char-
acteristics of the videos. We computed the average SI and TI for all 12 videos, and the
results are shown in Table 1. These numbers illustrate the heterogeneity in the video content
with regard to their spatial and temporal features.

Each of the participants in the study group watched videos in different activity states
(three videos per state): still, walking, running, and traveling as a passenger in a vehicle.
All the experiments were performed on the campus of Faculty of Computer and Informa-
tion Science in Ljubljana, Slovenia: in the same laboratory room when still, on the same
hallway when walking and running, and on the same route on the campus when traveling as
a passenger in a vehicle (the same driver and vehicle for all tests/subjects). The following
smartphones were used during this study for watching videos by the participants: Samsung
Galaxy S3, Samsung Galaxy S4 and Nexus 6.
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Table 1 Spatial information (SI)
and Temporal information (TI)
indices for the videos used in the
first user study

Video ID Average SI Average TI

1 55.51 19.45

2 117.26 26.58

3 52.59 7.77

4 61.69 15.39

5 59.32 29.42

6 29.05 11.52

7 56.65 9.72

8 46.14 8.81

9 39.77 11.41

10 80.04 19.03

11 126.88 13.85

12 36.38 8.60

To ensure the obtained results were comparable and relevant, all participants were
instructed to follow the same protocol during the experiments. Hence, the following
instructions were given to the participants:

– The users were instructed about the resolutions available and the process of changing
the resolution when watching a video. They were asked to switch the resolution to a
higher one only when dissatisfied with the quality;

– They were asked to keep the device horizontal at all times to ensure the video is played
in full-screen;

– Users were allowed to change sound volume and use headphones during the experi-
ments according to their preferences;

– The brightness was pre-set to 80% and the participants were asked not to change it;
– Before each experiment the users were informed about the video and the resolution they

should start the experiment with; the starting resolutions presented a pseudorandom
distribution. We choose this approach to avoid the situation where always starting from
a low resolution might artificially reduce the inferred viewer’s expectations, as viewers
might be inclined to proceed with the default resolution.

3.4 User Study 2: video properties and user personality vs video resolution
requirements

We conducted the second study with 23 users, 13 male and 10 female. Each user watched
4 videos in each of the following mobility states: still, walking and running. Due to
the COVID-19 pandemic restrictions in place at the time of this second study, having a
researcher driving a car with participants was unfeasible, as such this mobility state was
not recorded. To examine how the spatial and temporal complexity of the videos impact the
user’s quality expectations in the mobility states, the videos were selected so that their SI/TI
scores fall in the following categories: low SI & low TI, low SI & high TI, high SI & low
TI and high SI & high TI (Table 2). While a review of related scientific literature revealed
no “absolute” scale for SI and TI metrics, based on the results of the first study (in terms of
SI/TI values for which the highest correlations were observed) and other related work [4],
for the purpose of this study we considered the following thresholds: Low SI <= 40,
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Table 2 Spatial information (SI) and Temporal information (TI) indices for the videos used in the second
user study, and their corresponding grouping into categories

Video ID Category Average SI Average TI

1 Low SI, Low TI 8.77 3.68

2 Low SI, High TI 38.86 36.95

3 High SI, Low TI 138.69 8.30

4 High SI, High TI 136.49 28.59

5 Low SI, Low TI 14.34 3.49

6 Low SI, High TI 40.17 38.44

7 High SI, Low TI 117.56 6.14

8 High SI, High TI 118.66 26.81

9 Low SI, Low TI 41.16 1.42

10 Low SI, High TI 40.30 31.63

11 High SI, Low TI 123.35 8.14

12 High SI, High TI 138.75 37.13

High SI >= 110, Low TI <= 10, High TI >= 25. Consequently, a total of 12 1-minute
long videos were selected, with 3 videos in each of the aforementioned SI/TI categories. A
thumbnail preview of the videos in this second study can be seen in Fig. 4.

The experiments were performed on the personal smartphones of the users at the same
locations in Rosenheim, Germany. Given that this study was performed under the COVID-
19 pandemic restrictions, semi-outdoor spaces were used: a personal garage for the still
experiments, and a public parking (Parkhaus P12 Bahnhof Nord) for the walking and
running experiments.

Again, all participants were instructed to follow the same protocol as the first study
(described above) during the experiments. In addition, the following specific issues were
addressed:

Fig. 4 Thumbnails of the 12 videos watched by users in the second study. Thumbnails are ordered along the
SI and TI dimensions
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– In this study, the following resolutions were available: 360p, 480p, 720p and 1080p.
The lowest resolutions available in the first study were discarded because it was shown
they had no significant impact on both the final resolution users ended up watching the
videos in and the energy consumption (the lowest three resolutions: 144p, 240p and
360p have very similar energy consumption);

– In light of the above, and also since we noticed from the first study that viewers are not
reluctant to change the initial resolution, the starting resolution in this study was always
the lowest one (i.e. 360p);

– The users performed the activities in a cyclic order so that every consecutive user per-
forms the activities in a different order when compared to the previous user. (e.g. User
n: still, walking, running; User n + 1: running, still, walking, etc.);

– The same cyclic approach was used for the types of videos that users watched while in
each of the mobility states, e.g. User n still: video 1 (low SI & low TI), video 2 (low
SI & high TI), video 3(high SI & low TI), video 4(high SI & high TI); User n + 1
still: video 1 (high SI & high TI), video 2 (low SI & low TI), video 3 (low SI & high
TI), video 4 (high SI & low TI), etc. We employed this ordering of activities and video
categories to minimize the overlap of activity-video category items over users;

– In addition to the demographics data (age, gender), the smartphone model used in the
experiments and whether or not the user had glasses, we also collected information on a
user’s personality by administering the 10-item short version of the Big Five Inventory
(the BFI-10 test) [34].

