
https://doi.org/10.1007/s11042-022-13423-9

A vision-based deep learning approach
for independent-users Arabic sign
language interpretation

Mostafa Magdy Balaha1 · Sara El-Kady1 ·HossamMagdy Balaha1 ·
Mohamed Salama1 · Eslam Emad1 ·Muhammed Hassan1 ·MahmoudM. Saafan1

Received: 12 January 2021 / Revised: 31 March 2022 / Accepted: 2 July 2022 /

© The Author(s) 2022, corrected publication 2022

Abstract
More than 5% of the people around the world are deaf and have severe difficulties in com-
municating with normal people according to the World Health Organization (WHO). They
face a real challenge to express anything without an interpreter for their signs. Nowadays,
there are a lot of studies related to Sign Language Recognition (SLR) that aims to reduce this
gap between deaf and normal people as it can replace the need for an interpreter. However,
there are a lot of challenges facing the sign recognition systems such as low accuracy, com-
plicated gestures, high-level noise, and the ability to operate under variant circumstances
with the ability to generalize or to be locked to such limitations. Hence, many researchers
proposed different solutions to overcome these problems. Each language has its signs and
it can be very challenging to cover all the languages’ signs. The current study objectives:
(i) presenting a dataset of 20 Arabic words, and (ii) proposing a deep learning (DL) archi-
tecture by combining convolutional neural network (CNN) and recurrent neural network
(RNN). The suggested architecture reported 98% accuracy on the presented dataset. It also
reported 93.4% and 98.8% for the top-1 and top-5 accuracies on the UCF-101 dataset.

Keywords Arabic Sign Language (ASL) · Convolutional Neural Network (CNN) ·
Deep Learning (DL) · Recurrent Neural Network (RNN) ·
Sign Language Recognition (SLR) · Video recognition

1 Introduction

Sign language is always paired with deaf people who use it to communicate with each other
but the problem arises when a deaf try to communicate with a normal person who has no
prior experience with sign language [39]. This gap limits the interactions and social life
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experience of deaf people as it requires an expert in sign language to ease the communica-
tion [71]. Scientists and researchers tried to shed light on this problem and search for such a
solution to replace the intermediate human or the expert necessity with an automated inter-
preter that could convert the hand kinematics and facial expressions to words or phrases
[65]. Despite these great efforts and tries in that field and the state-of-the-art development
in artificial intelligence and deep learning techniques [13] to find a solution nevertheless,
there is no optimal interpreter up to now due to the different challenges and difficulties that
face them [58].

A sign language interpreter system (SLIS) accepts the human visual sign as a set of
frames from any capturing medium such as cameras and outputs the corresponding meaning
of that sign [70]. That sign can be represented as a text or sound as shown in Fig. 1. Training
a SLIS requires a unique sign to represent each alphabet, number, and hence, it will result
in a massive amount of data and signs required to be processed especially for each avail-
able language that exists. Any minimal differences in the signs can affect the interpreter’s
performance such as the performer himself as the interpreter can be designed to be user-
dependent or user-independent. In the first case, the interpreter depends on the person while
in the latter one, the user is not a problem anymore.

Different challenges in sign language recognition require to be solved in any SLIS start-
ing from collecting the dataset to deploying the overall system [26, 56]. Some of these
differences can be summarized as follows:

• Viewpoint Variance: Different people can capture the same sign with different poses
and hand kinematics.

• Environment: The background, lighting, landmarks, and other elements can exist in
the captured sign.

• Complex Gestures: A sign can be complex to be made by a person especially if the
word is less used between people.

• Facial Expressions: A sign can include a facial expression. The face may include
glasses, earrings, etc. and this may infer the system.

• Non-Symmetric Signs: A word can be expressed in different poses or styles between
languages. Also, there are unique signs for each language.

