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Abstract
This paper presents a multiplierless image-cipher, with extendable 2048-bit key-space,
based on a 4-dimensional (4D) quantized piece-wise linear cat map (PWLCM). The quan-
tized PWLCM exhibits limit-cycles of 4-bit encoded integers with periods greater than 107.
The synthesis of the PWLCM in a finite state space allows to eliminate the undesirable
finite precision effect due to the hardware realization. The proposed image-cipher combines
chaos, modular arithmetic, and lattice-based cryptography to encrypt a color image by per-
forming pixel permutation and diffusion in a single operation. Further, an image-dependent
confusion operation based on an 8-bit 2D-PWLCM is performed on the whole image to
enhance security. In order to increase the key-space without key duplication, 16 × 16 sub-
images are modified using sub-keys of different lattice length vectors generated from the
external key. Both simulations and security analyses confirm that the proposed algorithm
can resist common cipher attacks, in addition to its advantages such as simplicity, ease of
implementation on low-end processors and extensibility of key-space that allows it to easily
adapt even for future post-quantum computing attacks.

Keywords Cryptography · Modular arithmetic · Random integers · Security analysis

1 Introduction

The rapid development of digital image transmission over wireless communication media
has increased the concern of data security, leading to the demand for image cipher. There
exist several techniques for securing data, including steganography, watermarking, and
data encryption [2, 25]. The steganography technique conceals the message data; hence it
requires more communication bandwidth over a computer network, whereas the cryptogra-
phy technique transforms the message data, needing approximately the same bandwidth as
message data. Thus, encryption is the preferable and mature technology used in applications
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involving message transmission over a network [19]. In encryption, the message is scram-
bled using a secret key. The encryption’s strength depends on the secret key’s randomness
strength. Different techniques such as linear congruential, additive congruentional, linear
feedback shift register, multiple recursive generators and chaos based generators are used
to generate the random sequences using the seed as the initial condition of the dynamical
system that constitutes the secret key [18, 24, 37].

There exist different methods such as linear feedback shift register (LFSR), linear
congruential generator (LCG), Multiple Recursive Generators (MRGs) for generating
Pseudo-random Numbers (PRN). The disadvantages of these methods are the limited peri-
odicity of the random number sequence, which can be mitigated using a suitable chaotic
system.

Chaotic systems have intrinsic properties such as sensitivity to initial conditions, ergod-
icity, random-like dynamics behaviors, and unpredictability that are desired characteristics
for designing secure ciphers. Hence, chaos-based encryption methods have emerged besides
traditional ciphers such as Advanced Encryption Standard (AES), International Data
Encryption Algorithm (IDEA), Data Encryption Standard (DES), and RSA to enhance data
security. However, complex chaotic systems are required to make ciphers more secure.
Broadly, there are two types of dynamical chaotic systems: continuous-time and discrete-
time. The latter is suitable for data encryption as it is feasible to implement on digital
hardware. Among the basic discrete-time systems, 2D logistic map, 2D standard map, 2D
Henon map, and the 3D Baker map are used in cryptography [26, 34, 38, 39]. During the last
decade, the performance of such systems has been improved to increase their complexity,
leading to more randomness for secure data encryption. A combination of the piece-wise-
linear chaotic map and linear Diophantine Equation (LDE) enhances the cipher’s security
and was used for image encryption [14]. Although the ciphered image was obtained after
only one round, it has the drawback that the encryption process is independent of the
plain-image characteristics. The authors mitigated the drawbacks by proposing another one-
round encryption scheme in which large permutation and diffusion keys were generated
by sorting the solutions of the LDE [13]. Multiple chaotic maps were used to derive the
control parameters and initial values to increase the security level of the cipher [31]. It
enhances the key-space; however, the short-length encryption key makes the cipher vulner-
able against brute force attacks. Other ciphers based on the combination of chaotic systems
were also proposed to increase the key-space and are still under investigation [22, 29, 30,
33, 36].

In all the above chaos-based ciphers, chaotic maps need to be quantized during the hard-
ware implementation of the algorithm. Such a quantization reduces the randomness of the
chaotic orbits; hence the security level of the cipher [41]. In order to overcome such a draw-
back, it is necessary to either evaluate the complexity of the chaotic system under limited
precision conditions or to increase the computational precision. Most of the work reported
in the literature implements chaotic systems with 32-bit floating-point arithmetic, which is
hardware costly and requires high-end processors for execution [5, 15]. Hence, it is neces-
sary to design quantized chaotic systems with a large period of limit-cycles to implement
chaos-based ciphers on a low-end processor [12].

Arnold’s cat map (ACM) preserves the mixing property even after quantization among
the different chaotic maps. It has the advantage of (i) being easily defined both in the contin-
uous phase space and the discrete phase space (quantized version) and (ii) a computationally
simple 2D system that can be easily extended into a multi-dimensional system. It has been
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used in data encryption in the confusion step. Apart from the ACM, the combination of the
Henon and Arnold cat maps was used in designing an image cipher [11]. Although the algo-
rithm performed well, it has nevertheless been observed that the periodicity of restoring the
original image is too short, leading to security issues. More recently, an encryption scheme
based on continuous phase space of a generalized Arnold cat map was reported [20]. In [43],
the 2D ACMwas combined with an affine cipher to enhance the security level of the cipher.
In all of these algorithms, the ACM is used in its continuous phase space version, and the
precision of the generated obits is chosen as large as possible (32-bit, for example) to avoid
short limit-cycles due to the quantization process. The quantized ACM (QACM) has been
widely studied in the literature, and the relationship between its period and the number of
encoding bits has been determined [6, 7, 27].