Our work was performed with reproductibility in mind and the collected experimental
data from both studies is publicly available to the research community at https://gitlab.fri.
uni-lj.si/lrk/approximate video study/.

4 Results

Based on the conducted user studies, in this section we examine how the viewer’s sat-
isfaction and quality expectations are impacted by the physical activity by analyzing the
resolutions that were found acceptable when watching videos in each of the four mobility
states. Next, we perform a statistical investigation to determine how the video content (its
spatial and temporal characteristics) impacts the viewer’s tolerance to lower video quality.
Aside from the viewer context and the video content, viewer-related factors are also shown
to play a role. As such, we also address the impact that viewer’s personality traits have on
the required video quality by using hierarchical modelling (performing mixed effects mod-
elling using personality as a random effect grouping factor). Finally, based on these three
dimensions, we analyse the suitability of predictive mobile video resolution models.

4.1 The role of physical activity

To illustrate the role of the physical activity of the viewer on the resolution, we plot the
distribution of the final resolutions in which viewers completed watching videos while in
each of the activity states in both studies in Fig. 5.

The results, which are consistent for both studies, are in favor of the RQ2 hypothesis that
the activity context of the viewer impacts the perception of the video quality, and ultimately
the satisfaction with the viewing experience. Thus, the data shows viewers are satisfied with
higher resolutions when they watch the video while still (the median of the distribution is
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Fig. 5 Boxplot depiction of the distribution of resolutions in which viewers completed watching videos in
each activity state in each of the two studies. Central line in each box: median; edges of the boxes: 25th and
75th percentiles of the distributions; Whiskers: most extreme data points not considered outliers

highest for this activity, at 720p). This is expected, since in such situations a viewer can fully
concentrate on the video. The next highest average resolution is found in case the viewers
are walking. In this state the distribution tails are more prominent in the first study, and
while the median of distribution remains as high as it was with viewers being still in both
studies (i.e. 720p), the 25th-percentile of distribution in the first study is at 360p (c.f. 480p
for still viewers).
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Riding as a passenger in a vehicle induces further tolerance towards lower resolutions,
with the median of the acceptable resolution dropping to 480p, yet the distribution becomes
more “compact” than it is the case with the distribution observed when the viewers are in
the walking state. We suspect that the effect stems from varying abilities of our viewers to
simultaneously walk and pay attention to the video. For some such multitasking may be a
routine endeavor, thus, they require a higher resolution, whereas others might find it difficult
to pay attention to the videos and regard the resolution unimportant.

Finally, the running state leads to a further drop of resolution distribution, with the the
25th-percentile at 360p and the median at 480p. This is not surprising since when engaged
in a intense physical activity the viewer is less likely to be focused on the screen for any-
thing but brief periods of time. By having to divide the attention between the video and the
surroundings, the viewers find lower resolutions acceptable since they do not have the time
to notice imperfectly rendered details.

To help understand viewer behavior in each activity state, Fig. 6 shows all the changes in
resolution performed by the viewers in the four activity states and the time elapsed before
each change was made. In the legend the number of changes in each resolution for each
mobility state can be observed. These results confirm that viewers had the lowest quality
expectations (or highest tolerance to lower quality) while running, since in this state they
made the lowest number of switches to higher resolution (the green circles on the chart).
The highest number of instances where the viewers switched to higher resolutions can be
observed in the still state, confirming that when in this activity state, viewers have the high-
est quality expectations. Finally, irrespective of the physical activity, as we move from the
lower resolutions to the higher ones we observe a slight increase in the time to switch to a
higher resolution, which confirms that the viewers complied with the protocol, i.e. switched
the resolution only when not satisfied with the current one.

We then performed the statistical analysis of the results for both studies. A Kruskal-
Wallis test shows that there is indeed a significant difference in the acceptable resolution
depending on the activity state: H(3) = 14.139, p < 0.003 for the first study, H(2) =
19.817, p < 0.001 for the second. This confirms the hypothesis that the activity state influ-
ences the viewer’s video quality requirements. To assess the strength of the relationship
between the context and the resolution we computed the effect size estimate for the Kruskal-
Wallis result [44]. More specifically, we computed the eta-squared measure (η2) using the
following formula [8]:

η2H = H − k + 1

n − k
(4)

where H is the Kruskal-Wallis H-test statistic, k is the number of groups and n the total
number of observations. Eta-squared estimate assumes values from 0 to 1 and multiplied
by 100 indicates the percentage of variance in the dependent variable explained by the
independent variable [44]. For our experiment the computed eta-squared was 0.04 for the
first study and 0.06 for the second study; in the related scientific literature [8] eta-squared
values less than 0.06 account for a small (weak) effect. Thus, while there is a statistically
significant relationship between the activity state and the resolution, this relationship is
shown to be weak.