In a-glance, over years scientists tried to find solutions for each challenge and prob-
lem to implement such interpreters using different methods and approaches. Mainly, we
could classify these approaches into two groups; either sensor-based or vision-based. In
the sensor-based approach, the user wears sensors such as colored-gloves or special-gloves,
and a motion capture system captures the sign but this approach has different drawbacks
[21]. For example, it was impractical in daily life situations as it obligates the user to
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Fig. 1 A Sign Language Interpreter System (SLIS) Overview
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wear such sensors that depend on the continuous power supply, wires, and other require-
ments. This reason was enough for the authors to cease this approach for experiments and
work on the second approach. In the vision-based approach, the system relies on image
processing and computer computations for processing images and videos in addition to
machine learning and deep learning techniques to classify and predict the processing data
[42]. Such approaches as Hidden-Markov-Model (HMM) [15], Artificial Neural Networks
(ANN) [76], Convolutional Neural Network (CNN) [5, 53], and Recurrent Neural Network
(RNN) [50]. The advantage of the second approach is the low-cost hardware. The capturing
medium can be smartphones cameras.

In the current work, the authors depended on the vision-based approach and the
contributions can be summarized as follows:

• Revising the literature related to the different built systems and frameworks.
• Proposing a new Arabic sign language dataset.
• Suggesting a deep learning framework using both CNNs and RNNs for Arabic sign

language interpretation.
• Focusing on the working mechanism of user-independent approach and appliance of it.
• Performing different experiments and comparing the current work results with other

published state-of-the-art results.

The rest of the paper is organized as follows, in Section 2, the related work and studies
are discussed. In Section 3, the available Arabic sign language datasets are presented and the
proposed dataset is discussed in detail. In Section 4, the pre-processing stages performed on
the suggested dataset are discussed. In Section 5, the suggested deep learning architecture
is presented and discussed in detail. In Section 6, the experiments and their corresponding
results are reported. Finally, in Section 7, the presented work is concluded and the future
work is presented.

2 Related work

Sign language recognition is studied by different researchers in different approaches since
1990 [1, 22, 62, 63]. In this section, the related literature is discussed. They include sev-
eral works and methods throughout the years. Tamura et al. [67] assumed the sign word
was composed of a time sequence of units called cheremes which consisted of handshape,
movement, and location of the hand. They expressed the 3D features of these factors and
converted them into 2D image features and classified the motion image of sign language
with the 2D features.

Keskin et al. [40] created realistic 3D hand models that represented the hand with 21
different parts and trained Random Decision Forests (RDFs). They used the RDF to per-
form per-pixel classification and assigned each pixel to a hand part. It was then fed into
a local mode finding algorithm to estimate the joint locations for the hand skeleton. They
also described a support vector machine (SVM) model to recognize the Arabic sign lan-
guage (ASL) digits based on this method. They achieved a high recognition rate on live
depth images in real-time. Nandy et al. [52] created a video database for various signs of the
Indian sign language. They used the direction histogram, which appealed for illumination
and orientation invariance, as the features used in classification. They used two differ-
ent approaches for recognition which were the Euclidean distance and K-nearest neighbor
metrics.
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Mehdi et al. [51] used 7-sensor glove of the 5DT Company. It was used to get the input
data of the hands’ movements with artificial neural networks (ANN). It was used as the
classifier to recognize the signs’ gestures. They achieved an accuracy value of 88%. López-
Noriega et al. [47] followed their same approach and also offered a graphical user interface
made with “.NET”. Hidden Markov Model (HMM) based model was used and worked
effectively in continuous and real-time sign language recognition tasks by Starner et al.
[61]. They used gloves images as an input for the HMM. They proposed a recognition
method based on the HMM. They used color gloves to capture hand shape, orientation, and
trajectory. They represented HMM-based systems for recognizing the sentence-level ASL.
They managed to get high word accuracy results.

