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Abstract
COVID-19 spreads rapidly among people, so that more and more people are wearing
masks in rail transit stations. However, the current face detection algorithms cannot
distinguish between a face wearing a mask and a face not wearing a mask. This paper
proposes a face detection algorithm based on single shot detector and active learning in
rail transit surveillance, effectively detecting faces and faces wearing masks. Firstly, we
propose a real-time face detection algorithm based on single shot detector, which
improves the accuracy by optimizing backbone network, feature pyramid network, spatial
attention module, and loss function. Subsequently, this paper proposes a semi-supervised
active learning method to select valuable samples from video surveillance of rail transit to
retrain the face detection algorithm, which improves the generalization of the algorithm in
rail transit and reduces the time to label samples. Extensive experimental results demon-
strate that the proposed method achieves significant performance over the state-of-the-art
algorithms on rail transit dataset. The proposed algorithm has a wide range of applications
in rail transit stations, including passenger flow statistics, epidemiological analysis, and
reminders of passenger who do not wear masks. Simultaneously, our algorithm does not
collect and store face information of passengers, which effectively protects the privacy of
passengers.
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1 Introduction

With the spread of COVID-19, more and more people wear mask to reduce the probability of
being infected. Rail transit stations with limited space are very conducive to the spread of
viruses, so several governments and companies have made mandatory measures for passengers
to wear masks. With the rapid development of artificial intelligence, cameras are playing an
increasingly important role in rail transit stations. Cameras are widely deployed in the station
entrance and have accumulated a large amount of video, which provide a solution for detecting
whether passengers wear masks. The cameras installed at the entrance of rail transit station are
shown in Fig. 1. The proposed algorithm can recognize whether passengers wear masks,
which not only counts the data of passengers wearing masks for epidemic analysis, but also
helps the station remind passengers to wear masks by using the microphones.

After the outbreak of COVID-19, several face and mask detection algorithms [4, 13, 24, 27,
28, 38, 41, 42, 45] are studied. [4, 13, 24, 28, 41] propose the fast algorithms to detect face and
mask, but they have some false positives and false negatives. Several face mask detection
algorithms [27, 38, 42] are proposed to improve accuracy and have good results, but their
speed is slow. It is difficult to improve accuracy while ensuring real-time processing. More-
over, as far as we know, there is no research on the mask detection algorithm applied to rail
transit. In the rail transit, face sizes are small and face angles are diverse. There is a challenge
with these algorithms for mask detection in rail transit: these algorithms are trained on datasets
lacking rail transit samples, so they may have poor generalization in rail transit scenarios.
Therefore, it is necessary to make a mask dataset of rail transit. Although there are many
images of face and mask from rail transit, two problems still exist when applied in rail transit.
First, the labeling of sample data takes a lot of time and automatic labeling causes many errors.
Second, the sample data has a high degree of similarity, so the marginal benefit generated in
training is very small. A lot of similar samples cause sample imbalance, making it more
difficult to detect minority objects.

To solve these problems, we propose a face detection algorithm based on single shot
detector (SSD) called SSD-Mask and a novel active learning for rail transit passengers. The
proposed algorithm improves the accuracy to detect face and face wearing a mask, and utilizes

Fig. 1 The cameras installed at the rail transit station
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a novel active learning method to obtain valuable samples of rail transit, so as to train a face
detection model suitable for rail transit scenarios.

The contributions of this paper are as follows:
Firstly, SSD-Mask is proposed to improve accuracy while ensuring real-time processing,

which optimizes the anchor aspect ratios, activation function, and loss function, and adds
feature pyramid network and spatial attention module.

Secondly, a novel active learning method called semi-supervised active learning (SSAL) is
proposed for screening valuable samples of rail transit and reducing sample labeling time.
SSAL reduces the cost of model transfer and application, and improves the generalization of
the model.

Finally, we make a high-quality mask dataset to fine-tuning the proposed algorithm. This
mask dataset covers people wearing masks and face images in rail transit scenarios.