4.2 The role of spatial and temporal properties of a video

In light of the above statistical results, which indicate that other factors might influence
a viewer’s satisfaction with lower resolutions in different mobility states, we analyzed
the impact of the video content on a viewer’s receptivity to different video resolutions.
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Fig. 6 Time elapsed before viewers switching to a higher resolution for different activity states. A colored
circle marks the moment in time the viewer increased resolution while watching the video. The red dot is the
average represented with relation to two standard deviations (the red segment’s extremities). In the legend,
the values indicate the number of changes performed by the viewers in each of the resolutions

The Kruskal-Wallis test shows that there is a statistically significant relationship between
the actual video content being played and viewer’s quality expectations (resolution found
acceptable): H(11) = 65.328, p < 0.001 for the first study, H(11) = 79.045, p < 0.001
for the second. For evaluating the strength of this relationship we computed the same eta-
squared effect size measure using (4), with the results for the two studies being 0.20 and
0.25, respectively. Based on the related literature [8], values higher than 0.14 indicate a large
effect. This confirms RQ3, i.e. that there is a strong relationship between the video content
and the viewer’s quality expectations when watching the video in specific mobility states.
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Table 3 Pearson correlation coefficient between the final selected resolution and the average video SI/TI
when a viewer is in a particular mobility state in the first user study

Resolution vs. SI Resolution vs. TI

Still − 0.05 0.21

Walking 0.31 0.54

Running 0.86 0.23

In vehicle − 0.28 − 0.17

A surprisingly strong effect of the individual video content warrants further investiga-
tion of particular aspects of a video that influence a viewer’s decision to require a higher
playback resolution. A viewer’s perception of the content can stem from the visual elements
depicted in the video, speed of scene changes, colours, and other technical elements, but
could also stem from the relationship between the viewer and the video content, including
the viewer’s interest in a particular topic, previous exposure to that and similar videos, to
name a few factors. In this work, however, we aim to uncover factors that could be easily
harnessed for automatic playback resolution adaptation. Thus, we focus on the spatial (SI)
and temporal (TI) complexity indices readily obtainable from a downloaded video.

To evaluate how the spatial and temporal complexity of the videos relates to the viewer
quality perception of the videos in each mobility state we analyzed the link between the
average resolution of the videos viewed in each state versus their SI and TI scores. We
computed the Pearson correlation coefficient between the resolution and average SI and TI
values for each mobility states, and the results are shown in Table 3.

The strongest link between the selected playback resolution and the SI is observed when
a viewer is running (a Pearson correlation of 0.86). Running is of a particular interest to
this study since it is the mobility state where one would expect the viewer’s satisfaction
requirements to drop the most. This strong link shows that when a viewer is physically
active (e.g. running), the required video quality and the spatial complexity of the video being
played exhibit a strong positive linear correlation (i.e. the higher the spatial complexity of
the video, the higher the required resolution). Out of the videos watched by the viewers
while running in the first study, for videos 10 and 11 that have the highest SI scores, the
viewers required the highest resolutions.

With regard to the link between the average resolution of all videos watched by all view-
ers in each mobility state and their corresponding TI score, the Pearson correlation analysis
indicates that a moderate positive linear correlation is present when the viewer is in mobil-
ity states requiring moderate physical movement, such as walking, where the coefficient is
0.54. While walking the viewers requested the highest average resolution for video number
5, which has the highest TI score among the videos watched while walking.

To better illustrate how the spatial and temporal characteristics of a video influence the
viewer’s quality perception in different activity states, Table 4 shows how a selection of
videos are perceived by the viewers when standing still vs. running (a subset comprising
all videos which viewers watched in both activity states: videos 6, 8, 9 and 11). The table
displays the average resolution for each video in each of the two activity states, and it is
noticeable that videos 6, 8 and 9 show a similar behavior, i.e. they score similar average res-
olutions when still (between 650 and 550p) and their average resolutions drop considerably
during running (between 350 and 500p). Video 11 however has a different behavior: while
it also has an average resolution of about 650p while standing still, it does not decrease
while running, on the contrary it slightly increases. The reason behind this phenomenon is
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Table 4 Average resolution in still vs. running for selected videos (and their corresponding SI values) in the
first user study

Video ID Avg. SI Avg. res (Still) Avg. res (Running)

6 29.05 640 400

8 46.14 573 349

9 39.77 660 480

11 126.88 667 680

While the general trend is that a running viewer is satisfied with a lower resolution than a walking viewer, a
high SI video (Video 11) leads to higher resolution requirements when a viewer is running

that video 11 has the highest spatial information index among all 12 videos, and thus view-
ers perceptually require higher resolutions when running and viewing this video, compared
to the other videos with lower spatial complexity.

To statistically examine the interplay between the physical activity and the video con-
tent and its role on a viewer’s expectations we created a linear regression model where the
dependent variable is the resolution and the explanatory variables are the activity states, SI,
TI, and the cross-products representing the interaction effects between the activity states
and the SI/TI scores. The results of this linear regression are presented in Table 5.

The regression shows the impact of a particular activity and the specific spatial and
temporal complexity of a video on the required resolution. When viewers are walking or
running, they require a lower resolution as indicated by the strong negative coefficients and
low p-values; the effect is less pronounced when in-vehicle. The effects of the spatial and
temporal complexity of a video on the required resolutions are not relevant by themselves

Table 5 Linear regression results for the resolution as the dependent variable - results from the first study

Variable Coefficient p-value

Intercept 647.37 < 2e-16∗∗∗

walking −247.89 0.02∗∗

running −394.62 − 0.01∗∗∗

in vehicle − 65.83 0.48

spatial 0.31 0.73

temporal − 3.72 0.41

walking:spatial 0.25 0.87

running:spatial 2.93 0.05∗

in vehicle:spatial − 1.16 0.37

walking:temporal 13.15 0.05∗

running:temporal 5.53 0.45

in vehicle:temporal 6.03 0.30

Multiple R-squared: 0.1094

Adjusted R-squared: 0.0705

Standard error of the estimate: 218.3

Factors with significant influence are bolded
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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(non-significant values for “temporal” and “spatial”), only in interaction with certain activ-
ities. As such, high temporal information videos require higher resolution when a viewer is
walking (as indicated by the low p-value of 0.05 and thus confirming the correlation illus-
trated in Table 3). In addition, higher spatial information videos require higher resolutions
when a viewer is running (the low p-value of 0.05 confirms the correlation also illustrated
in Table 3).