Hienz et al. [35] used colored cotton gloves to make it easy to extract features. They
converted the sequence of videos into feature vectors and then fed them to an HMM to
classify them. They have achieved accuracy values from 92% to 94%. Grobel et al. [31] and
Parcheta et al. [54] also followed the same approach. In a brief, these previous approaches
were able to achieve high accuracy values. But, they could not be used in real daily life as
they required the wearing of gloves and were limited to a fixed environment which isn’t
natural. Actually, many of them were user-dependent which means that they must be trained
on each user which isn’t logical and unnatural. Due to the previous reasons; Youssif et al.
[77] tended to generalize and proposed a model based on the HMM that did not depend on
users nor require gloves. On the other hand, their model fell into the trap of low accuracy as
it reached a value of 82%.

CNN is widely used in the field of image recognition and classification. Researchers
made many studies using it with the SLR. Masood et al. [49] proposed a CNN model for
ASL’s character recognition. They were able to use CNN to achieve an overall accuracy of
96% on a 2,524 ASL gestures image dataset. Wadhawan et al. [72], Bheda et al. [16] and
Tao et al. [68] offered a CNN architecture to classify different languages’ signs alphabet
with accuracies 99%, 82.5% and 100% respectively.

CNN uses a frame-by-frame manner in its work. Coupling CNN with RNN can keep
information over time, especially in videos. Due to this ability, dynamic signs can be rec-
ognized more accurately. Yang et al. [75] proposed an effective continuous sign language
recognition method. It was based on the combination of CNN and long short-term mem-
ory (LSTM). They achieved remarkable accuracies in the experiments on their self-built
dataset. 3D Convolutional Neural Network (3D-CNN) based models, instead of 2D-CNN,
require another phase of the RNN to keep information over time. 3D-CNN was able to
take multi-frames of a video at once which helped to learn the sequence between frames
without the need for RNN. Huang et al. [37] and Al-Hammadi et al. [3] proposed models
based on that approach. The approach proposed in the current study is based on the CNN-
RNN approach, specifically, the authors use double CNN as features extractors and for the
RNN, Bi-directional long short-term memory (BiLSTM) layers are used. The BiLSTM lay-
ers are used to identify the complex sequences in videos to overcome the conflicts between
different classes.

3 Arabic sign language datasets

Many available datasets in Arabic sign language that focus on letters or words are based on
specific conditions such as: (i) the user must wear gloves or (ii) many images refer to static
words [3, 40, 49]. So that, the major goal, which is the independence of unnecessary features
related to specific users or the surrounding environment, can be achieved. This section starts
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with presenting the available datasets in sign language and after that, the proposed dataset
is presented in detail.

3.1 Available sign language datasets

Latif et al. [43] presented an Arabic Alphabets Sign Language Dataset named “ArASL”. It
consisted of 54,049 images. It was compiled by more than 40 volunteers for the 32 standard
Arabic signs and alphabets. They mentioned that the number of images per class was not the
same. It differs fr om one class to another. They created a Comma-Separated Values (CSV)
file that contained the Label of each image. It is available online at https://data.mendeley.
com/datasets/y7pckrw6z2/1.

Sign Language Digits Dataset is prepared by “Turkey Ankara Ayrancı Anadolu High
School Students” [82]. Each image size is (100×100) pixels in the Red-Green-Blue (RGB)
color space. It consists of 10 classes (Digits from 0 to 9). The total number of images is
2,062. It was collected from 218 students where the number of samples per student is 10.
It is available online at https://www.kaggle.com/ardamavi/sign-language-digits-dataset and
https://github.com/ardamavi/Sign-Language-Digits-Dataset.

Another dataset for the alphabets in the American Sign Language [83] which is avail-
able online at https://www.kaggle.com/grassknoted/asl-alphabet and https://github.com/
SouravJain01/ASL SIGN PREDICTOR. The training dataset contains 87,000 images. Each
image has a size of (200 × 200) pixels. There are 29 classes (26 for the letters from “A” to
“Z” and 3 classes for “SPACE”, “DELETE”, and “NOTHING”). The test dataset contains a
mere 29 images.

