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Abstract
Cracks are one of the critical structural defects in building assessment to determine the
integrity of civil structure. Structural surveying process using computer vision is required to
automatically identify cracks. The application of Convolutional Neural Networks (CNNs) is
limited by its fixed geometric kernels to extract the irregular shape of cracks. In this paper, a
mask Region-based Denoised Deformable Convolutional Network (R-DDCN) is proposed
to detect cracks for accurate instance segmentation and image classification. Denoised
deformable convolution is introduced to improve the modeling capability of convolution
layer. It adopts the existing deformable convolution, with non-local means as a denoising
mechanism to optimize the augmentation of spatial sampling locations with filtered offsets.
Experimental results show that the proposed mask R-DDCN has lower validation loss and
improved mean accuracy precision of mAP75 from 66.7% to 76.7% as compared to the mask
R-CNN. Mask R-DDCN can perform better modeling capability in cracks identification.

Keywords Cracks identification · Mask R-CNN · Denoised deformable Convolutional
network

1 Introduction

Cracks are one of the critical structural defects to determine an early possible structural fail-
ure in a building integrity inspection [17]. Building surveyors conduct structural inspection
by collecting visual data to identify various defects due to environmental exposure during
the service life of the structure (such as cracks, loss of material, rusting of metal bind-
ings, etc). Visual inspection can provide preliminary information that may lead to positive
identification of the cause of observed distress. However, its effectiveness depends on the
knowledge and experience of the surveyors and is prone to human error [36]. Additionally,

� Kia Wei Kee
keekw97@hotmail.com

1 Curtin University Malaysia, CDT 250, 98000 Miri, Malaysia
2 SafeT5 Sdn. Bhd., Sungai Buloh, Selangor, Malaysia
3 LP Research Inc, Tokyo, Japan

Published online: 26 July 2022

Multimedia Tools and Applications (2023) 82:4387–4404

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-022-13422-w&domain=pdf
http://orcid.org/0000-0002-5506-1121
mailto: keekw97@hotmail.com


inspection of mega structures such as dams, bridges and tall buildings can be prohibitively
risky and difficult due to hard-to-reach facets [36]. Therefore, automated building surveying
tools [29] are highly required to reduce the task complexity and to prevent the occurrence
of catastrophic event.

The use of deep learning neural networks in automated cracks detection for building sur-
veying has drawn increasingly attention in the civil and construction industry. The latest
techniques reviewed in automated cracks identification [21, 26, 34, 37] apply Convolutional
Neural Networks (CNNs) as the baseline to detect cracks as it is always in multi-orientation
and irregular shape. The convolution layer in CNNs possess the limitation of geometric vari-
ation in feature extraction due to the fixed structure of the convolution kernels [6]. The size
of the receptive field in CNNs is always fixed, which is highly undesirable for the deeper
layer that serves to extract high-level feature from an image by encoding semantics over
spatial locations [49]. Multiple efforts are suggested to solve this challenge, including some
notable works such as scale-invariant feature transform [15, 25], deformable part-based
models [9], transformer networks [16, 38], active convolution [19], moment-based local
feature extraction [48], and graph-based networks [47]. However, in the civil and construc-
tion industry, the capability of modelling unknown geometric transformation or variation is
highly required in cracks identification.

Besides that, there are several recent development on anchor-free instance segmentation
networks such as PolarMask and DeepSnake. PolarMask network [43] is used to perform
single shot anchor-box free instance segmentation for bounding box detectors and instance-
wise recognition tasks. It formulates the instance segmentation problem as predicting
contour of instance through instance center classification and dense distance regression in
a polar coordinate. On the other hand, DeepSnake network [28] applies the classic contour-
based approach to deform an initial contour to match the object boundary using deep snake
algorithm. It exploits the cycle-graph structure of a contour using circular convolution for
real-time instance segmentation. However, these approaches have the assumption of circu-
lar closed-loop contour around the segmented instances to detect instance segmentation. As
a result, these approaches are not suitable to be used in cracks segmentation, which has
irregular shape and pattern.