In addition to the above, however, the linear regression R-squared value is low, indicating
that the model does not fully explain the data. This may stem from the limited data collected
in our user study. More specifically, not all videos where watched in all activity states and
not all videos were watched by all viewers. Furthermore, low R-squared value is likely an
indicator that other contextual variables not considered in our study (e.g. outside noise, a
viewer’s interest in the video content, etc.) may impact quality expectations.

4.3 The role of personality

The exploratory analysis conducted on data collected during our first study demonstrates
that both the context in which a video is watched as well as the content of the video play a
role in the final playback resolution that a viewer is satisfied with. Yet, our first study does
not allow further analysis of the role of individual user’s traits on the watching behaviour.

In the second study we collected information about our participants’ personalities using
the BFI-10 test. For investigating the role of personality on the required resolution, we per-
formed the Kruskal-Wallis test and uncovered a statistically significant relationship between
the dominant personality of a viewer and his/hers quality expectations (resolution found
acceptable): H(4) = 15.874, p < 0.003. The eta-squared effect size (4) amounts to 0.04
indicating a weak effect [8]. This confirms RQ4: the viewer’s personality traits impact the
quality requirements in terms of playback resolution when watching a video on a mobile
device. However, the effect size shows this impact to be weak (Fig. 7).

We next create two linear regression models to additionally explore the statistical inter-
play between the personality and the end resolution required by the viewers in the second
user study. To ensure that the personality does not “hide” other factors, we explicitly include
the demographics as well. In the first model we encoded the dominant personality trait of
each user as a variable. The regression confirmed that personality plays a significant role
in the end resolution required by a viewer. The detailed results of this linear regression are
presented in Table 6.

To investigate the effect that each particular dominant personality type has on the end
resolution, the second model encoded the distinct personality traits percentiles as variables.
The results of this regression model (illustrated in Table 7), show that of the five dominant
personality traits, three are shown to have a significant influence on the end resolution:
agreeableness, conscientiousness and neuroticism all correlate with higher end resolutions.
Openness is the only dominant personality trait that correlates with a lower resolutions, but
this dependency is not shown to be statistically significant.

4.4 Hierarchical modelling

Concluding that the first three of our research hypotheses hold, i.e. that a viewer’s physical
activity at the time of watching the video, the video’s content, and the viewer’s personality
all impact the desired mobile video playback resolution, we now proceed with modelling
the joint impact of these factors.
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Mixed-effect modelling represents a statistical instrument primarily used to describe
relationships between a response variable and some covariates in data that are grouped
according to one or more classification factors. A mixed effects model has both fixed
effects (parameters associated with an entire population) and random effects (which are
associated with individual experimental units drawn at random from a population) [28].
Compared to alternative approaches, such as ANOVA, mixed-effect models remain more
robust to unbalanced data and are generally a more preferred means of hierarchical statistical
analysis [6].

For building these models we adopt an incremental, iterative approach in which we
gradually increase the complexity of the previously built model by adding an additional
parameter, either as a fixed or as a random effect. To guide our approach and evalu-
ate the appropriateness of each model, we use AIC (Akaike information criterion), BIC
(Bayesian information criterion) and the R-squared measure (marginal vs. conditional, i.e.
expressed by fixed effects vs. both fixed and random effects). AIC and BIC are the two
most commonly used penalized model selection criteria [43]. AIC penalizes the inclusion
of additional variables to a model. It adds a penalty that increases the error when includ-
ing additional terms. As such, a lower AIC score is an indicator of a better model. BIC is a
variant of AIC with a stronger penalty for including additional variables to the model [21].

We run a mixed-effects model analysis using R with the lme4 package, and start from
an intercept-only model that allows evaluating the appropriateness of the grouping variable
– dominant personality trait. For this model, the regression function intercept varies across

Fig. 7 Boxplot depiction of the distribution of resolutions in which the viewers completed watching videos
and their dominant personality trait - data from the second study
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Table 6 Linear regression results for the resolution as the dependent variable - results from the second study
with dominant personality trait as a variable

Variable Coefficient p-value

Intercept 1033 < 0.001∗∗∗

Activity -79.382 < 0.001∗∗∗

SI -1.30 < 0.001∗∗∗

TI − 0.61 0.49

Gender 25.69 0.36

Age 1.06 0.6

Glasses 21.2 0.48

Personality -42.896 < 0.001∗∗∗

Multiple R-squared: 0.228

Adjusted R-squared: 0.2

Standard error of the estimate: 214.2

Factors with significant influence are bolded
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

different personality types. We calculate the intraclass correlation coefficient (ICC) to get
an estimate of how much of the end resolution variation is explained by clustering along the
dominant personality, and obtain a score of 0.03, indicating a weak grouping.