UCF-101 [60] is an action recognition dataset. It contains 13,320 realistic action
YouTube videos. The number of its categories is 101. The UCF-101 categories can be
divided into five different types: (i) Human-Object Interaction, (ii) Body-Motion Only,
(iii) Human-Human Interaction, (iv) Playing Musical Instruments, and (v) Sports. Apply
Eye Makeup, Apply Lipstick, Archery, Baby Crawling, Balance Beam, and Band March-
ing are examples of these categories. It is available online at https://www.crcv.ucf.edu/data/
UCF101.php.

Shohieb et al. [59] developed a dataset for the Arabic sign language manual and non-
manual signs named SignsWorld Atlas. Their captured postures, gestures, and motions
were applied under different lighting and background conditions. Their dataset contained
500 elements and included (1) Arabic alphabets, (2) numbers from 0 to 9, (3) hand-shapes,
(4) signs in isolation, (5) movement in continuous sentences, (6) lip movement for a set of
Arabic sentences, and (7) facial expressions. Table 1 summarizes the existing and discussed
datasets.

Table 1 Summary of the Existing Datasets

Work Dataset Size Language Variety

Arabic Alphabets Sign Language
Dataset (ArASL) [43]

54,049 Arabic 32 Standard Signs and
Alphabets

Turkey Ankara Ayrancı Anadolu
High School Students [82]

2,062 – Digits from 0 to 9

American Sign Language [83] 87,000 English 29 Categories

UCF-101 [60] 13,320 – 101 Categories (5 Types)

SignsWorld Atlas [59] 500 Arabic 7 Types

6811Multimedia Tools and Applications (2023) 82:6807–6826

https://data.mendeley.com/datasets/y7pckrw6z2/1
https://data.mendeley.com/datasets/y7pckrw6z2/1
https://www.kaggle.com/ardamavi/sign-language-digits-dataset
https://github.com/ardamavi/Sign-Language-Digits-Dataset
https://www.kaggle.com/grassknoted/asl-alphabet
https://github.com/SouravJain01/ASL_SIGN_PREDICTOR
https://github.com/SouravJain01/ASL_SIGN_PREDICTOR
https://www.crcv.ucf.edu/data/UCF101.php
https://www.crcv.ucf.edu/data/UCF101.php


Table 2 Signs with the Corresponding Count of each Video

# Word (English) Word (Arabic) Count

1 Baby 430

2 Eat 410

3 Father 451

4 Finish 440

5 Good 436

6 Happy 445

7 Hear 433

8 House 421

9 Important 446

10 Love 435

11 Mall 414

12 Me 430

13 Mosque 427

14 Mother 406

15 Normal 410

16 Sad 420

17 Stop 426

18 Thanks 412

19 Thninking 366

20 Worry 409

Total 8, 467

3.2 The proposed dataset

Creating such a dataset to fit the natural circumstances and environments is one of the main
objectives of the current study. Based on statistics by 2020 [80, 81], almost everyone has
his own smartphone with a camera. Following this concept, the dataset is created using
smartphone videos. Videos are recorded natively using the authors’ mobile phones without
using any stabilization tool either hardware or software. Videos are captured with different
resolutions and different locations, places, and backgrounds. 8,467 videos are recorded for
20 signs from 72 volunteers. The followed recording criteria is that each volunteer has to do
each sign for at least 5 times (i.e., around 100 videos from each volunteer). The volunteers
were males and females in an age range from 20 to 24. Table 2 shows each sign with the
corresponding count of each video. Figure 2 summarizes the statistics of each word in the
suggested dataset. The dataset calculated average (i.e., mean) is 423.35 and the standard
deviation is 18.58. Figure 3 shows sample frames from each word in the proposed dataset.