The rest of the paper is organized as follows. In the next section, related work is introduced
in detail, which includes face mask detection, SSD, and active learning. In Section 3, SSD-
Mask, and SSAL are presented. Section 4 shows the experimental results and discussion in
detail. The conclusion is drawn in Section 5.

2 Related work

In this section, we introduce the work related to this paper from three aspects: face mask
detection, SSD, and active learning.

2.1 Face mask detection

With more and more people wear mask, recent related works [4, 13, 24, 27, 28, 38, 41, 42, 45]
that do a face detection to detect people wear mask or not. AIZOO [4] proposes a lightweight
mask detection network based on SSD [23] with fast speed. [13] presents a mask detection
network based on RetinaNet [22], which uses feature pyramid network to fuse high-level
information and context attention module to focus on faces and masks. [28] proposes a
lightweight mask detection algorithm based on SSD [23] and MobileNetV2 [37]. Based on
the YOLOv2 [33], Loey et al. [24] uses ResNet50 as the backbone network to detect faces
wearing masks in images. [41] applies YOLOv3 directly to face and mask detection, and
compares it with Faster R-CNN [35]. [4, 13, 24, 28, 41] have fast speed, but their accuracy
needs to be further improved. Sethi et al. [38] integrates SSD [23] and Faster R-CNN [35] for
object detection, and uses transfer learning to fuse high-level semantic information in the
feature map to improve the accuracy of the mask detection. [27] proposes a hybrid deep
transfer learning model with machine learning method for mask detection, which uses deep
learning to extract features and multiple machine learning methods to classify them. Baidu
proposes a mask detection algorithm based on PyramidBox [42], which improves accuracy by
using low-level feature pyramid network, context-sensitive predict module, and pyramid
anchors. [27, 38, 42] have high accuracy, but their speed is slow. Therefore, a mask detection
algorithm should be studied which has high accuracy and fast speed.

Although some companies have collected a large number of images of faces and masks,
these data have not been made public. Several researchers synthesize and publishes the mask
dataset. AIZOO [4] publishes a real mask dataset for the first time, and it promotes the
development of mask detection. Wang et al. [45] make and test a mask dataset composed of
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real-world images and synthesized images. In the rail transit, face sizes are small and face
angles are diverse. Mask detection model trained on other scene image may have poor
generalization in rail transit scenarios. Therefore, it is necessary to make a mask dataset of
rail transit. Although there are many images of face and mask from rail transit, two problems
still exist when applied in rail transit. First, manual labeling takes a lot of time and automatic
labeling causes many errors. Second, the sample data has a high degree of similarity, so the
marginal benefit generated in training is very small. A lot of similar samples also cause sample
imbalance, making it more difficult to detect minority objects.

To solve these problems, we propose SSD-Mask and SSAL for rail transit passengers. To
improve accuracy while ensuring real-time processing, the anchor aspect ratios, activation
function, and loss function are optimized, and feature pyramid network and spatial attention
module are added. Then, SSAL is proposed for screening valuable samples of rail transit and
reducing sample labeling time.

2.2 SSD

SSD [23] is proposed for object detection with fast speed and high accuracy in 2016. As
shown in Fig. 2, SSD [23] sets several anchors based on different feature maps and combines
predictions from multiple feature maps with different resolutions to handle objects with
different aspect ratios and sizes. Backbone network is used to extract features of multiple
convolutional layers and obtains multiple feature maps. The backbone network of SSD [23] is
based on VGGNet, which consists of part of VGG16 [40] and extra feature layers. The extra
feature layers build conv8_2, conv9_2, conv10_2 and conv11_2 based on conv7 of VGG16
[40]. When the input resolution is 300*300, SSD [23] locates and classifies the output of the
backbone network that includes conv4_3, conv7, conv8_2, conv9_2, conv10_2 and conv11_2.
Finally, the non-maximum suppression algorithm is used to remove redundant candidate boxes
and obtain the best detection boxes. A series of improved algorithms [12, 18, 47] based on
SSD [23] are proposed for object detection and achieved good results. In addition, SSD [23] is
very suitable for face detection because it can obtain multiple feature maps. Many face
detection algorithms [8, 19, 48, 49] are proposed based on SSD, and they have made great
progress.