Table 7 Linear regression results for the resolution as the dependent variable - results from the second study
with distinct personality traits percentiles as variables

Variable Coefficient p-value

Intercept 657.25 < 0.001∗∗∗

Activity − 79.382 < 0.001∗∗∗

SI − 1.30 < 0.001∗∗∗

TI − 0.61 0.49

Gender − 3.079 0.91

Age 2.871 0.17

Glasses 82.1 0.01∗∗

Extraversion 9.37 0.82

Agreeableness 139.28 0.004∗∗∗

Openness − 18.438 0.74

Conscientiousness 160.792 0.002∗∗∗

Neuroticism 96.871 0.037∗∗

Multiple R-squared: 0.232

Adjusted R-squared: 0.2

Standard error of the estimate: 215.3

Factors with significant influence are bolded
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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We then move on to add fixed effects parameters, and we incrementally add Activity,
SI and TI. When adding Activity, and further on SI, both AIC and BIC scores decrease,
however after adding TI they both increase. In addition R-squared scores (both marginal
and conditional values, computed with the squaredGLMM function) increase after adding
Activity, and even more after adding SI, but stay constant after adding TI. As such we drop
TI as a fixed effects parameter. Inspecting this latest model we notice that when viewers
are still they require much higher resolutions compared to when engaged in the other two
mobility states. We next add the interaction between Activity and SI, which improves the
model even further. Using Gender as part of the fixed effects parameters does not improve
the model, both with regard to the AIC and BIC scores, and R-squared values. However,
accounting for the interaction between Gender and SI is shown to improve the model. We
notice that male viewers require lower end resolutions than female viewers only for videos
with lower SI scores, while for videos with high SI this trend is reversed. Finally, by adding
Glasses as fixed effects term, the model slightly improves further, and it illustrates that view-
ers wearing glasses tend to require higher end resolutions as the SI of the video increases,
compared to viewers not wearing glasses. Adding the last remaining parameter, age, to fixed
effects, does not improve the model.

To conclude, the final best mixed effects model includes dominant personality trait as a
random effect (grouping factor), and the following parameters as fixed effects: Activity, SI,
Gender, Glasses, with the interaction variables between Activity and SI, and Gender and

Table 8 Mixed effects model on the second study data for the end resolution as the dependent variable,
personality as the grouping factor, and SI, Activity, Gender, SI∗Activity, SI∗Gender as fixed effects

Random effects:

Groups Variance Std.Dev.

Personality (Intercept) 3612 60.1

Residual 43677 209.0

Fixed effects:

Name Estimate p-value

Intercept 750.32 <0.001∗∗∗

SI − 2.27 < 0.001∗∗∗

ActivityStill 222.70 < 0.001∗∗∗

GenderMale − 103.89 0.03∗∗

Glasses 9.55 0.85

SI:ActivityStill − 0.79 0.19

SI:ActivityWalking 1.07 0.11

SI:GenderMale 1.30 0.01∗∗

SI:Glasses 0.46 0.36

R2m: 0.21

R2c: 0.27

Factors with significant influence are bolded
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

17619Multimedia Tools and Applications (2023) 82:17599–17630



SI, respectively. Table 8 shows the detailed results of the mixed effect model analysis. The
equation for the final model is: Resolution = 1 + Activity + SI + Activity * SI + Gender +
+ Gender * SI + Glasses * SI + (1 — Personality).

The random effects analysis of the model shows that the differences between differ-
ent dominant personality types explain just ∼ 8% (3612) out of the total variance (3612 +
43677) “left over” after the variance explained by the fixed effects. We analyzed the amount
of variance explained by fixed vs. random factors via the r .squaredGLMM function com-
puting pseudo R2 for mixed-models. We obtained R2 = 0.21 for the variance explained by
fixed factors, and R2 = 0.27 for the variance explained by both fixed and random factors,
showing that the differences in personality types explain approximately 22% of the total
variance explained by our model.

The fixed effects analysis of the model shows that viewers require a higher resolution
when still (the estimate value for still is 222.7 vs. − 17.08 for walking), and that videos with
a high SI require slightly lower resolutions (SI estimate is − 2.27). However, male viewers
are shown to require slightly higher resolutions as the videos have higher SI (GenderMale
has an estimate of − 103.89, while SI:GenderMale has a positive estimate of 1.30).

The dependence of resolution based on the video’s SI for different personality types is
the same regardless of the personality type, however, the intercept is different – as high-
lighted by the results of the linear regression model (Table 7). In summary, agreeableness
requires the highest overall resolutions, while other traits exhibit mutually similar behav-
ior, with openness requiring the lowest overall resolution. Individuals who score high on
agreeableness tend to be compliant and cooperative, and to conform with rules not to upset
others [14]. In our study, viewers with agreeableness as dominant personality trait might
have focused on the task of changing resolution as their goal in this experiment, and thus
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Fig. 8 End resolution vs. SI for female vs. male viewers. While the slope is negative in both cases, the
decrease for female viewers is more steep as SI increases compared to male viewers
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have been more keen on changing the resolution in order to satisfy the requirements of the
study. The impact of gender on end resolution is illustrated in Fig. 8. This plot shows that
as the SI increases all viewers require lower resolutions. However, the slope is different for
male vs. female, with male viewers requiring higher resolutions than female viewers for
high SI videos. This trend is also confirmed in Fig. 9, when visualizing SI vs. resolution for
different activities for each gender. The slopes for female viewers are more steep than for
male viewers, and the intercepts for male viewers are higher than for female viewers. For all
activities, female viewers require higher resolutions for low SI videos. However this trend
decreases as the SI of the video increases, and for high SI videos it reverses. In addition,
when walking male viewers require higher resolutions as the SI increases, while female
viewers require lower.