4 Dataset pre-processing

In this section, the pre-processing stages made on the raw data are presented. As mentioned
in the previous section, the proposed dataset videos were captured by mobile cameras, not a
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Fig. 2 Graphical Statistics of the Dataset Words

professional camera nor even a fixed camera; hence, the videos are affected by a noticeable
amount of noise. By following the rules of feature selection [4, 41, 45], a suitable way
should be found to extract just the necessary movement out from each frame, so the model
can generalize on any signer under any circumstances [46]. Raw video passes through three
stages before it could be used with the proposed model (discussed in Section 5).

First Stage: The first stage is to reduce each frame’s dimensions and to convert the frames
into grayscale. The benefits behind this stage are to (1) reduce the processing time and
(2) achieve less overall complexity.

Second Stage: The output of the first stage is then passed to a difference function as
shown in Fig. 4. The difference function subtracts every two consecutive frames to find
the motion as shown in Equation (1). If the resultant frame was totally white or black, it
is discarded. An adaptive threshold [38] is applied to the resultant frame. This approach
will hold the most important information out of the frames. By applying this to the whole
video’s frames, (n − 1) frames will be retrieved, where n is the number of video frames.

Baby Eat Father Finish Good Happy Hear House Important Love

Mall Me Mosque Mother Normal Sad Stop Thanks Thinking Worry

Fig. 3 Sample Frames from each Word in the Proposed Dataset
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Fig. 4 A Sample Preview on the Second Pre-Processing Stage

The output single frame can be resized optionally using a resizing function. Figure 5
shows a sample preview after the pre-processing of the second stage on a sample video.

f ramediff = f ramei − f rame(i−1) (1)

Third Stage: The third and last stage is about unifying each class’s features and adding a
unique factor to each class’s videos. The output is only 30 frames out from (n−1) frames
where each unified frame combines (3 × 3) frames as shown in Fig. 6. These frames
aren’t selected randomly but instead, it is related to the index of the currently formed
frame. The main purpose of the last stage is to reduce redundancy but without dropping
any frame and keeping all information of all frames in the 30 frames. This can reduce
conflicts between signs of similar movements’ positions but with different operations
sequences as these frames track the hands’ positions through time.

n Frames

Stage 2
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n-1 Fram
es

1
2

n

2-1

3-2

(n)-(n-1)

.....
.....

Fig. 5 Sample Preview after the Second Stage on a Sample Video
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Algorithm 1 summarizes the three dataset pre-processing stages with their inner steps.

Algorithm 1 The Three Dataset Pre-processing Stages Pseudocode.

1: function PREPROCESS(video) \\ The pre-processing function. It accepts the video and returns the pre-processed

and combined frames.

2: f rames ExtractFrames(video) \\ Extract the frames from the video.

3: resizedFrames Resize( f rames) \\ Resize the frames.

4: grayFrames GrayscaleConversion(resizedFrames) \\ Convert the frames to grayscale.

5: di f f Frames DifferenceFunction(grayFrames ) \\ Apply the difference function to every two

consecutive frames.

6: adptFrames AdaptiveThreshold(di f f Frames) \\ Apply the adaptive threshold to the (n− 1) frames.

7: combinedFrames CombineRefine(adptFrames ) \\ Apply the combinations on the (n− 1) frames.

8: return combinedFrames \\ Return the pre-processed and combined frames.

5 The proposed architecture

This paper contributes with an architecture for recognizing videos and classify them in the
video classification field specifically sign language recognition. The main idea behind the
proposed model (i.e., architecture) is to train two different CNN independently using the
same architecture but on different portions of data. The input to it is the frames that are
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Fig. 7 Overview on the Proposed Architecture

pre-processed in the pre-processing phase. The output from each CNN is concatenated into
one single vector with a size of (1 × 512). It is then passed to an RNN, which has a great
ability to identify sequences in videos. RNN can learn from the changes over time in each
sequence and be able to generalize it over the classes. The authors made the RNN sequence
size be (30 × 512). This approach can help the network to identify different features for the
same input and improves its overall confidence and accuracy. Figure 7 shows an overview
of the suggested model.