The period of the QACM is an important parameter that can induce security issues when
using it in cryptography. It is known that the period of the QACM does not exceed 3m,
m ∈ N>1 being the modulo value. This limitation justifies the use of continuous phase space
ACM (m = 1) compared to QACM in many cryptographic applications. As a solution,
some researchers investigated the impact of the dimensionality and the control parameters
on the period of the system. The investigation showed that the period does not signifi-
cantly increase with the increase in dimension [16], where the conventional 2D Arnold’s
cat map was altered to a 3D map by introducing six control parameters. The obtained map
allows for improvement, but the period distribution and its impact on the system dynamics
are not evaluated. Due to the finite computer precision, chaotic sequences are transformed
into periodic ones. Further, the output of the 3D map was perturbed to mitigate such
degradation of chaotic sequences without investigating the impact of the perturbation on
randomness.

The present paper proposes a multiplierless 2048-bit key secure cipher based on the
quantized piece-wise linear cat map (PWLCM) obtained by perturbing the conventional
QACM [11]. We aim to directly generate randomly distributed integers with the desired
precision using the PWLCM. The proposed algorithm combines chaos, modular arithmetic,
and lattice-based cryptography [3, 8, 35]. The latter allows to easily extend the external key
length without duplication. Such a property is required as lattice-based ciphers are assumed
to resist future attacks in the era of post-quantum computing [3, 17, 28, 35]. For the algo-
rithm to be implemented even with low-end processors, we consider only 4-bit precision
random numbers generated from a 4D PWLCM for performing the confusion and diffusion
operations. We investigate the period of the generated random integers and their random-
ness to prove the high-security level of our cipher. In the proposed scheme, pixel positions
and values are modified in a single operation within blocks of size 16 × 16 pixels with a
2D PWLCM before confusing the whole image. It helps to enhance the speed performance.
During the confusion-diffusion operation, each 16 × 16 sub-image is modified using a dif-
ferent subkey corresponding to a combination of κ-length vectors (κ-dimensional lattice),
κ ∈ N≥1 [28].

The key contributions of the current work are as follows:

1. A novel integer arithmetic multiplierless 2048-bit key image cipher combining chaos,
modular arithmetic and lattice-based cryptography is proposed that uses a combination
of 4-bit and 8-bit modular addition and subtraction operations only;

2. An extensible key management technique combining modular arithmetic and lattices is
presented;
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3. A 4-bit 2D and 4D PWLCM is proposed to generate large period pseudorandom
sequences;

4. A performance analysis for different attacks is presented.

The rest of the paper is organized as follows: Section 2 presents a brief recalling of ACM and
the definition of the PWLCM; Section 3 presents the proposed cipher; Section 4 presents the
security analysis of the proposed encryption scheme, and conclusions are given in Section 5.

2 The 4D piece-wise linear cat map (PWLCM)

2.1 Brief recall on 2D PWLCM

Arnold’s cat map is basically a 2D chaotic map of repeated folding and stretching in a
limited area. It has been popularly used in multimedia chaotic encryption [5]. The 2D ACM
is modeled as [23]: {

x(t + 1) = x(t) + αy(t)

y(t + 1) = βx(t + 1) + y(t)
mod m, (1)

which can be rewritten using matrix representation as

x(t + 1) = Ax(t) mod m (2)

where

A =
(
1 α

β α · β + 1

)
,

(α, β) ∈ N
2≥1, and x = (x, y)T ; (·)T is the transpose of (·). The above map is a discrete time

system and is continuous in the phase space for (x, y) ∈ [0, 1)2 and m = 1. The QACM is
obtained for (x, y) ∈ [0, m)2 with m ∈ N>1. The QACM is periodic and its period depends
on m and the parity of both α and β. It is shown that for α = β = 1 and m = 2n, the period
�n behaves like [4, 10]

�n = 2 · �n−1, n > 2 (3)

with �1 = �2 = 3 for the minimal period.
The period of the QACM can be computed using (3) and it is too short. As an example,

for an 8-bit encoded phase space values, the period is �8 = 192. In order to increase the
period of QACM, we proposed the PWLCM by introducing a nonlinear perturbation term
to the conventional QACM, as shown below [9]:

x(t + 1) = Ax(t) + xc(t) mod m, (4)

where the perturbation xc(t) is defined as

xc(t) =

⎛
⎜⎜⎜⎝

M∑
i=1

(
ai + y(t)

)
mod ci

N∑
j=1

(
bj + x(t + 1)

)
mod dj

⎞
⎟⎟⎟⎠ (5)

with (i, j) ∈ N. In (4), ci and dj are two natural numbers such that 0 ≤ ci < m + ai

and 0 ≤ dj < m + bj , 0 ≤ ai, bj < m if (ci, dj ) = (0, 0); 0 ≤ ai < ci if ci �= 0
and, 0 ≤ bj < dj if dj �= 0. The parameters ai , bj , ci and dj are defined as perturbation
parameters that can also be used as control parameters, while a = (ai), b = (bj ), c = (ci)
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and d = (dj ) are control vectors. We showed in [9] that the system in (5) can be put in the
form

x(t + 1) = Bx(t) + C(t) mod m (6)

where

B =
(

1 α′
β ′ α′β ′ + 1

)
, (7)

with α′ = M + α, β ′ = N + β and C(t) =
(
C1(t), C2(t)

)T

such that

C(t) =

⎛
⎜⎜⎜⎝

M∑
i=1

(
ai − εici · u

(
ai + y(t) − ci

))

β ′C1(t) +
N∑

j=1

(
bj − εj dj · u

(
bj + x(t + 1) − dj

))
⎞
⎟⎟⎟⎠ , (8)

where εi =
⌊

ai+y(t)
ci

⌋
and εj =

⌊
bj +x(t+1)

dj

⌋
. u(t) is the Heaviside function defined as

u(t) =
{
0, if t < 0;
1, otherwise.