This unusual observation could be explained by a difference in interest of male vs. female
viewers for the content of the highest SI videos in the selection (as illustrated in Fig. 4).
Related literature has highlighted that gender, among other factors, plays an important role
in the interest in a particular video content [19]. In our video selection, the highest scoring
SI videos comprise sports, online video tutorial, and animated sketches.
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Fig. 9 End resolution vs. SI for male vs. female viewers in each activity state. This chart confirms that
for videos with higher SI, female viewers require lower resolutions than male viewers. Also, walking state
stands out as male viewers require higher resolutions for higher SI in this state, a reverse effect than the one
encountered for female viewers
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Table 9 Prediction performance comparison of the random forest regressor vs. a mean regressor

Method Av. Acc Std. Av. MAE Std. Av. RMSE Std.

Random Forest 73.7% 11.6 159.7 67.3 201.7 74.8

Mean Regressor 67.6% 5.8 192.4 42.2 225.8 49.6

4.5 Predictive context- and personality-awaremobile video resolutionmodel

The statistical and hierarchical analysis performed showed that the Activity, SI and Gen-
der, together with their interactions, and also the dominant personality trait, all impact the
viewer’s quality requirements when watching videos on a mobile device. Based on these
results, we want to be able to predict from the mobile sensed data how to best adapt the res-
olution. As such, we now move a step further and construct machine learning models that
take these parameters at the input and predict the most suitable viewing resolution.

First, we train two regressors: a Random Forest regressor and a mean regressor to serve as
a baseline (a regressor which always predicts the mean of training target values). We employ
the Leave-One-Out Cross-Validation (LOOCV) procedure, a specific type of k-fold cross
validation, where the number of folds, k, is equal in our case to the number of viewers in the
dataset. As such, each time we train the model on the data from 22 viewers and test it on the
“left out” viewer. For each “fold” we compute the following accuracy metrics: prediction
accuracy (using the mean average percentage error subtracted from 100%), mean absolute
error (MAE) and root mean squared error (RMSE). Finally, to assess the performance of
the entire model, we take the mean and standard deviation of these accuracy metrics. The
results we obtained are illustrated in Table 9.

These numbers show that on average, the Random Forest regressor achievies an accuracy
of 73.7% in predicting the appropriate viewing resolution, higher than the 67.6% accuracy
scored by the mean regressor. The MAE and RMSE values are also better for the Random
Forest regressor, however, for all 3 performance metrics the standard deviation values are
higher compared to the ones of the mean regressor. This indicates that there are significant
differences in the accuracy of the predictions varying from viewer to viewer.

Motivated by these differences, we next proceed to build dedicated predictive mod-
els for each of the dominant personality traits. We exclude Conscientiousness since the
dataset contains only one viewer with this dominant personality trait. Similiarly, we use the
LOOCV procedure, and for each dominant personality we build a Random Forest regressor
and a mean regressor. We compute the same accuracy metrics and the results are shown in
Table 10.

The results show that for 3 out of 4 personality types the personality-specific Random
Forest regressors achieve higher prediction accuracy than the general Random Forest model,
with Agreeableness being an exception (likely due to limited dataset, which might also gen-
erally explain the limited performance of all the Random Forest regressors). However, the
issue of high values for the standard deviation for all accuracy metrics remains, indicating
that using solely these parameters the model fails to fully adapt to individual behavior. This
confirms the findings of the statistical and hierarchical analysis presented in Sections 4.2
and 4.4, which indicated there are additional viewer-related factors that impact the quality
requirements and which require future investigation.
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Table 10 Prediction performance comparison of the random forest regressors vs. mean regressors for each
dominant personality trait

Personality Method Av. Acc Std. Av. MAE Std. Av. RMSE Std.

Agreeableness Random Forest 54.0% 23.2 269.1 71.7 323.4 83.8

Mean Regressor 63.7% 11.2 219.8 48.2 267.8 45.0

Extraversion Random Forest 78.2% 4.0 156.1 54.3 207.5 74.3

Mean Regressor 68.1% 4.7 192.2 33.0 226.6 42.5

Neuroticism Random Forest 77.5% 9.6 136.0 49.9 177.3 54.6

Mean Regressor 67.9% 6.2 191.0 31.7 229.1 35.6

Openness Random Forest 81.1% 4.8 114.5 41.2 161.8 47.5

Mean Regressor 69.8% 2.3 170.2 51.8 192.1 78.0

5 Related work

5.1 Energy-efficient mobile multimedia

The limited battery charge became the key pressing issue preventing further growth of
mobile computing [13] and exacerbating the need for utilizing the available resources as
efficiently as possible. Among the services consuming the largest amount of energy in a
mobile device, multimedia apps [10, 40] stand out, together with network traffic [48] and
machine learning [27]. Yet, the high popularity of mobile multimedia makes addressing the
energy consumption of such apps a pressing issues. A recent Atos study [2] reveals that
mobile multimedia apps are the second most intensively used applications (based on aver-
age time spent by the user) and consequently also rank second in impact on the average
daily energy consumption of a mobile device.