In this paper, a novel mask Region-based Denoised Deformable Convolutional network
(R-DDCN) is proposed in Fig. 1 to handle the variant of receptive field of CNN during
convolution layer. The proposed Mask R-DDCN uses pixel-wise deformable convolution to
optimize the augmentation of the sampling location of the convolution kernel with filtered
offset. It can extract accurate semantic segmentation within each bounding box with an
improved mAP. The basic architecture of R-DDCN is inherited from mask R-CNN [12]

Fig. 1 Block Diagram of the proposed mask Region-based Denoised Deformable Convolutional Network
(R-DDCN) in detecting cracks. The use of DDC modules are used in the convolutional layers to remove
noise occurred in the feature maps
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with the following modifications, i.e. (a) denoised mechanism removing distortion using
non-local means, (b) deformable convolution incorporated with 2D learnable offset into
the regular convolution through the preceding feature maps resulting in deformation of the
standard sampling grid. This hybrid module is known as Denoised Deformable Convolution
(DDC) and it is integrated into mask R-CNN to improve the geometric transformation for
cracks identification.

2 Related work

Crack is defined as a line on the surface of a concrete without completely breaking apart due
to the drastic changing conditions of environment and a limited lifespan of the structures.
Crack inspections are generally divided into destructive testing (DT) and non-destructive
testing (NDT). NDT is the inspection assessment in detecting defects and flaws in accor-
dance to a certain standards without altering or harming the object being testing, and vice
versa to DT [7]. Automated crack detection using camera as proposed is a type of NDT
because it is more effective than manual crack detection without altering or harming the
inspected object. Other options of NDT methods [1] includes ultrasonic testing, X-ray and
Gamma-ray testing, and laser testing. The general steps of computer vision in the crack iden-
tification consist of: (a) Image of cracks are captured using camera, (b) Collected images
are pre-processed to make it more efficient in image analysis steps. (c) Statistical techniques
are applied to analyse cracks property from the pre-processed images, (d) Crack detection
is performed to extract crack features where parameters such as size and direction of crack
can be measured. The rapid advancement of computer vision techniques have been applied
in the field of civil and construction. They can be split into two categories [10], i.e. (a)
Image processing techniques and (b) Deep learning based techniques. Prior research works
are further analysed and discussed to highlight an overview of latest advancements with the
benefits and limitations in each category.

2.1 Image processing techniques

Conventional image processing techniques use the basic statistical approach to directly pro-
cess image data to obtain cracks properties such as edges, shapes and other salient features
that can be defined using mathematical models. The information needed for crack detection
can be purely derived from pixel-based or pre-processed data, which is possibly assisted
by other hardware and measuring tools. Zou et al. [52] proposed a fully automatic cracks
detection method called CrackTree. This method first uses a new geodesic shadow-removal
algorithm to remove the shadow without affecting the cracks. This algorithm offers the
benefit of an accurate modeling in large penumbra areas with well preservation of strong
particle textures. Subsequently, tensor voting is applied to construct a crack probability map.
This probability map is used to construct minimum spanning tree of the graph model and
then used to conduct recursive edge pruning to identify the final crack curve. The shadow
removal performed as pre-processing process is essential to produce accurate result as the
experiment conducted recorded a lower performance without shadow removal.

Zhang et al. [50] proposed a six-stage integrated crack detection and classification
methodology for subway tunnels which utilizes the high-speed line scan camera to capture
low cost-high quality image. The input image is pre-processed before passing through the
black top-hat transform in order to detect possible cracks. Following by that, the output
representation is then gone through crack segmentation and classification. This technique
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obtains an average error rate of 6 %. However, the disadvantage is that the digital image is
obtained by laser scanning, leading to some of the cracks not presented as dark pixels as they
are illuminated by laser lights, resulting in decreased accuracy. Shan et al. [35] proposed a
stereo vision-based crack width detection method to quantitatively analyse the width of con-
crete cracks. This method uses cameras to capture 3D coordinate of crack edge and do not
require any conversion of measurement unit of the captured data. A novel Canny-Zernike
combination algorithm is implemented to crack edge coordinate which can achieve up to
0.02 sub-pixel precision to obtain the 3D coordinate of crack edge. The width is computed
through the minimum distance between two sides of crack edge. The proposed method can
measure crack width as accurate as using a vernier caliper and hence, it is applicable for
engineering application.