2.3 Active learning

With the advent of the era of big data, we have tremendous amounts of data, but the
quality and labeling of the data have become a problem. A large amount of data has

Fig. 2 SSD model framework
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little effective information and is labeled for a long time, which increases the training
time and does little help to the model. Active learning solves this problem by
selecting the valuable samples and labeling them by experts, so few samples can be
trained to get a good model. Active learning hypothesizes if a learning algorithm is
allowed to choose its curious data, it will perform better with fewer data [39]. There
are three scenarios in active learning: membership query synthesis, stream-based
selective sampling, and pool-based active learning [39]. In this paper, we use pool-
based active learning as shown in Fig. 3. Therefore, active learning below refers to
pool-based active learning. Active learning sets up query strategies and utilizes the
trained model to process unlabeled samples, thereby selecting valuable unlabeled
samples and labeling these samples by experts. Subsequently, the labeled samples
are used to retrain the model to improve the accuracy. Active learning is often used in
image classification [9, 14, 16, 17, 25, 44], because the labeling of image classifica-
tion task is simple and costs less time for experts. In recent years, several researches
apply active learning to object detection [2, 5, 15, 30–32, 36, 43], which prove that
active learning can effectively improve the accuracy of object detection. However, it
is not solved that active learning requires a lot of time for labeling.

3 Methods

In this section, we introduce SSD-Mask, SSAL and mask dataset. SSD-Mask is the basis of the
proposed method and is designed for face and mask detection. SSAL selects valuable rail
transit images for fine-tuning SSD-Mask, which improves the robustness of SSD-Mask in rail
transit scenarios. In addition, the mask dataset is made to train the proposed algorithm.

Fig. 3 The pool-based active learning
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3.1 SSD-mask

To detect whether passengers wear masks, we propose a face detection algorithm called SSD-
Mask based on SSD [23]. The architecture of SSD-Mask is shown in Fig. 4, including
backbone network, feature pyramid network (FPN), spatial attention module (SAM), and
smooth and focal loss.

As shown in Fig. 4, backbone network is the principal part of the neural network, which is
used to extract the feature information of the image. FPN and SAM are used to enhance the
feature information extracted by the backbone network. FPN enlarges the feature map of low-
level layers while ensuring that high-level semantic information is not lost, which is conducive
to detecting small objects. SAM produces a more distinguishable feature representation by
selecting the focus position. Smooth and focal loss can effectively solve the problem of
imbalance between positive and negative samples, thereby training a model with higher
detection accuracy.

Compared with other methods in architecture, we don’t change the backbone of SSD
because it is efficient, but focus on enhancing the features extracted from the backbone.
Specifically, [4, 24, 28] directly use features extracted from the backbone network to locate
and classify. [13, 41] use FPN to enhance the high-level features extracted from backbone
networks. However, since faces are smaller and low-level layers contain more effective
information, we choose the low-level layers convolution layers to construct FPN. Moreover,

Fig. 4 Architecture of SSD-Mask
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SAM is used to obtain more distinguishable feature representation. [38] combines the results of
SSD [23] and Faster R-CNN [35] without modifying the framework for both.

3.1.1 Backbone network

As shown in Fig. 4, the backbone network of SSD-Mask is VGGNet [23], which consists of
VGG16 [40] and extra feature layers. The backbone network uses Conv4_3 and Conv7 of
VGG16 [40] to build the extra feature layers with Conv8_2, Conv9_2, Conv10_2, Conv11_2
and Conv12_2. The backbone network has a small model and fast calculations, but the effect is
good.