Solutions for reducing the energy consumption of mobile video apps include the work
by Shin et al. [40], where the authors present an approach for reducing the energy con-
sumption of random network coding based media streaming applications on smartphones
by manipulating the frequency controllers in the smartphone’s operating system. Another
solution proposed by Hu and Cao [18] introduces an energy-aware CPU frequency scaling
algorithm for mobile video streaming, which selects the CPU frequency that can achieve
a balance between saving the data transmission energy and CPU energy. Ahmad et al. [1]
developed a battery-aware rate adaptation for extending video streaming playback time
which adapts to the appropriate bit rate to prolong the battery lifetime. An energy efficient
video decoding for the Android operating system is proposed by Liang et al. [24], based
on dynamic voltage and frequency scaling. Hamzaoui et al. in their work [16] propose a
measurement-based methodology for modeling the energy consumption of mobile devices
and use video decoding tasks (both on-device and remote streaming) for the experimental
power measurements.

Most of the above-mentioned energy-saving solutions focus on optimizations at the
hardware and network layer for video streaming; by comparison, our approach is hardware-
agnostic and adapts the video resolution according to the user’s context, which influences
his quality requirements. In addition, this context- and content-aware adaptation strategy has
the advantage of being applicable for both network video streaming and on-device playback.
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5.2 Mobile video quality perception

Perception of multimedia quality is impacted by a synergy between system, context and
human factors [38]. The continuous technological advances in multimedia services have
enabled them to be increasingly optimized in a personalized way, by taking into account
the human factors when estimating the Quality-of-Experience (QoE) in order to optimize
the video delivery to the user [51, 53]. Hence, numerous research efforts have been carried
out to analyze the influence of system, contextual and human factors on the perception of
multimedia quality [35, 37, 54].

Dynamic viewing environment makes mobile video strikingly different from the conven-
tional TV or Desktop PC viewing experience. Contextual factors, such as whether a viewer
is indoor or outdoor, walking, running or riding a bus, and others, may change even during
a single viewing session [47]. Research in this field identified several factors that influence
mobile video quality perception, such as the display size, viewing distance from the display,
environmental luminance, and physical activity of the user and showed that environment-
aware video rate adaptation can enhance mobile video experience while reducing the bitrate
requirement by an average of 30% [47]. Another study shows that in the mobile environ-
ment, sensory experience is a significant factor for enjoyment and engagement with the
video as outside interruptions decrease the user’s video quality experience on a mobile
device [39]. This might be the reason for heavy tailed distributions of selected resolutions
when users are walking or running, observed in our dataset. It is possible that, while gener-
ally too distracted to pay attention to fine video details, at certain occasions, users select a
higher resolution to counter the effect of environmental disruptions.

The correlation between video content and user perceptual satisfaction is underlined by
the existing research focused on this phenomena. Trestian et al. demonstrate a low spatial
information video watched in low quality is likely to be found more acceptable/satisfying by
the user than watching a high spatial and temporal complexity video the same quality [45].
The research findings also support the theory that one can expect significant differences in
the user satisfaction at the same quality level depending on the particularities of the video.
We can see this in our study as well: from a subset of videos watched by users in “still”
and “running” states, the video with a very high spatial complexity stands out as requiring a
substantially higher resolution from the users when running, compared to the other videos
in the subset which had lower SI scores (Fig. 4). This indicates that the the video’s spatial
information feature influences the user’s quality expectations in physically active states,
such as running.

Song et al. identify a stronger relationship between acceptability and content type at
a relatively low bitrate range of 200 – 400kbps [42]. The paper also concludes that the
acceptability rate is influenced by the video content type, since this directly impacts the
video’s spatial and temporal information scores, e.g. animations usually have lower SI/TI,
while sport videos have much higher scores. This is in line with our results: the videos with
the highest SI and TI are either sport videos (basketball match – video 2, car dashboard
camera recording – video 11 or body camera recording of mountain bike trail – video 5).

In [38] and [37] the authors studied the interplay between system, context, and human
factors on the perceived video quality and enjoyment. Both studies showed that human
factors play an important role in the way perception of quality and enjoyment are rated.
In addition, the nature of the content alone, rather than the system settings at which it is
delivered, is more likely to influence how the video is perceived.

The question regarding how exactly the user’s personality (and which of its dimensions)
impacts the quality and enjoyment perception of multimedia content is debated among
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researchers. In an earlier study on this topic, Gulliver and Ghinea [15] distinguish three
dimensions of the overall user satisfaction with a video (the overall Quality of Perception –
QoP): level of enjoyment (QoP-LoE), level of information the users believe they assimilated
(QoP-LoA), and the level of confidence the user has with regard to the information assimi-
lated (QoP-LoC). They concluded that among the three dimensions of a user’s satisfaction
with a video, no significant results were found between personality dimensions and QoP-
LoE. In the same time, personality dimensions significantly affected user self-perceived
QoP-LoA and QoP-LoC. Their conclusion is confirmed by another study by Satgunam et al.
[35], where the authors investigated factors affecting enhanced video quality preferences
and found that while human factors play an important role overall, personality did not seem
to relate with the video enhancement preferences.

In the work by Zhu et al. [51], the authors present their study on the individual factors
influencing video QoE (Quality of Experience), conducted using an open-source Facebook
application developed for this purpose, named YouQ. Their results are presented and com-
pared with other two studies that investigated systematically the influence of user factors
on individual Quality of Experience [37, 52]. The three-way comparison shows that all
three studies confirm the importance of user factors since a large proportion of variance can
be explained by considering users as a random effect”, especially on the results of YouQ.
With regard to the correlation between the personality (all three studies used the Big five
personality traits model) and the user enjoyment and quality perception, the results were
mixed: regarding the influence on perceived quality, YouQ found no significant relationship,
i QoE [52] found that a user who has a more agreeable personality tends to rate the per-
ceived quality significantly higher, while CP-QAE-I [37] that a user who is conscientious
rates perceived quality of a video significantly more.