Lee et al. [20] proposed crack detection technique with base image. This system uses a
camera as an input device, which then convert the input image to gray scaled images for
fast processing and a wiener filtering is applied to filter our noises. After that, a Sobel mask
is applied to detect edge line in an image. Lastly, local image amplitude mapping process
is applied to the base and test image to reduce false indication and detect the cracks. This
crack detection technique with base image achieves a fairly decent and accuracy experimen-
tal result, even though this technique has the tendency to obtain a false positive error with
a large window size. Hoang et al. [13] proposed an image processing model that utilizes
min-max gray level discrimination as a pre-processing step to enhance the otsu binarization
approach before performing shape analyses for refining the performance of crack detection.
The proposed model is effective in detecting crack objects and analysing their character-
istic such as height, width, and orientation. However, the limitation to this approach is the
need to fine-tune the ratio and margin parameters as well as the high failure rate of detect-
ing thin crack objects. On the other hand, Qu et al. [31] proposed an ultra-efficient crack
detection algorithm (CrackHHP) and an improved pre-extraction and second percolation
process. CrackHHP can improve the percolation speed whereas the second percolation can
detect small cracks and fractures. Each pixel is first designated a weight value depending on
the pixel brightness and the candidate dark pixel then extracted. The dot noise is removed
before percolating the dark pixels and the neighbouring pixels to connect the tiny fracture
to detect cracks. This method display accurate detection and fast computation time.

2.2 Deep learning-based techniques

Deep learning-based techniques adopt neural networks to learn patterns from input image
directly with the guidance of dataset and training mechanism. The current popular learning
architecture in crack identification is Convolutional Neural Networks (CNNs). Fan et al.
[22] proposed a crack detection solution based on a deep ConvNet, which is trained on
square image patches using the provided ground truth information to classify positive and
negative patch. The objective of the solution is to identify whether if a specific pixel is part
of a crack. Hence, the patch is considered as positive patch if it is a crack pixel or is within
close vicinity of one. Otherwise, the patch is considered as negative patch. This proposed
solution shows superior performance in identifying positive patch from background. Zhao
et al. [51] proposed to use a deep CNN to build classifier which can recognize and detect
cracks from input image directly using smartphone. The mentioned CNN classifier needs to
be trained using a large set of training data in order to detect and classify cracks effectively.

Prasanna et al. [30] proposed an automated crack detection algorithm, called spatially-
tuned robust multi feature (STRUM) classifier which is used on a robotic scanning system.
STRUM classifier is used to obtain high accuracy image by performing robust curve fitting
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to spatially localize potential crack regions without affected by the existing noise and dis-
traction, before computing the visual feature using support vector machine, adaboost and
random forest. After that, a crack density map is computed to provide a global view of the
spatial patterns of cracks. Hu et al. [14] proposed a non-destructive crack detection sys-
tem which integrates both time and spatial pattern mining for crack information with Faster
R-CNN. This system uses thermal video sequence as an input, which then is compressed
by the spatial-transient pattern separation. After that, cracks are detected through a trained
Faster R-CNN and visualized with the bounding box.

Janpreet et al. [18] proposed the usage of Mask R-CNN using smartphone captured
image as input to detect road damages such as cracks. Xu et al. [45] proposed to use CNNs
based crack detection model, taking advantage of atrous convolution, Atrous Spatial Pyra-
mid Pooling (ASPP) module and depth-wise separable convolution. Atrous convolution
can exponentially expand the receptive field without reducing the resolution, resulting in
a denser feature map. The ASPP module enables the network to extract multi-scale image
feature information whereas depth wise separable convolution reduces the computational
complexity of the model. Cho et al. [5] proposed the application of deep learning-based
technique for crack assessment on civil structure. The proposed Mask R-CNN yielded an
average accuracy of 88.7% in crack detection on real structures such as bridges, tunnel and
concrete pavement.