(9)

We verified that the PWLCM is a conservative system that exhibit large periods [9]. In order
to use it both for image scrambling and diffusion, we suggest its 4D modelling.

2.2 The proposed 4D PWLCM

The above 2D PWLCM can be easily extended to a 4D PWLCM by coupling two 2D
PWLCM x = (x, y)T and z = (q, r)T such that:⎧⎪⎪⎨

⎪⎪⎩

x(t + 1) = x(t) + αy(t) + F1(y, t)

y(t + 1) = y(t) + βx(t + 1) + F2(x, t)

q(t + 1) = q(t) + γy(t + 1) + F3(y, t)

r(t + 1) = r(t) + ζq(t + 1) + F4(q, t)

mod m, (10)

where (α, β, γ, ζ ) ∈ N
4. F1(y, t), F2(y, t), F3(y, t) and F4(y, t) are the coupling nonlinear

terms, defined as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(y, t) =
M∑
i=1

(
ai + y(t)

)
mod ci

F2(x, t) =
N∑

j=1

(
bj + x(t + 1)

)
mod dj

F3(y, t) =
P∑

k=1

(
ek + y(t + 1)

)
mod gk

F4(q, t) =
W∑
l=1

(
fl + q(t + 1)

)
mod hl

(11)

The 4D PWLCM defined in (10) is invertible and the corresponding inverse system is⎧⎪⎪⎨
⎪⎪⎩

r(t) = z(t + 1) − ζq(t + 1) − F4(q, t)

q(t) = q(t + 1) − γy(t + 1) − F3(y, t)

y(t) = y(t + 1) − βx(t + 1) − F2(x, t)

x(t) = x(t + 1) − αy(t) − F1(y, t)

mod m. (12)
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2.3 Stability analysis

In order to investigate the stability of the 4D PWLCM, we evaluated its Jacobian matrix. By
using the same expansion as in (5)–(9), the system can be rewritten as in (6) with

B =

⎛
⎜⎜⎝

1 α′ 0 0
β ′ 1 + α′β ′ 0 0

β ′γ ′ γ ′(1 + α′β ′) 1 0
β ′γ ′ζ ′ γ ′ζ ′(1 + α′β ′) ζ ′ 1

⎞
⎟⎟⎠ , (13)

and C(t) =
(
C1(t), C2(t), C3(t), C4(t)

)T

such that

C(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M∑
i=1

(
ai − εici · u

(
ai + y(t) − ci

))

β ′C1(t) +
N∑

j=1

(
bj − εj dj · u

(
bj + x(t + 1) − dj

))

γ ′C2(t) +
P∑

k=1

(
ek − εkgk · u

(
ek + y(t + 1) − gk

))

ζ ′C3(t) +
W∑
l=1

(
fl − εlhl · u

(
fl + q(t + 1) − hl

))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

From the above equations, we deduce the Jacobian matrix as

J =

⎛
⎜⎜⎝

1 J1,2(t) 0 0
J2,1(t) J2,2(t) 0 0
J3,1(t) J3,2(t) 1 0
J4,1(t) J4,2(t) J4,3(t) 1

⎞
⎟⎟⎠ , (15)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J1,1(t) = α′ − ∑M
i=1(ciδ(y(t) + ai − ci))

J2,1(t) = β ′ − ∑N
j=1(dj δ(x(t + 1) + bj − dj ))

J2,2(t) = 1 + J2,1(t)J1,2(t)

J3,1(t) = J2,1(t)(γ
′ − ∑P

k=1(gkδ(y(t + 1) + ek − gk)))

J3,2(t) = J2,2(t)(γ
′ − ∑P

k=1(gkδ(y(t + 1) + ek − gk)))

J4,1(t) = J3,1(t)J4,3(t)

J4,2(t) = J3,2(t)J4,3(t)

J4,3(t) = ζ ′ − ∑W
l=1(hlδ(q(t + 1) + fl − hl))

,

and α′ = α + M , β ′ = β + N , γ ′ = γ + P , ζ ′ = ζ + W . The 4D PWLCM thus defined is
conservative as det(J ) = 1, which implies that the sum of the four corresponding Lyapunov
exponents is equal to 0. While computing the eigenvalues of J , we found 
1 = 
2 = 1,
the other eigenvalues are


3(t) = 1 + 1

2

(
α′ −

∑M

i=1
ciδ

(
y(t) − τ i

y

))(
β ′ −

∑N

j=1
dj δ

(
x(t + 1) − τ

j
x

))
⎛
⎜⎜⎜⎝1 +

√√√√√1 + 4(
α′ − ∑M

i=1ciδ
(
y(t) − τ i

y

))(
β ′ − ∑N

j=1dj δ
(
x(t + 1) − τ

j
x

))
⎞
⎟⎟⎟⎠

(16)
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and


4(t) = 1 + 1

2

(
α′ −

∑M

i=1
ciδ

(
y(t) − τ i

y

))(
β ′ −

∑N

j=1
dj δ

(
x(t + 1) − τ

j
x

))
⎛
⎜⎜⎜⎝1 −

√√√√√1 + 4(
α′ − ∑M

i=1ciδ
(
y(t) − τ i

y

))(
β ′ − ∑N

j=1dj δ
(
x(t + 1) − τ

j
x

))
⎞
⎟⎟⎟⎠

(17)