5.1 Convolutional Neural Network (CNN)

The CNN is used to extract spatial features in the proposed architecture. Mainly, the con-
volutional layers [10, 57] are used to extract the features and detect different patterns in
multiple sub-regions (i.e., kernels). The pooling layers [13, 64] are used to keep the most
important features and progressively reduce the input spatial size to reduce the number of
parameters and computation cost in the architecture and hence it can control the overfitting
issue [9, 33]. There are different types of the pooling layers such as max-, min-, and average
(i.e., mean) pooling layers [7]. The max-pooling and min-pooling layers take the maximum
and minimum values from the previous layer respectively while the average layer takes the
average. The max-pooling is a commonly used pooling type [8].

Figure 8 shows the building blocks of the used CNN architecture. The input layer accepts
frames where each frame is sized (128×128×3). After that, it has four “Conv-Pool-Drop”
blocks, a global average pooling (GAP) layer [36], and a prediction network. Each “Conv-
Pool-Drop” block of the first four blocks has two convolutional layers, one max-pooling
layer, and followed by a dropout layer [6, 14] with a ratio of 0.5. The dropout layer is used
to reduce the overfitting and increase its network’s ability to generalize. All blocks almost
have the same dimensions except for depth. They are as follows 128, 256, 512, and 256
respectively from the left to the right. The global average pooling layer is used to reduce the
spatial dimensions. However, GAP layers apply a more extreme dimensionality reduction
approach where the input is reduced in size to have dimensions of (1 × 1 × d). They reduce
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Fig. 8 The Building Blocks of the CNN Architecture

each feature map to a single value by simply applying the average of all feature map values
[12, 29].

The prediction network is composed of two “Dense-Drop” blocks and one Fully-
Connected (FC) layer [79]. It takes the output of the CNN network, flattens it (i.e., converts
from multi-dimensions to a one-dimensional vector [8]), and uses it to classify the input
to its class. The two “Dense-Drop” blocks contain a dense layer and a dropout layer. Each
dense layer has 1024 neurons and each dropout layer has a dropout ratio of 0.2. The used
activation function is Rectified Linear Unit (ReLU) [2, 11] in the hidden layers. ReLU is one
of the common activation functions that returns 0 for negative inputs and the value itself for
positive inputs. It is helpful for specific interaction effects and non-linearities. Equation (2)
shown the used ReLU equation [32].

ReLU(input) = max (0, input) (2)

The last FC layer contains 20 neurons with a SoftMax activation function [24]. The used
batch size for the CNN network is 64. Table 3 shows the internal layers in detail. Figure 9
shows the internal structure of the “Conv-Pool-Drop” and “Dense-Drop” blocks.

5.2 Recurrent Neural Network (RNN)

The RNNs make use of the information in the sequence for the recognition tasks. Traditional
RNNs suffer from vanishing gradients which caused them not to learn so much [25]. Long
Short-Term Memory (LSTM) is a variant of RNN, which is designed to efficiently solve the
vanishing and exploding gradients problems [30]. Bi-directional LSTMs (BiLSTMs) are an
extension of traditional LSTMs which improve model performance on sequence classifica-
tion problems [69]. BiLSTMs train two LSTMs instead of one LSTM in the input sequence,
when all time steps of the input sequence are available. This can provide additional context
to the network and result in faster and even fuller learning on the current task.