6 Limitations and future work

Our research represents the initial step demonstrating the link between the mobile multi-
media quality expectations and the context of use. Importantly, we show that even with
readily available information (i.e. activity, SI/TI) and tools (video resolution dial) we can
already enable energy savings, thus address the critical issue of constrained battery capacity
in mobile devices.

Assessing the amount of energy savings achievable via mobile video resolution adap-
tation was outside of the scope of our work, as it requires the knowledge of the actual
distribution of parameters (SI and TI) of mobile videos viewed by a user and the context
(e.g. activity) in which videos are watched.

The statistical analysis of our results, more specifically the linear regression results for
the resolution as the dependent variable showed that the linear regression R-squared value
is low, indicating that the model does not fully explain the data. This can be explained on
one hand by the limited data collected in our studies (not all videos where watched in all
activity states and not all videos were watched by all viewers), and on the other this shows
that aside from the viewer’s physical activity, the content of the video and the viewer’s
personality, there are also other dimensions that impact the quality requirements and which
must be further explored in order to enable accurate prediction of the appropriate quality
settings for video playback.

This was also confirmed by our assessment of machine learning models for predicting
the acceptable final resolution: when evaluating the personality-specific regressors, which in
general achieved better prediction accuracies than the generic prediction model, the results
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indicated limitations due to the small dataset size. This indicates that the activity informa-
tion, SI, TI, and personality traits may not be sufficient for training a generally applicable
machine learning model for mobile video resolution adaptation. In this regard, in future
work we plan to examine incremental and transfer learning in order to tune the model to
individual users.

Future research will also focus on contextual factors not considered in this work, such as
the cognitive task being performed or the user preferences for particular types of video con-
tent, which also influence the quality of experience and the user perception of a mobile video
playback. To acquire a wider gamut of contextual factors in mobile computing we envi-
sion creating a mobile framework that, for any given app, would sense the context of usage
across a variety of dimensions – among which physical activity, location, environmental
properties, time of day.

To overcome the limitations brought by having a small dataset, the next planned experi-
ments target collecting a larger amount of user data – which will enable developing a more
accurate, generalized model for predicting the acceptable playback resolution in a given
context, but also evaluating the models under real living conditions (given that the data col-
lected in this work was obtained after “scripted” experiments, which limit its usability “in
the wild”).

7 Conclusions

In this work we assessed the feasibility of dynamic energy efficient context-aware mobile
video playback adaptation, employing an approach fostered by the philosophy of approx-
imate mobile computing. After showing that playing videos on mobile devices at higher
quality (resolution) increases the energy consumption, we hypothesised that the actual
viewer quality expectations are not constant in the mobile environment, but instead vary
with the “context”. To explore the potential dimensions of the context in mobile video play-
back, we started by conducting an initial user experience study which revealed that the
resolution found acceptable by viewers was influenced by the physical activity state of the
viewer, and also the video content, more specifically its spatial and temporal characteristics.
In addition, this study showed that there are other viewer-related factors (e.g. personality,
cultural background) that may impact a user’s perception of a mobile video playback.

As such we conducted a second user experience study, involving 23 participants and
which was focused on gathering additional information about the user’s personality traits.
We examine the data of this study by both simple statistical analysis and mixed effects
modelling to take into account not just the fixed effects of the parameters but also the nested
nature of our data (i.e. grouped by personality type). Such a detailed analysis demonstrates
that a viewer’s mobile multimedia quality expectations indeed exhibit significant context-
dependent variations. These variations, however, remain rather nuanced, lightly steered by
different contextual, content, and viewer-related factors. More specifically, we find that:

– A viewer’s physical activity, in general, negatively impacts the desire for a higher
video resolution. As a consequence, a simple resolution adaptation driven by automatic
activity detection represents a low-hanging fruit for energy-efficient video playback.

– Spatial and temporal properties of a video impact the desired resolution, yet often only
when a viewer is on the move. The impact, however, remains subtle and difficult to
disentangle from other factors. In our first study, for instance, we find that the viewers
require a higher resolution for high-SI videos when running.
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– A viewer’s dominant personality may impact the required playback resolution. Observ-
ing that the highest resolution is selected by agreeable viewers, we hypothesise that
this is due to these viewers’ desire to comply with the presumed goals of the study and
indulge the researchers [9].

– A viewer’s interest in the topic of a video may drive the desire for a higher resolution
in certain contexts. While in this work we do not explicitly measure such desire (e.g.
through interviews with the participants), we observe that a viewer’s gender, as a weak
proxy for the interests, drives the desired resolution when videos of different spatial
information are watched.

After uncovering these factors, we moved to assess the feasibility of machine learning
models that predict the acceptable final resolution. We trained a general Random Forest
regressor using the Leave-One-Out Cross-Validation strategy and evaluated it using several
accuracy metrics. The model achieved an average accuracy of 73.7% (c.f. 67.6% base-
line), but experienced high variations in the prediction accuracy among viewers. To take
into account the differences in viewer preferences influenced by their personality traits, we
then elaborated separate personality-specific regressors, which in general achieved better
prediction accuracies than the generic prediction model.
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