The Lyapunov exponents corresponding to 
1,2 are equal to zero. The sum of the Lyapunov
exponents being zero implies that 
3 > 1 (corresponding to a positive Lyapunov exponent)
and 0 < 
4 < 1 (corresponding to a positive Lyapunov exponent). The steady state of the
system depends on the perturbing parameter and remains difficult to formally determine.
Figure 1 presents the behavior of the largest Lyapunov exponent for arbitrary parameter
setting and various initial conditions (x0, y0, q0, r0). We fixed q0 = r0 = 1 and set z0 =
2nx0 + y0, where 0 ≤ x, y ≤ 2n − 1, ar = ∑N

i=12
n(i−1)aN , and n = 4 is the number of bits

or precision. Figure 1(a) shows the Lyapunov exponent as a function of initial conditions
z0, where control vectors are set as a = e = (1, 1, 0, 0), b = f = (0, 2, 0, 0), c = g =
(0, 3, 1, 1), d = h = (3, 5, 1, 1). Figure 1(b) depicts the Lyapunov exponent in terms of the
control vector a represented as parameter ar , with N = 3 where x0 = y0 = 2, b = (0, 2, 1),
c = (15, 15, 15), d = (3, 5, 1), e = (1, 1, 0), f = (0, 2, 0), g = (0, 3, 1), and h = (3, 5, 1).
These plots show that the largest Lyapunov exponent remains positive for the chosen initial
conditions and control parameters.

Fig. 1 Lyapunov exponent of the 4D PWLCM: (a) behavior of the Lyapunov exponent λ(z0) with respect to
the initial condition z0 = 2nx0 + y0, for n = 4 and given control vectors; (b) behavior of the four Lyapunov
exponents λ1,2,3,4(ar ) with respect to the control vector a, for n = 4 and given initial condition and control
vectors b, c, d, e, f, g, and h
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Table 1 Comparison of the 2D QACM and 2D PWLCM periods

n (a1, b1) (c1, d1) �QACM �PWLCM

2 (1,2) (3,3) 3 90

3 (3,3) (2,3) 6 780

4 (5,1) (11,3) 12 12759390

5 (2,2) (7,5) 24 56934108

6 (6,2) (5,13) 48 1.7870e+12

7 (2,2) (7,5) 96 1.2041e+16

8 (6,2) (5,13) 192 6.918e+56

2.4 Period and randomness evaluation of the PWLCM

Similar to the QACM, the proposed 4D PWLCM is chaotic while used in a continuous phase
space (m = 1). As we are interested in using it in a finite state phase space (m = 4 and m =
8), it is no longer chaotic but preserves the mixing properties of the corresponding chaotic
systems. For it to be efficient for security applications, its period should be very large. In
this subsection, we estimate the period �n of the proposed 4D PWLCM for different values
of the precision n and some arbitrary values of the perturbation parameters. The periods of
PWLCM are compared with the QACM and tabulated in Tables 1 and 2. From the Table 1,
we can observe that for any value of n, the period of the proposed PWLCM is significantly
higher than that of the corresponding QACM.

Table 2 shows the comparison of the 4D PWLCM and 4D QACM. It confirms that
the periods of the proposed map are significantly higher than those of the QACM for any
arbitrary parameter values, α = β = γ = ζ = 1, M = N = 1:

In order to testify the mixing property of the 4D PWLCM, we propose to shuffle a 213 ×
213 periodic image obtained by repeating sequences of 8-bit encoded unsigned integers.
The image was shuffled with x and y coordinates of the 4D PWLCM. We set as initial

conditions, q0 = 1, r0 = 2; x0, y0 ∈ [
0, 213 − 1

]2
and controls parameters a1 = 1, b1 =

2, e1 = 0, f1 = 1, c1 = 3, d1 = 3, g1 = 3 and h1 = 3; the corresponding period is
148740480. The NIST800-22 statistical test was performed after 30 iterations of image
scrambling with the PWLCM and the QACM. The data set was divided into 100 sets of
1000000 bits and the results obtained are summarized in Table 3. The comparison of the
two results confirms that the 4D PWLCM is suitable for the image scrambling as it passes
all the tests.

Table 2 Comparison of the 4D QACM and 4D PWLCM periods

n (a1, b1, e1, f1) (c1, d1, g1, h1) �QACM �PWLCM

2 (1,2,1,0) (3,3,3,3) 12 360

3 (6,3,1,1) (11,1,5,11) 24 240240

4 (6,3,1,1) (7,1,1,1) 48 340728960
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Table 3 NIST 800-22 test results

Sub-Tests 4D QACM 4D PWLCM

P-value Proportion P-value Proportion

Frequency 0.0 22/100 0.319084 99/100

Block frequency 0.0 0/100 0.574903 98/100

Cumulative sums (forward) 0.0 0/100 0.289667 100/100

Runs 0.0 0/100 0.657933 99/100

Longest run 0.0 0/100 0.017912 100/100

Rank 0.0 0/100 0.657933 100/100

FFT 0.0 0/100 0.319084 98/100

Non overlapping 0.0 0/100 0.971699 100/100

Overlapping 0.0 0/100 0.574903 99/100

Universal 0.0 0/100 0.066882 100/100

Approximate entropy 0.0 0/100 0.304126 100/100

Random excursions 0.0 0/61 0.957319 61/61

Random excursions variant 0.0 0/61 0.957319 61/61

Serial 0.0 0/100 0.955835 98/100

Linear complexity 0.0 0/100 0.955835 100/100

3 Proposed encryption algorithm

The proposed encryption algorithm has two stages, namely diffusion-confusion and con-
fusion only. In the pixel diffusion-confusion stage, the pixel value of each sub-block is
diffused and confused using the 4D PWLCM, whereas in the subsequent block confusion
stage, each diffusion-confusion sub-block is split into sub-images that are confused using
the 2D PWLCM.