In the suggested RNN model, the output is combined from the two CNNs and is fed
to five cascaded layers of 512 BiLSTM units. Every one of these layers is followed by
a dropout layer with a dropout rate of 0.9 to avoid network overfitting. These layers are
followed by an FC layer with a SoftMax activation function which is used to predict the
output. Decreasing the number of BiLSTM layers with keeping the same number of BiL-
STM units is experimented and using only 3 BiLSTM layers with 2048, 1024, 2048 units
respectively is also experimented. We tested different configurations (try-and-error tries) on
the suggested dataset and found that 5 BiLSTM layers with 512 hidden units performed the
best. Figure 10 shows the building blocks of the used RNN architecture. The used activation
function is ReLU [2] in the hidden layers. The used batch size for the RNN network is 64.
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Table 3 The Internal In-Detail Blocks of the CNN Architecture

Layer Number of Kernels Kernel Size Stride Output size

Input 3 – – 128 × 128 × 3

Convolutional 2D 128 5 1 124 × 124 × 128

Convolutional 2D 128 5 1 120 × 120 × 128

Max Pooling 128 3 2 59 × 59 × 128

Dropout – – – 59 × 59 × 128

Convolutional 2D 256 5 1 55 × 55 × 256

Convolutional 2D 256 5 1 51 × 51 × 256

Max Pooling 256 2 2 25 × 25 × 256

Dropout – – – 25 × 25 × 256

Convolutional 2D 512 3 1 23 × 23 × 512

Convolutional 2D 512 3 1 21 × 21 × 512

Max Pooling 512 2 2 10 × 10 × 512

Dropout – – – 10 × 10 × 512

Convolutional 2D 256 3 1 8 × 8 × 256

Convolutional 2D 256 3 1 6 × 6 × 256

Max Pooling 256 3 3 2 × 2 × 256

Dropout – – – 2 × 2 × 256

Global Average Pooling 2D – – – 256

Fully Connected – – – 1024

Dropout – – – 1024

Fully Connected – – – 1024

Dropout – – – 1024

Fully Connected – – – 20

To train the model, the Adaptive Moment (Adam) parameters optimizer technique is
used [17]. It is an optimization algorithm that is used to update the network’s weights (i.e.,
parameters) iterative based on the training instead of the classical stochastic gradient descent
procedure [18]. Adam combines the heuristics of both the Momentum and the RMSProp
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and hence has the advantage that it can handle spare gradients on noisy problems [78] as
shown in Equation (3).

wt+1 = wt − η × vt√
st + ε

× gt (3)

where η is the initial learning rate (10−4 in the current study), gt is the gradient at time t ,
vt is the exponential average of gradients, st is the exponential average of square gradients,
and ε is a very small value to avoid the division by zero (it can be 10−10). Adam is used
with a 10−6 decay rate.

6 Experimental results and discussion

In the first subsection, the experiments’ configurations are presented. In the second sub-
section, Two types of experiments are performed. The first is performed on the suggested
dataset while the second is applied to the UCF-101 dataset.

Table 4 summarizes the experiments configurations.

Table 4 Experiments Common Configurations Summarization

Configuration Values

Dataset (X and Y ) A Suggested Dataset and UCF-101

Categories 20 for the Suggested Dataset and 101 for the UCF-101

Batch Size 64

Parameters Optimizer Adam

Learning Rate 10−4

Decay Rate 10−6

“Dense-Drop” Dropout Ratio 0.2

RNN Dropout Ratio 0.9

Activation Function ReLU

Number of Epochs 64

Performance Metrics Accuracy, Loss, Confusion Metrics, and Top-1 Accuracy

Training Environment Windows 10, GPU 4GB, RAM 32GB, and Intel Core i7 Processor
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Table 5 Top-1 Accuracies of the Proposed Dataset

Class Name Validation (%) Test (%)