Lee et al. [21] proposed the use of Sobel Filter as the edge agreement head to improve the
average precision of 63.3% in mask Region-based Convolutional Neural Network (R-CNN).
The proposed enhanced Mask R-CNN solution shows superior performance compared to
the original Mask R-CNN in detecting crack on complex background. Ryu et al. [34] per-
formed cracks study on the fire-damaged beams using a two-streamed CNN, i.e. weighting
feature network and low-level feature network to extract both abstract and primitive infor-
mation in cracks detection. Convolution-deconvolution structure was incorporated with the
application of element-wise multiplication at the end of the network to combine two fea-
ture maps for precise cracks location. Mei et al. [26] proposed the use of densely connected
convolutional layers in a feed-forward manner with multiple-level features fusion for cracks
detection on road pavements. On the other hand, Song et al. [37] proposed an addition of
multiscale dilated convolutional module in the deep convolutional neural network, which is
known as CrackSeg to automate the detection of road pavement cracks. The multiscale con-
volutional layers are incorporated in the CNN architecture to learn rich deep convolutional
features, allowing more detection of crack feature on a complex background.

3 Denoised deformable convolution

A denoised deformable convolution block is introduced in Fig. 2 by incorporating a denois-
ing mechanism into the deformable convolution. Denoising mechanism is necessary to
remove image noises presented during the image acquisition or processing as their appear-
ance disturbs the original information in the input image, resulting in distortion in the
feature map [3]. Distortion in the feature map causes inaccurate or redundant offset, lead-
ing to unnecessary activation at the output feature map. In the current practices, there
are multiple approaches for image denoising, such as non-local means [4], bilateral filter
[40], mean filter [39] and median filter [46]. Removing noises using non-local means with
embedded Gaussian function as its feature-dependent weighting function yields better per-
formance compared to other methods due to its similarity generalization from the non-local
region [44].
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Fig. 2 Denoised Deformable Convolution (DDC) generates a denoised offset field using non-local means
and produced a deformable kernel. The operation in the denoised block uses 1 × 1 convolution and the
softmax operation is denoted in the pipeline before doing the 2D offsetting. The feature map is denoted as
tensor shape (eg: THW × N) where N is the dimension of kernel, T is the batch size, H is the height and W
is the width of feature map. The “⊗” represents the matrix multiplication

Non-local means [44] is a denoising mechanism that takes a weighted mean of features
in all spatial location (L) in the input feature in order to obtain the denoised output feature
map using,

mi(n) = 1

C(n)

∑

∀j∈L

f (ni, nj ) · g(nj ), (1)

where i is the index of an output position, j is the index that enumerates all possible posi-
tions, g(·) is an unary function that computes a representation of an input signal at the
position j and linear embedding is considered in this context, where g(nj ) = Wg ·nj andWg

is the learnable weight matrix. C(n) is a normalization factor of f (ni, nj ), where C(n) =∑
∀j f (ni, nj ). This operation is a feature-dependent weighting (pairwise) function, which

in this case is embedded Gaussian function defined as follows [41],

f (ni, nj ) = e
1√
d
θ(ni )

T ϕ(nj )
, (2)

where the θ(n) and ϕ(n) refer to the embedded component of n which is obtained through
two regular convolutional layers with convolution kernel of 1×1 and the variable d is the
channel dimension. The term of non-local behavior takes all positions in the averaging oper-
ation instead of just looking into the local neighborhood, which only considers the group
of pixels that is surrounding the target pixel. A non-local operation is a flexible building
block and can be easily used together with convolution layers [41]. This allows to build a
richer hierarchy that combines both non-local and local information by producing a higher
post-filtering clarity and lesser loss of detail in the image denoising mechanism.