The proposed scheme generates the initial values and the control parameter values of
4D PWLCM from the external key, whereas the control parameters of the 2D PWLCM
is derived from the external key along with the diffusion-confusion image. Thus, it is
image-dependent. The detailed procedure for generating these parameters is described in
Section 3.1.

The algorithmic steps of the proposed cipher are mentioned below:
The block diagram of the proposed image cipher is shown in Fig. 2. The minimum num-

ber of rounds for the algorithm to be secure is R = 2. Indeed, once the image-dependent
step is applied in the first round, we need to go for a second round for the image-dependent
shuffling to take effect in the diffusion process, thus increasing the algorithm’s sensitivity
to the plain-image.

3.1 External keymanagement

The external key is defined by using NK ASCII characters, {Ck}, 0 ≤ k ≤ NK − 1, to
derive κ-length (κ = 2�NK

8 �) control vectors a, b, c, d, e, f, g, h whose coordinates are 4-bit
encoded unsigned integers. As ASCII characters are 8-bit encoded, each character is divided
into two blocks of 4 bits that are used as coordinates of each control vector. Therefore,
θ = κ

2 ASCII characters are required to determine the coordinates of each control vector. In
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Algorithm 1

the case of 256-bit key for example, θ = 4 and characters C0 to C3 are used to determine
coordinates of the control vector a, C4 to C7 are used for b, C8 to C11 for c, C12 to C15
for d, C16 to C19 for e, C20 to C23 for f, C24 to C27 for g and C28 to C31 are used for h. In
the case of a 2048-bit key, θ = 64 ASCII characters are required to determine each control
vector. Therefore, a for example is defined as:{

a(2ξ − 1) =
⌊

Cξ−1
16

⌋
a(2ξ) = Cξ−1 mod 16

(18)

Fig. 2 Synoptic of the proposed cipher
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where 1 ≤ ξ ≤ θ . The other vectors b, e and f are defined using the same principle, from
the corresponding ASCII symbols. Similarly, c is defined as:⎧⎨

⎩
c(2ξ − 1) = a(2ξ − 1) +

⌊
Cξ+κ−1

16

⌋
c(2ξ) = a(2ξ) +

(
Cξ+κ−1 mod 16

) (19)

where 1 ≤ ξ ≤ θ . The coordinates of the other control vectors d, g and h can be defined
using the same approach. Thus, control vectors can be considered as belonging to an κ-D
lattice.

3.2 Pixel decomposition

In step 5, individual pixel, i of sub-image Sj , j ∈ N are decomposed into two 4-bit encoded
integers qi and ri . For an 8-bit encoded pixel Pi , qi and ri are obtained as

qi =
⌊

Pi

16

⌋
.

and

ri = Pi mod 16

3.3 Pixel confusion-diffusion process

In step 6, the confusion and diffusion operations are combined in a single operation
(confusion-diffusion). Indeed, the coordinates xi and yi , as well as the intensity coordinates
qi and ri of the pixel Pi are used as initial conditions of the 4D PWLCM to output new
coordinates xi′ , yi′ , qi′ and ri′ using (20). As Sj is a vector, there is a relationship between
xi, yi and i such that

xi = i mod 16,

and

yi =
⌊

i

16

⌋
.

For each sub-image Sj , only a single coordinate a(k), b(k), c(k), d(k), e(k), f(k), g(k), and
h(k), k > 0, is used as control parameter to 4D PWLCM as given below:⎧⎪⎪⎨

⎪⎪⎩

x(t + 1) = x(t) + αy(t) + (a(k) + y(t)) mod c(k)

y(t + 1) = y(t) + βx(t + 1) + (b(k) + x(t + 1)) mod d(k)

q(t + 1) = q(t) + γy(t + 1) + (e(k) + y(t + 1)) mod g(k)

r(t + 1) = r(t) + ζq(t + 1) + (f(k) + q(t + 1)) mod h(k)

mod 16, (20)

where k = 1 + j mod κ . The new position of the diffused pixel i′ is obtained after three
iterations of the PWLCM as

i′ = 16 · yi′ + xi′ (21)

The corresponding intensity value is obtained as

Pi′ = 16 · qi′ + ri′ . (22)
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3.4 Image-dependent confusion

In order to enhance the security level of the cipher and prevent chosen-plaintext attacks, an
additional image-dependent confusion step is performed using the 2D PWLCM, described
as⎧⎪⎪⎨

⎪⎪⎩
x(t + 1) =

(
x(t) + αy(t) +

16∑
k=1

(
a1(k) + y(t)

)
mod c1(k)

)
mod m1

y(t + 1) =
(

y(t) + βx(t + 1) +
16∑

k=1

(
b1(k) + x(t + 1)

)
mod d1(k)

)
mod m2

(23)

where a1, b1, c1 and d1 are 16-length control vectors whose coordinates are 4-bit encoded
values derived from the image of step 8 and the external key as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1(1 : κ) = � mod c
a1(κ + 1 : 2κ) = � mod d
b1(1 : κ) = � mod g
b1(κ + 1 : 2κ) = � mod h
c1(1 : κ) = a1(1 : κ) + � mod a
c1(κ + 1 : 2κ) = a1(κ + 1 : 2κ) + � mod b
d1(1 : κ) = b1(1 : κ) + � mod e
d1(κ + 1 : 2κ) = b1(κ + 1 : 2κ) + � mod f

(24)

where

� =
NL∑
i=1

NC∑
j=1

Ic(i, j). (25)

Ic is the intermediate ciphered image obtained in step 8. m1 and m2 are defined such that{
m1 = NL

T1

m2 = NC

T2

(26)

with (T1, T2) ∈ N
2≥1. T1×T2 is the size of sub-images to be shuffled, m1×m2 is the number

of sub-images and NL × NC is the size of the image.