Baby 99% 97%

Eat 97% 93%

Father 100% 93%

Finish 97% 91%

Good 93% 79%

Happy 97% 98%

Hear 98% 78%

House 98% 99%

Important 100% 97%

Love 97% 96%

Mall 100% 98%

Me 95% 89%

Mosque 97% 98%

Mother 99% 84%

Normal 99% 92%

Sad 100% 97%

Stop 99% 95%

Thanks 97% 65%

Thinking 97% 72%

Worry 100% 100%

Average Accuracy 98% 92%

Standard Deviation 1.8% 9.61%

6.1 The suggested dataset experiments

The results of the proposed dataset are shown in Table 5 and presented graphically in Fig. 11.
The top-1 accuracies are reported for each class on validation and test sets. By observing the
results, it could be noticed that four classes have very low accuracies relative to other classes.
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Fig. 12 The Confusion Matrix on the Test Data of the Suggested Dataset

They are “Good”, “Hear”, “Thanks”, and “Thinking”. The reason behind these results is
that almost all of them are similar in the kinematic movement and the sign performance.
That led to a conflict between these signs which in turn led to these low accuracies for these
classes.

The conflicts can be clear also by observing the confusion matrix on test data shown in
Fig. 12. As mentioned, the conflict between these few classes occurred due to the lack of
experience of performers. Also, it seems that there is a great conflict between the classes
“Thanks” and “Thinking” signs as they are almost similar and they need to be performed
correctly and accurately to be recognized correctly.

6.2 The UCF-101 dataset experiments

To check the ability of our model to behave on other datasets and how it could generalize,
we have applied preprocess stages and trained the model on the UCF-101 dataset. Table 6
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Table 6 Top-1 and Top-5 Accuracies of the UCF-101 Dataset

Method Backbone Pretrained Weights Top-1 Top-5

TSN-7seg [74] InceptionV3 [66] ImageNet [23] 73.9% 91.1%

TSM-8seg [44] ResNet50 [34] ImageNet [23] 72.8% –

SlowOnly-8x8 [27] ResNet101 [34] – 75.9% –

SlowFast-8x8 [27] ResNet101 [34] – 77.9% 93.2%

I3D-64x1 [20] Inception [66] ImageNet [23] 72.1% 90.3%

NL-128x1 [73] ResNet101 [34] ImageNet [23] 77.7% 93.3%

SlowOnly-8x8 [27] ResNet101 [34] ImageNet [23] 77.9% 93.2%

LGD-3D (RGB) [55] ResNet101 [34] ImageNet [23] 79.4% 94.4%

STDFB [48] ResNet152 [34] ImageNet [23] 78.8% 93.6%

irCSN-32x2 [28] irCSN-152 [28] IG-65M [28] 82.6% 95.3%

Proposed Model – – 93.4% 98.8%

shows a comparison between the different models and the proposed model. The presented
results are reported after performing cross-validation using 3-folds [19].

As the table shows, our proposed model has achieved state-of-the-art results on the
UCF-101 dataset. The current study reported accuracies that were better than 10 previous
studies on the UCF-101 dataset. These results confirm that the proposed model can be used
on different action recognition datasets not only the sign language datasets including the
suggested one.

7 Conclusions and future work

In this paper, we proposed an Arabic sign language dataset with 8,467 videos of 20 signs for
different volunteers. The captured videos did not require any tools but just a mobile phone.
Also, we suggested a new approach (i.e., architecture) for video classification and recog-
nition using a combination of CNN and RNN besides the pre-processing performed on the
captured videos. We used double CNNs as feature extractors out from videos’ frames and
concatenate these features together as a sequence. RNN was used to identify the relationship
between the sequences and produce the overall prediction. Concerning that approach, we
reached state-of-the-art results as we achieved 98% and 92% on the validation and testing
subsets respectively on the suggested dataset. The suggested approach also achieved very
promising accuracies on the UCF-101 dataset. They were 93.40% and 98.80% on top-1 and
top-5 respectively.

In the future, we can enlarge the suggested dataset with new signs and more users. We
can shed the light on phrases not just words. We can also modify the proposed model to
adapt to the new videos with the ability to implement grammatically right phrases. Different
architectures, approaches, networks, methods can be used also. More experiments can be
conducted on other Arabic datasets.
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