To improve the performance of our network, the backbone network needs to match the
dataset. The objects of different datasets have different aspect ratios, so we count the face
aspect ratio of the dataset to make SSD-Mask match the data. There are 144,235 faces in the
dataset, and the aspect ratios distribution of these faces is shown in Fig. 5. The aspect ratio of
the face is mainly concentrated around 2: 1 and 1: 1. According to our experiments, the
optimal aspect ratios of anchor are set.

Activation function plays an essential role in the backbone network. Mish [26] is a novel
smooth activation function as shown in Fig. 6, and the research [26] demonstrates that Mish
[26] is superior to Rectified Linear Unit (ReLU) [7, 11, 29] in most models. As shown in Fig.
6, Mish [26] is smoother than ReLU [7, 11, 29], which is the reason why Mish [26] is better
than ReLU [7, 11, 29].To improve the performance of the model, Mish [26] is used to instead
of ReLU [7, 11, 29] in the backbone network. Mish [26] is defined as follows:

f xð Þ ¼ x⋅tanh ln 1þ exð Þð Þ ð1Þ

3.1.2 Low-level feature pyramid network

Feature pyramid network (FPN) can make full use of the multi-scale features output by the
backbone network. FPN is proposed by [21], which can detect object of different sizes to

Fig. 5 Aspect ratios distribution of faces from mask dataset
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improve the performance of the model [1, 34]. We pay more attention to the low-dimensional
information of SSD-Mask, and improve the accuracy of small faces by fusing low-dimensional
information. Inspired by [21, 42], we construct a low-level feature pyramid network for the
output of Conv4_3, Conv7, Conv8_2, and Conv9_2 in Fig. 7.

3.1.3 Spatial attention module

Attention mechanism has been widely used in object detection, which can effectively improve
algorithm performance. Although the attention mechanisms such as SE [10], CBAM [46], and
SK [20] enhance the accuracy of the algorithm, the inference time increases. Spatial attention
module (SAM) adjusts each position of the feature map to make the model focus on areas that
deserve more attention. SAM improves network performance with very little additional
inference time. As shown in Fig. 4, inspired by [1], we use SAM to deal with the output from
the backbone network and the feature pyramid network. SAM is denoted as

x
0 ¼ Conv xð Þ

y ¼ Sigmoid x
0

� �
� x

ð2Þ

where Conv(x) adopts pointwise convolution for input x, that is, 1*1 convolution without

changing the number of channels, and Sigmoid(x′) is 1=1þ e−x
0
. Figure 8 shows how the

spatial attention module works.

3.1.4 Smooth and focal loss

The loss of SSD-Mask consists of localization loss and confidence loss:

L ¼ 1

N
Lloc þ Lconf
� � ð3Þ

where N is the number of matched default boxes. The localization loss based on Smooth L1
loss [6] is as follows:

Fig. 6 Activation function: Mish and ReLU
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Lloc ¼ ∑
N

i∈Pos
∑

m∈ cx;cy;w;hf g
xkij⋅SmoothL1 lmi −bgmj� �

ð4Þ

where i is the index of predicted positive box, j is the index of ground truth box, andxkij is

Fig. 7 Low-level feature pyramid network

Fig. 8 Spatial attention module
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whether the predicted box i and ground truth box j match in category k. l and ĝ are the
prediction box and the ground truth box, respectively. The loss regresses to offsets for the
center (cx, cy) of the default bounding box and for its width (w) and height (h).

The accuracy of SSD [23] is not as high as the accuracy of the two-stage method such as
FPN [21] and Cascade R-CNN [3], because SSD [23] has a problem of class imbalance in the
training process. A novel loss function called focal loss is proposed to solve the class
imbalance [22]. Focal loss [22] is based on cross entropy loss, making the model focus hard
negatives during training by reducing the weight of easy examples. The confidence loss of
SSD [23] is based on softmax loss, and we use focal loss instead of it to balance the samples.
Focal loss (FL) is defined as:

FL pð Þ ¼ −αt 1−ptð Þγlog ptð Þ; pt ¼ p
1−p

;
;
y ¼ 1
y ¼ 0

�
ð5Þ

where t is the sample index, pt is the predicted probability for the class with label y = 1. αt and
γ are constant (αt = 0.25 and γ = 2). Therefore, we get the confidence loss.