4 Results and security analysis

The performance of the proposed encryption algorithm is analyzed by encrypting standard
images like “Lena”, “Baboon”, “Airplane”, “Peppers”, of size 512 × 512 and 256 gray lev-
els. Figure 3 respectively represents the plain-text “Lena” image, its encrypted image, and
the decrypted image with the same key. All simulations are performed using MATLAB
2018b on a CPU with an Intel(R) Core (TM) i5-8250u CPU @ 1.60 GHz and 8 GB RAM
with the Windows 10 operating system. In the current simulation, a 256-bit external encryp-
tion key is set as K1 = azertyuiopqsdfgjazertyuiopqsdfg0. We also set α = β = γ = ζ = 1
to make the algorithm multiplierless.

4.1 Evaluationmetrics

This subsection presents the definition of evaluation metrics used to measure the proposed
cipher’s strength.
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Fig. 3 Example of ciphered image of Lena using the proposed encryption algorithm: (a) plain-text image;
(b) ciphered image and (c) decrypted image

4.1.1 Entropy measure

The Shannon entropy of the ciphered image is the primary indicator to confirm that the
cipher is secure against permutation of pixels. It measures the disorder or randomness of
pixels. For an 8-bit encoded image, it is determined as

H = −
255∑
i=0

p(vi) log2(p(vi)), (27)

where 0 ≤ vi ≤ 255 are pixel values and p(vi) the probability of vi . It is to be noted that
for an 8-bit encoded image, the maximum value of the entropy is H = 8.

4.1.2 Correlation coefficient

The correlation coefficient is used to measure the similarity between two images A and B,
and is defined as

ρA,B =
E

(
(A − A)(B − B)

)
σA · σB

, (28)

where E(·) is the expectation value; A and B are images between which the correlation
coefficient needs to be evaluated. A and B represent the mean value of images A and B

respectively. Similarly, σA and σB represent the standard deviation of imageA andB respec-
tively. In general, for any plain-text image there exists high correlation between adjacent
pixels, whereas in the ciphered image it should be close to 0.

4.1.3 NPCR and UACI measures

The number of changing pixel rate (NPCR) and unified averaged changed intensity
(UACI ) of an image are the commonly used parameters to measure the change in encrypted
pixels by modifying the value of a single-pixel in the original image. These metrics are com-
monly used to evaluate the strength of ciphers for differential attacks. For a 256-gray level
image, the NPCR and UACI between two images are defined as

NPCRA,B =
∑NL

i=1

∑NC

j=1D(i, j)

NL × NC

× 100 (29)
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where

D(i, j) =
{
1, if A(i, j) �= B(i, j);
0, otherwise.

(30)

and

UACIA,B = 100

255

∑NL

i=1

∑NC

j=1|A(i, j) − B(i, j)|
NL × NC

(31)

where F = 255 is the largest supported value of 256 gray level images. A high NPCR
(NPCR > 99.5810) and UACI (33.3445 ≤ UACI ≤ 33.5826) [21] imply a high
resistance of the cipher to differential attacks.

4.2 Key-space analysis

The key-space analysis is performed by evaluating the key-space and key sensitivity.

4.2.1 Key-space

Key-space is an ensemble of all possible combinations of keys that are used for encryp-
tion. A 256-bit key is known to be sufficiently large to prevent brute force attacks. One of
the proposed cipher’s main advantages is its key-space’s extensibility. To simulate a post-
quantum computing attack, we extended the key to 2048 bits. Indeed, most chaos-based
ciphers exhibit a large key-space with keys that cannot easily be proven to be different.
However, the sensitivity of the key is verified by changing its least significant bit (LSB).
However, by our approach, the key-space can be extended as desired without sacrificing the
independence of the keys. This approach consists of affecting to each sub-image j a sub-
key (a(k), b(k), c(k), d(k), e(k), f(k), g(k), h(k)) corresponding to a map QACMk , with
k = 1 + j mod κ . Each sub-image j is encrypted with a different map QACMk , such that
any permutation in the set {QACMk}1≤k≤κ affects the behaviour of the cryptogram, thus
giving the possibility to extend the key-space.

4.2.2 Sensitivity of the key

Key sensitivity measures the sensitivity of the encryption algorithm to a small change in
the key value. A high sensitivity of the key is required to prevent adaptive chosen-plaintext
attacks and linear cryptanalysis. To evaluate the sensitivity of our cipher to the external key,
we have encrypted the same image with two slightly different keys K1 as mentioned above
and K2 = azertyuiopqsdfghazertyuiopqsdfg1. The key K2 has only one-bit change from
key K1. The plain-text image is encrypted with keys K1 and K2; UACI, NPCR, and cor-
relation coefficients between the two encrypted images are tabulated in Table 4. The NPCR
and UACI values are more than the reference values, and correlation coefficients close to
zero suggest that the algorithm is highly sensitive to the key. In addition, the entropy of
the image encrypted with key K1 and decrypted with key K2 is computed and tabulated in
the same table. The entropy close to eight demonstrates that the decryption is unsuccess-
ful; hence, the proposed algorithm is extremely sensitive to the key. We repeated the same
experiment with a 2048-bit key. We set the 2048-bit as K ′1 = K1K1K1K1K1K1K1K1
and a one-bit different key K ′2 as K ′2 = K1K1K1K1K1K1K1K2. The sensitivity of the
key was evaluated under the same conditions as for the 256-bit key and the results are tab-
ulated in Table 4. It demonstrates that the sensitivity of the key analysis is the same as in
the case of the 256-bit key. Therefore, we can conclude that the proposed cipher presents an
extensible key space than can be adapted depending on the desired security level.
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Table 4 Detailed statistical properties of images encrypted with two slightly different keys K1 and K2 in
the case of 256-bit, and K ′1 and K ′2 in the case of 2048-bit