A random sampling of the deformed location is applied to an input feature map using
convolution kernel (K) which is augmented with offsets {Δan|n = 1, . . . , N}, where
N = |K| is the total number of sampling grid of the convolution kernel in the deformable
convolution within DDC module. K is the sampling grid of convolution kernel with
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a receptive field size of 3 × 3 and dilation of one, where K = {(−1,−1), (−1, 0),
(−1, 1), (0, −1), (0, 0), (0, 1), (1, −1), (1, 0), (1, 1)} and N = 9 in this basic setup having
nine elements in this module. All sampled value are weighted by w for each pixel location
a0 on the the output feature map y as follows [6],

y(ao) =
∑

an∈R

w(an) · x(ao + an + Δan) (3)

where an enumerates the locations in K and Δan represents the offset value. Figure 3
demonstrates the sampling on the offset locations an + Δan. As the offset Δan is typically
fractional, (3) is implemented through bilinear interpolation as,

x(a) =
∑

b

H(b, a) · x(b), (4)

where a denotes an arbitrary (fractional) location where a = a0+an+Δan, b enumerates all
integral spatial locations in the feature map x, andH(·) is the bilinear interpolation function.
The offset (Δan) is obtained through a regular convolutional kernel with the exact spatial
resolution and dilation as the input feature map, with the exception of outputting channel
dimension of 2N to correspond with the N two-dimensional offsets. The output feature and
offsets are learned simultaneously during training phase at the regular convolutional layer
using back propagation of gradient.

In the operation of the proposed DDC block, a regular convolutional layer is first applied
over the input feature map x to obtain an offset field Δan by performing the denoised
mechanism to filter and suppress noises as follows,

mi(Δan) = 1

C(Δan)

∑

∀j∈L

f (Δani
,Δanj

) · g(Δanj
), (5)

(a) (b)
Fig. 3 Illustration of the sampling locations in 3 × 3 standard and deformable convolution. (a) regular fixed
3× 3 sampling grid (black dots) of standard convolution. (b) deformed 3× 3 sampling locations with offsets
(grey arrows) in deformable convolution with the sequence formation started at the bottom left corner with
position (-1,-1). The top right corner’s position is (1,1) in the convolutional kernel (K)
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where Δani
represents the corresponding output position and Δanj

represents the possible
position enumerated around the Δani

.
The denoised offset fieldmi(Δan) is subsequently used to augment the sampling location

using bilinear interpolation, resulting in an output feature map y as follows,

y(ao) =
∑

an∈R

w(an) · x(ao + an + mi(Δan)). (6)

This DDC module is very important to generate the denoised offset field before being aug-
mented into the output feature map because the existence of noise in the input feature map
could cause false positive offset, leading to unnecessary activation in the output feature map.
Hence, denoised offset field provides the benefit of optimizing the augmentation of the sam-
pling grid inside the convolution kernel while preventing unnecessary activation, resulting
in a more accurate ROI.

4 Mask region-based Denoised deformable convolutional network

DDC module is proposed to improve the capability of CNNs to model unknown transfor-
mations or variations, by optimizing the augmentation of sampling location of convolution
kernel using denoised offset field. The fixed receptive field size of convolution kernel is
undesirable in high level CNN layer that encode semantics over spatial locations. Hence,
DDCmodule is incorporated into stage 5 of Residual Convolution Neural Network (ResNet-
101) as demonstrated in Fig. 4. Stage 5 is the high level feature representation where the
local region is grouped for task segmentation. The incorporation of DDC into ResNet-101
produces a more accurate, cleaner and representative high level feature map of the actual
crack, as compared to the original mask R-CNN. However, this incorporation will also leads
to higher computational requirement. The feature map of all levels from stage 1 to stage
5 are passed to Feature Pyramid Network (FPN) to generate multiple feature map layers,
containing better quality semantic information for object detection. FPN [24] is a feature
extractor using a top-down architecture with lateral connection to build high-level semantics
feature map at all scales.