Lconf ¼ ∑
N

i∈Pos
xkijFL bpki

� �
þ ∑

i∈Neg
FL bp0i

� �bpki ¼ exp pki
� �

∑kexp pki
� � ð6Þ

3.2 SSAL

Although there are many images of mask, two problems still exist when applied on-site. First,
manual labeling takes a lot of time and automatic labeling causes many errors. Second, the
sample data has a high degree of similarity, so the marginal benefit generated in training is
very small. A large number of similar samples cause sample imbalance, making it more
difficult to detect minority objects. To solve these problems, we propose an active learning
algorithm combined with semi-supervised learning called SSAL.

As shown in Fig. 9, we demonstrate the process of annotating samples by various methods.
The labeling sample process of standard active learning is shown in Fig. 9a. Although active
learning can select valuable samples, manual labeling takes a lot of time. In Fig. 9b, semi-
supervised learning automatically labels samples to save labeling time. However, semi-
supervised learning cannot distinguish the importance of samples, and there may be wrong
sample annotations. As shown in Fig. 9c, the proposed algorithm uses a query strategy to
select valuable samples, which are automatically marked by semi-supervised learning. Then,
the experts check and modify the samples. The semi-supervised active learning algorithm is
described in detail in Table 1. The proposed algorithm greatly reduces the time of expert
annotation and improves the efficiency of annotation.

It is very significant to set a suitable query strategy for screening valuable samples in active
learning. The query strategy we designed is to calculate the average confidence of each class
and choose the smallest confidence among all classes. The query strategy is defined as:

y ¼ min xi
� �

ð7Þ

where xi is the average confidence of i-th class. If the y of an image is less than 0.3, the image
is saved, and the corresponding class and localization are also saved for automatic labeling
with semi-supervised learning. Although this query strategy retains samples with low average
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Fig. 9 Annotating samples of various methods. a Standard active learning; b Semi-supervised learning; c Semi-
supervised active learning

Table 1 Semi-supervised Active Learning Algorithm

Algorithm：：Semi-supervised Active Learning

Input: The trained detector and the unlabeled pool.

Output: The labeled pool and the retrained detector.

Step 1: Obtain the confidence and coordinates

The trained detector processes the images in the unlabeled pool to 

obtain the confidence and coordinates of each face and mask.

Step 2: Choose the valuable images;

Calculate the average confidence of the face and mask on each 

image separately, and choose the smallest average confidence as the 

y, and save the images with y less than the threshold.

Step 3: Label the saved images automatically;

The coordinate information obtained in the Step 1 is used to label 

the saved images automatically.

Step 4: Check the labeled images manually;

Check the labeled images manually, modify or delete the incorrectly 

labeled data, and finally get the labeled pool.

Step 5: Retrain the model;

The labeled pool is used to retrain the model to obtain a new model

called the retrained detector.
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confidence, the selected samples also include many high-confidence objects, which ensure the
diversity of the samples.

3.3 Datasets

We make a mask dataset consisting of various scenes images to train SSD-Mask. There are
25,631 images in this mask dataset, of which 22,631 images are used as the training set and
3000 images are used as the testing set. The dataset has two class: “face” and “mask”. “face” is
a person who does not wear a mask, and “mask” is a person who wears a mask. A part of
images from the mask dataset are shown in Fig. 10a. Our dataset has diverse and rich images
including occlusion, irregular wearing, dense scenes, mask diversity, small faces and blurring.
Both the occluded faces and faces that are not completely covered by masks are “face” class.
The dataset contains a large number of faces, so we have not made the dataset public
considering personal privacy. If any scholars need it, please contact us.