256-bit 2048-bit

Image Color NPCR UACI Entropy Correlation NPCR UACI Entropy Correlation

Lena Red 99.6078 33.4238 7.9994 0.0017 99.6239 33.4431 7.9994 0.0004

Green 99.6098 33.4896 7.9994 − 0.0015 99.5922 33.4277 7.9991 0.0000

Blue 99.6136 33.5038 7.9993 − 0.0010 99.6296 33.5368 7.9993 − 0.0043

Baboon Red 99.6048 33.4987 7.9994 0.0012 99.6002 33.4614 7.9994 0.0004

Green 99.5956 33.4434 7.9992 0.0006 99.6178 33.5194 7.9992 − 0.0010

Blue 99.6243 33.4855 7.9992 − 0.0015 99.6094 33.4075 7.9993 0.0017

Airplane Red 99.6063 33.4631 7.9993 0.0007 99.5899 33.4199 7.9992 0.0004

Green 99.6208 33.4720 7.9993 − 0.0014 99.6155 33.4583 7.9992 0.0008

Blue 99.5884 33.5359 7.9993 − 0.0043 99.6162 33.4986 7.9994 0.0005

Peppers Red 99.6117 33.5103 7.9993 − 0.0017 99.6014 33.5019 7.9993 − 0.0027

Green 99.6426 33.3958 7.9992 0.0028 99.5899 33.5445 7.9993 − 0.0033

Blue 99.6315 33.3403 7.9988 0.0039 99.6273 33.4066 7.9993 0.0006

NPCR, UACI and entropy are to be compared with reference values NPCR > 99.5810 and 33.3445 ≤
UACI ≤ 33.5826 and 8 respectively. For this experiment, we used R = 3 rounds

In Fig. 4, an example of ciphering/deciphering realized with two (R = 2) rounds is
presented. The plain-image is encrypted with K ′1. After that, the ciphered image is suc-
cessfully decrypted with K ′1. However, the decryption fails with K ′2, which attests to the
high sensitivity of the cipher to the encryption key.

Security of the proposed cipher, although we set T1 = T2 = 2. Figure 5 shows the
behavior of the entropy values of the RED component of the image of Lena encrypted
with K1 and those of the corresponding attempt for decryption using K2. The entropy is
evaluated by varying T1 and T2 and plotted in terms of μ1 = log2(T1) and μ2 = log2(T2)
in Fig. 5.

From this figure, we observed that the sensitivity of the key depends on the choice of
(T1, T2). We verified that the system is secure to one-bit change in the external key as
(μ1, μ2) < (4, 4). The upper limit μm = 4 of μ1 and μ2 corresponds to the binary log-
arithm of the block length of the confusion-diffusion step. We observe that the entropy
decreases with an increase in T1 or T2, leading to a decrease in the key sensitivity. Further,
in some cases, entropy values are close to those of the plain-image entropy (HR = 7.2531).
It attests to the vulnerability of the proposed scheme for these values of μ1 and μ2. In the
proposed method, such a sensitivity decrease is compensated by increasing the number of
rounds of the algorithm.

4.3 Statistical analysis

The histogram, the correlation of adjacent pixels (ρh : correlation coefficient between hor-
izontal adjacent pixels; ρv : correlation coefficient between vertical adjacent pixels; ρd :
correlation coefficient between diagonal adjacent pixels) and the information entropy of the
ciphered image are evaluated for several 256 gray-scale images. Figure 6 shows the results
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Fig. 4 Sensitivity of the key to one-bit change: (a) successfully decrypted (original) image with K ′1, (b)
unsuccessfully decrypted image with K ′2, (c) histogram of the original image and (d) histogram of the
unsuccessfully decrypted image

obtained for the color image of Lena (Fig. 4(a)) by varying number of rounds R between
1 and 10. Figure 6 suggests that the entropy is independent of the number of rounds R for
R > 1, thereby attests that the minimum number of rounds required for the cipher to be
secure is R = 2. Similarly, it also shows a satisfactory analysis result for the correlation of
horizontally (ρh), vertically (ρv), and diagonally (ρd ) adjacent pixels. Indeed, it can be con-
cluded that the correlation coefficients of the three image components, i.e., RED, GREEN,
and BLUE, are close to zero, independently of the number of rounds R. Thus, the proposed
cipher satisfies the zero-correlation property necessary to resist statistical attacks.

Figure 7 shows the histograms of two round ciphered images of Lena for the RED,
GREEN, and BLUE components. It appears that the histogram of each encrypted compo-
nent is fairly uniform and significantly different from that of the corresponding plain-image
component. It demonstrates that deducing the secret key from the ciphertext during the
known/chosen plaintext attacks is hard.