The resulting high-level semantics feature map are passed on to Region Proposal Net-
work (RPN) in order to propose candidate object bounding boxes. RPN [33] is an algorithm
that takes in an image of any size as inputs and outputs a set of rectangular object propos-
als, each with a specific objectness score. The object proposals are generated based on the
multiple scale and aspect ratio parameter specified in the network, where a total number

Fig. 4 Denoised Deformable Convolution module is incorporated in the stage 5 of ResNet-101 (res5a, res5b
and res5c)
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of proposals are generated for every pixel in an input image. The region proposals [2] gen-
erated by RPN are passed on to ROI align in order to map the proposals onto the feature
diagram to get the Region of Interest (ROI). ROI align is a ROI mapping algorithm used to
solve the misalignment problem faced by its predecessor, ROI Pooling, resulting in quan-
tization loss that has a very negative effect in pixel-accurate tasks. In ROI align, bilinear
interpolation is used to obtain the value of image on their exact pixel point whose coor-
dinates is a floating number to solve the misalignment problem, resulting a more accurate
mapping of ROI to the input image.

These ROIs are passed through fully connected layers in order to generate the ROI vec-
tors. The ROI vectors are then passed through a predictor of two branches, each with a fully
connected layer. One branch is for predicting the bounding box regression values whereas
the other branch is for predicting the object class. In parallel with the existing branch for
bounding box regression and classification, there is another branch for mask generation.
The mask branch containing a fully convolutional network (FCN) which applies to every
ROI, predicting a mask in pixel-specific manner [12]. Hence, the mask R-DDCN can be
used to perform crack identification to locate the position, and classify the type of cracks.

5 Experimental setup

The proposed method is evaluated using cracks dataset, which contains of the crack images
recorded from the Middle East Technical University Campus Buildings and published at the
Mendeley Library [27]. This dataset contains two kind of images, i.e. image containing the
crack data and images without any cracks under multiple surface finishing and illumination
conditions without data augmentation in terms of random rotation or flipping. The sample
images are illustrated in Fig. 5. The images containing crack consist of three types of cracks,
i.e. longitudinal, transverse and crocodile cracks. Each class has 250 images, where 200
images are used for training and 50 images are used for validation. In total, there are 600
training images and 150 validation images for the three classes.

The measurement metrics that we used in this experiment is mean average precision
(mAP), which is similar to PASCALVisual Object Classes (VOC) 2007 challenge [8]. Mean
average precision (mAP) is calculated as follows:

mAP =

Q∑
q=1

Pavg(q)

Q
× 100%, (7)

(a)

(b)

(c)

Fig. 5 Mendeley Library Dataset [27] for (a) Crocodile cracks, (b) Longitudinal cracks (c) Transverse cracks

4395Multimedia Tools and Applications (2023) 82:4387–4404



Fig. 6 Illustration of overlapping region and combined region for Intersection over Union (IOU)

where Q is the number of queries in the set, Pavg is the average precision (AP) of a given
query (q) with an intersection over union (IOU) threshold value. mAP is only obtained after
dividing the Pavg sum of all queries with the total number of queries in the test. The AP
calculation is set based on the intersection over union (IOU) threshold value as follows:

IoU = Area of Overlap

Area of Union
, (8)

where the area of overlap represents the regions that overlaps between the predicted region
and ground-truth region, and area of union represents the total combined region of predicted
region and ground-truth region. The illustration of overlapping region and union region are
shown in Fig. 6. This threshold is measured with the mean AP over three crack classes,
which is longitudinal, transverse and crocodile crack, along with the background class. The
classification rate can be measured as follows,

Acc = T P

Stest

× 100%, (9)

where TP is the True Positive where the type of cracks is predicted correctly and Stest is the
total number of testing samples.