Firstly, we collect 5000 images of rail transit. Secondly, after the training of SSD-Mask is
completed, we use SSD-Mask as a detector and SSAL to screen the valuable images of rail
transit to make a mask dataset of rail transit. Finally, SSAL screens 1992 valuable samples as
mask dataset of rail transit. Several samples in the mask dataset consisting of rail transit images
are shown in Fig. 10b. Finally, we employ the mask dataset to retrain the SSD-Mask.

3.4 Training details

We implement SSD-Mask using the PyTorch and trained the network with the NVIDIA Tesla
P100 GPU. Table 2 presents the parameters of SSD-Mask in training. Besides, we train Faster

Fig. 10 Mask dataset: (a) The mask dataset consisting of various scenes images; (b) The mask dataset only
consisting of rail transit images
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R-CNN [35], SSD [23], YOLOv3 [34] and YOLOv4 [1] on the same dataset as the compar-
ison algorithms.

4 Results and discussion

In this section, we test the proposed algorithm and the state-of-the-art algorithms on the
proposed testing set, the public mask dataset [4] and the rail transit dataset. Then, the
experimental results are analyzed and discussed in detail.

4.1 Evaluation metrics

To comprehensively evaluate the algorithm results, we adopted average precision (AP), mean
average precision (mAP) and frame per second (FPS) as evaluation metrics. AP is defined as

AP ¼ ∫
1

0
P Rð ÞdR ð8Þ

where P is precision and R is recall. P and R can be formulated as

P ¼ TP= TP þ FPð Þ ð9Þ

R ¼ TP= TP þ FNð Þ ð10Þ
where TP,FP and FN denote true positives, false positives and false negative, respectively. The
mAP is mean of AP and can be calculated as

mAP ¼ ∑
c
AP=c ð11Þ

where c is the number of class.

4.2 Experimental results

4.2.1 Results of SSD-mask

To clarify the effect of SSD-Mask, we test Faster R-CNN [35], YOLOv3 [34], SSD [23],
YOLOv4 [1], AIZOO [4], Baidu [42] and SSD-Mask without SSAL on the proposed testing

Table 2 Hyper-parameters of SSD-Mask in training

Parameter Describe Value

F Input image size 512×512
C Input channels 3
B Batch size 16
I Iteration 120,000
M Momentum 0.9
L Learn rate 0.001,0.0001
Ls Learn rate step 70,000,100,000
D Decay 0.0005
NP Negative/positive 3
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set including 3000 images. Note that the training code of AIZOO [4] and Baidu [42] do not
open, so we have to use their trained weights. The detection confidence and intersection-over-
union of all algorithms are 0.4 and 0.5, respectively. Table 3 shows the performance of SSD-
Mask is better than Faster R-CNN [35], YOLOv3 [34], SSD [23], AIZOO [4] and Baidu [42].

Table 3 Results on the proposed testing set

Faster R-CNN [35] YOLOv3 [34] SSD [23] YOLOv4 [1] AIZOO
[4]

Baidu [42] SSD-Mask

mAP(%) 79.48 85.5 84.91 86.7 83.53 63.71 86.34
FPS 0.5 21 49 17.5 46 1.5 42

Fig. 11 Several detection results of various algorithms on the proposed testing set. (a) input (b) Faster R-CNN
[35] (c) YOLOv3 [34] (d) SSD [23] (e) YOLOv4 [1] (f) AIZOO [4] (g) Baidu [42] (h) SSD-Mask
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Our results indicate that the proposed method is superior to them even if it did not rely on
SSAL. SSD-Mask is far faster than YOLOv4 [1] with sacrificing a little bit of accuracy.

Figure 11 demonstrates several detection results of various algorithm on the proposed
testing set. In the first row, Faster R-CNN [35] has three false positives and other methods
predict correctly. The second row has the occlusion face, and all algorithms predict correctly
except YOLOv3 [34]. In the three row, a passenger wears mask in a wrong way. Faster R-
CNN [35], YOLOv3 [34], SSD [23], AIZOO [4] and Baidu [42] detect a mask. YOLOv4 [1]
detects both the face and the mask. Only our method detects a face.