4.4 Differential attack

For the cipher to resist differential attacks, it must be sensitive to a small change (single-
pixel change) in the plain-image. We evaluated the robustness of our cipher against the
differential attacks by comparing the NPCR and UACI values of a two-round ciphered
image of Lena to their reference values. We diagonally varied the position (x, y) of changed
pixels as (k, k), with 1 ≤ k ≤ 512 by the step size of 2, and computed the corresponding
NPCR and UACI for the RED, GREEN and BLUE components of the color image of
Lena, and plotted in Fig. 8.
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Fig. 5 Behaviour in term of μ1 and μ2 of entropy values of the ciphered and decrypted components of the
color image of Lena(R = 2): (a)-(c) cases of the respective RED, GREEN and BLUE components encrypted
with K1; and (d)-(f) cases of attempt for decryption with K2 for RED, GREEN and BLUE components,
respectively. Satisfactory entropy values after an attempt for decryption are observed for (μ1, μ2) < (4, 4)

A cipher is secure as NPCR > 99.5810 and 33.3445 ≤ UACI ≤ 33.5826 (ν = 0.01
significance level) for gray images of size 512 × 512 [21]. The result in Fig. 8 shows that
our cipher is sensitive to one-pixel change for R > 1. From this figure, it appears that the
proposed cipher can resist differential attacks as the NPCR and UACI remain in the good
range independently of the coordinate of the pixel change. We also observed that the values
of the NPCR and UACI depend on the input image. Indeed, for two different components,
the NPCR values obtained from the same pixel change coordinate are different; the same
observation is made for the UACI . Table 5 shows comparative values of the proposed
cipher’sNPCR andUACI and other recent cipher (R = 3). This comparison also confirms
the effectiveness of our algorithm.

4.5 Speed performance analysis

The execution speed of the proposed cipher is evaluated using Matlab 18b in the CPU as
specified above. Table 6 compares the execution speed of the proposed algorithm with other
chaos-based ciphers. We used the gray-scale images of cameraman (256 × 256) and Lena
(512×512) for this experiment. The average execution time, forR = 2, is about 0.4478 s for
the 512× 512 gray-scale images. Although this speed is comparable to that of Refs. [1] and
[42], it remains low as compared to the one obtained in [13]. Such a low execution speed is
justified by the multiple data conversion involved in the algorithm, which is not necessary
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Fig. 6 Entropy values H and correlation coefficients ρ in terms of the number of rounds R. (a) Entropy
values (H ), (b)-(d) correlation coefficients of respectively horizontal (ρh), vertical (ρv) and diagonal (ρd )
adjacent pixels for the RED, GREEN and BLUE components

Fig. 7 Histograms of the image of Lena: first line shows from left to right histograms of the (a) RED, (b)
GREEN and (c) BLUE components of the original image, respectively; second line (d)-(f) shows histograms
of the corresponding components of the ciphered image
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Fig. 8 Dependence of NPCR and UACI on position ((k, k)) of the changed pixel: case of the color image
of Lena. The change applies to each image component and the NPCR of the RED, GREEN and BLUE
components are computed separately for each of the components

for hardware implementation. For example, the decomposition of the pixel gray-level into
two 4-bit encoded integers q(t) and r(t) implies a division and a modulo operation. In
the hardware implementation, these operations correspond to the four most significant bits
(MSB) as the quotient q(t) and the four least significant bits (LSB) as the remainder r(t),
thereby is time-saving. Similarly, the inverse of this decomposition is time costly in Matlab
and corresponds to the concatenation of the two 4-bit outputs q(t + 1) and r(t + 1) in
the hardware implementation. Thus, the proposed algorithm is more suitable for low-cost
hardware implementation than software implementation. The overall comparison shows that
the cipher in Ref. [13] is running faster in the Matlab environment than in ours; however,
it requires floating-point arithmetic that is hardware costly than the 4-bit integer arithmetic
used in the proposed scheme. Our algorithm offers the advantage of combining only 4-
bit and 8-bit integer arithmetic operations, precisely addition and subtraction. These basic
operations make simpler its hardware implementation even with low-end microprocessors

Table 5 Comparison of NPCR and UACI values for color images

NPCR (%) UACI (%)

Cipher Image RED GREEN BLUE RED GREEN BLUE

Proposed Baboon 99.6429 99.6437 99.6464 33.5764 33.5881 33.6311

Peppers 99.6479 99.6410 99.6403 33.6121 33.5629 33.5863

Ref. [32] Baboon 99.6246 99.5914 99.5972 33.4702 33.4641 33.4625

Peppers 99.6315 99.6017 99.6380 33.5577 32.7183 33.5702

Ref. [40] Baboon 99.6056 99.6164 99.6256 33.4478 33.4495 33.4401

Peppers 99.6098 99.6218 99.5948 33.5012 33.4415 33.4536
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Table 6 Comparison of encryption time of different algorithms

Image size Execution time (s)

Proposed cipher Ref. [13] Ref. [1] Ref. [42]

256 × 256 0.1335 0.0202 0.1789 0.1950

512 × 512 0.4478 0.0708 0.6639 0.6500

The average execution time (in second) of the proposed cipher are obtained withR = 2 andK1 as encryption
key

without losing its security properties. Moreover, the algorithm can easily be parallelized
according to its architecture shown in Fig. 2.

5 Conclusion

This paper proposed an extendable integer image cipher based on the combined 4-bit and
8-bit PWLCM. The cipher does not require any multiplication operation. The PWLCM is
obtained by perturbing the convectional QACM and presents an extended period. The key
space extensibility is achieved using different lattice length (κ) of the PWLCM control vec-
tors. The extended key space helps to avoid key duplication. We evaluated the sensitivity
of the key under 256-bit and 2048-bit key conditions and verified the high sensitivity of
the key for both cases. Such flexibility for the extensibility of the key-space makes the pro-
posed cipher a good candidate to resist brute-force attacks even under the post-quantum
computing situation. The main advantages of the proposed cipher are the low number of
bits involved in its hardware implementation and the extensibility of its key-space. More-
over, only unsigned integer addition and subtraction operations are used, contrary to other
chaos-based ciphers that involve floating-point arithmetics, including time-consuming oper-
ations like multiplications and divisions. The statistical, differential, and key-space analysis
demonstrate the robustness of the proposed cipher against known attacks. We further expect
to reduce the block size while maintaining a high-security level of the cipher, simplifying
its implementation with low-end processors under the limited memory space constraints.
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