Currently, there are few open source mask datasets, so we choose a mask dataset proposed
by [4] as the testing dataset. The mask dataset has 1838 images, including 2019 faces and 1041
masks. As shown in Table 4, the proposed method has favorable results on the public mask
dataset. In the face class, the proposed method is better than all comparison algorithms.
YOLOv4 [1] obtains the best results in the mask class.

4.2.2 Results of SSD-mask with SSAL

The testing dataset of rail transit has 300 images of rail transit scenes, including 1027 faces and
327 masks. The results of all algorithms on the testing dataset of rail transit are shown in
Table 5. The proposed method gets the highest mAP in the testing dataset of rail transit, which
demonstrates that our algorithm had a good generalization in rail transit scenarios. Moreover,
the proposed method has a very fast speed, second only to SSD [23] and AIZOO [4]. Figure 12
shows several detection results of various algorithm in rail transit scenarios. Faster R-CNN

Table 4 Results on public mask dataset

Method Backbone Input size AP (%)

Face Mask

Faster R-CNN [35] ResNet-50 ∽600×1000 86.40 93.20
YOLOv3 [34] Darknet-53 416×416 90.45 93.50
SSD [23] VGGNet 512×512 90.62 90.32
YOLOv4 [1] CSPDarkNet53 416×416 88.36 93.60
AIZOO [4] ConvNet 360×360 88.81 90.04
Baidu [42] VGGNet 128×128 54.35 76.10
SSD-Mask VGGNet 512×512 90.75 91.35

Table 5 Results on the testing dataset of rail transit

Method Backbone Input size FPS mAP(%) AP (%)

Face Mask

Faster R-CNN [35] ResNet-50 ∽600×1000 0.5 54.74 61.38 48.10
YOLOv3 [34] Darknet-53 416×416 21 71.85 81.20 62.50
SSD [23] VGGNet 512×512 49 69.42 80.47 58.38
YOLOv4 [1] CSPDarkNet53 416×416 17.5 80.57 88.67 72.48
AIZOO [4] ConvNet 360×360 46 67.41 42.19 54.80
Baidu [42] VGGNet 128×128 1.5 73.75 73.58 73.66
SSD-Mask VGGNet 512×512 42 76.55 82.48 70.62
SSD-Mask + SSAL VGGNet 512×512 42 84.26 84.85 83.66
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 12 Several detection results of various algorithms on rail transit scenarios. (a) input (b) Faster R-CNN [35]
(c) YOLOv3 [34] (d) SSD [23] (e) YOLOv4 [1] (f) AIZOO [4] (g) Baidu [42] (h) SSD-Mask (i) SSD-Mask +
SSAL
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[35] and Baidu [42] have high recall, but false positives far exceed other algorithms. The
proposed method is superior to YOLOv3 [34], SSD [23], AIZOO [4], YOLOv4 [1] and SSD-
Mask in both detection number and detection confidence because it is optimized for the rail
transit scenario.

4.3 Discussion

4.3.1 Effect of SSD-mask

SSD-Mask has the favorable results compared with the comparison algorithms [1, 4, 34, 35,
42, 45]. As shown in Fig. 11, there are many false positives in Faster R-CNN [35], Baidu [42]
and YOLOv3 [34]. It is wrong that Faster R-CNN [35] recognizes faces that are not
completely covered by masks as “mask”. Moreover, Faster R-CNN [35] also recognizes some
backgrounds as targets. It indicates Faster R-CNN [35] recall too many negative examples.
Baidu [42] has a high recall but makes the false positives increase. YOLOv3 [34] detects both
occluded faces and faces that are not completely covered by masks as “mask”. Unfortunately,
SSD [23] and AIZOO [4] are also unable to distinguish between faces that are completely
covered by masks and faces that are not completely. YOLOv4 [1] detects both the face and the
mask. However, SSD-Mask can accurately detect both occluded faces and faces that are not
completely covered by masks in Fig. 11. One reason is that the training dataset we made

Fig. 13 The classification loss of SSD and SSD-Mask

Table 6 Ablation study of SSD-Mask

Anchor Mish FPN SAM Focal loss mAP(%)

84.91
√ 85.50

√ 85.54
√ 85.55

√ 85.60
√ 85.52

√ √ √ √ √ 86.34
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contains occluded faces and faces that are not completely covered by masks. Another reason is
that SSD-Mask has good classification performance. As shown in Fig. 13, the classification
loss of SSD-Mask is smaller than that of SSD [23], which indicates that the classification
performance of the former is better than that of the latter. However, all algorithms have
achieved similar results on public mask dataset. This is because the public mask dataset is so
simple that all algorithms can get good results.

Several ablation experiments are carried to further analyze the impact of the improved
method of SSD-Mask. Table 6 proves that our proposed improvements are effective. The mAP
of SSD-Mask is improved by 1.43 compared with SSD [23]. Each improvement measure is
analyzed to explore how they improve the algorithm performance. Firstly, we optimize the
anchor aspect ratios and activation function of backbone. The anchor aspect ratios of the SSD-
Mask we set are derived from training sample statistics, so they are conducive to training the
network. Mish [26] is smoother than ReLU [7, 11, 29] in Fig. 6, which may be the reason why
Mish [26] is better than ReLU [7, 11, 29]. Secondly, FPN is used to fuse low-dimensional
features, which is helpful for detecting small faces. Thirdly, note that SAM is the most
effective of all the improvements because it allows the network to focus more on the object.
Finally, we replace the softmax loss with focal loss to solve the class imbalance, which makes
the network pay more attention to difficult samples during training.

4.3.2 Effect of SSAL

As shown in Table 5, SSD-Mask with SSAL shows higher performance than the state-of-the-
art algorithms. These directly prove the effectiveness of SSAL. To further prove the perfor-
mance of SSAL, we design a set of comparative experiments. SSAL randomly selects 1992
rail transit images for manual annotation, and these images are used to fine-tuning the SSD-
Mask. Comparisons of manual annotation and SSAL on the testing dataset of rail transit is
shown in Fig. 14. It is obvious that the quality of samples obtained by SSAL is better than
manual annotation. The reason is that manual annotation cannot select the samples that are
beneficial to the model. The labeled samples are not only repeated, but also have little effective

Fig. 14 The mAP on the testing dataset of rail transit
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information. Moreover, SSAL greatly reduces the labeling time. It takes 4 hours to label 1992
images manually, but it takes only 0.5 hours by SSAL.

5 Conclusion

With the outbreak of the epidemic, more and more passengers wear masks at rail transit
stations. This paper proposes a real-time face detection algorithm to recognize whether a face
is wearing a mask, and proposes a semi-supervised active learning method to improve
generalization in rail transit stations. Firstly, we propose a face detection algorithm called
SSD-Mask. The performance of SSD-Mask is improved by optimizing the anchor aspect
ratios, activation function and loss function, and adding feature pyramid network and spatial
attention module. Secondly, this paper proposes a SSAL algorithm for screening valuable
samples of rail transit and annotating these samples efficiently. Semi-supervised learning can
efficiently label samples and active learning can filter valuable samples. SSAL combines these
two advantages and achieves favorable results on the rail transit dataset. Extensive experiments
show that the proposed algorithm has high accuracy and fast speed on rail transit dataset,
which is conducive to the deployment in rail transit stations. The proposed algorithm has a
wide range of applications in rail transit stations, including passenger flow statistics, epidemi-
ological analysis, and reminders of passenger who do not wear masks. Moreover, the proposed
method is not only applicable to rail transit stations, but can also be used in various public
places. Finally, we respect the privacy of passengers, so our algorithm does not collect and
store face information of passengers.
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