A pre-trained weight from the Common Objects in context (COCO) [23] is used to ini-
tialize the weights on ResNet feature extractor. ResNet-101 is implemented as the backbone
for R-CNN network developed based on [12] to perform image classification and semantics
segmentation on the cracks in the dataset. To modify configuration of mask R-CNN, the
DDC module is inserted into all block of stage 5 after the activation on 1 × 1 convolution
and before the regular 3×3 convolution layer on stage 5, as illustrated in Table 1. In Table 1,
the sequential building layers are listed in the brackets, with the number of stacked blocks
indicating outside the brackets. The output size is down-sampled along conv3 1, conv4 1
and conv5 1 with DDC blocks using a stride of 2.

As for the parameter setup, the hyper-parameters are set following the latest version
of mask R-CNN [12]. During the training and inference, the input images are resized to
“square” mode, which means the input images are resized and padded with zeros in order
to get a square image of size 1024 pixels on each side of the resized square image. As
for Region Proposal Network, the anchors setting is configured to 5 different scales (32,
64, 128, 256, 512) and 3 aspect ratios (0.5, 1, 2), generating 2k and 1k region proposals
at non-maximum suppression threshold of 0.7 at training and inference respectively. The
optimization is set as Stochastic Gradient Descent (SGD) with learning rate, weight decay
and learning momentum as 0.001, 0.0001 and 0.9, respectively. The channel dimension, N
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Table 1 Network Architecture in the modified ResNet-101

Layer Name Output Size ResNet-101

conv1 112×112 7×7, 64, stride=2

max pooling 56×56 3×3, stride=2

conv2 x 56×56

⎡

⎢⎣
1 × 1, 64

3 × 3, 64

1 × 1, 256

⎤

⎥⎦ × 3

conv3 x 28×28

⎡

⎢⎣
1 × 1, 128

3 × 3, 128

1 × 1, 512

⎤

⎥⎦ × 4

conv4 x 14×14

⎡

⎢⎣
1 × 1, 256

3 × 3, 256

1 × 1, 1024

⎤

⎥⎦ × 23

conv5 x with
DDC blocks

7×7

⎡

⎢⎢⎢⎢⎣

1 × 1, 512

1 × 1,N

3 × 3, 512

1 × 1, 2048

⎤

⎥⎥⎥⎥⎦
× 3

in the DDC module is set as 512. In our experiment, the network is trained for 120 epochs
with 100 iterations per epoch.

6 Result and discussion

The proposed DDC module is inserted into the ResNet-101 as one of the backbone of the
mask R-DDCN to extract an irregular shape of cracks. For quantitative analysis, the perfor-
mance of the proposed framework, mask R-DDCN is evaluated against the original mask
R-CNN and the modified R-CNN with only deformable convlution (R-DCNN) in term of
its training loss, validation loss, and mAP evaluation metrics with three IoU thresholding
values, i.e. 0.5, 0.7 and 0.75. Figure 7 displays the training loss for mask R-CNN, R-DCNN
and R-DDCN. In Fig. 7, the proposed mask R-DDCN demonstrated a similar decreasing
trend in training loss along 120 epoch with the training loss of 0.3035. It is almost simi-
lar to the training loss of original mask R-CNN and R-DCNN, which is 0.2883 and 0.3045
respectively. Hence, this result showed that the loss incurred during the training process of
the 600 training dataset for mask R-DDCN is acceptable, if not equal to the original and
deformable convolution counterpart.

In Fig. 8, the proposed method demonstrated the lowest validation loss as compared to
its original and deformable convolution counterpart. Mask R-DDCN can achieve validation
loss of 0.4795 whereas original mask R-CNN and R-DCNN achieved validation loss of
0.4888 and 0.5060 respectively after 120 epochs. This implies that the mask R-DDCN is
able to detect cracks more accurately for the validation dataset. As reported in [11], a model
can be said to “overfit” to the trained dataset when the training loss is low but validation loss
is high, whereas a model can be said to “underfit” when both training and validation loss
is low. By comparing Figs. 7 and 8, it can be observed that the validation loss of original
mask R-CNN and mask R-DCNN is higher than mask R-DDCN whereas the training loss
for all method is almost identical. Hence, both mask R-CNN and R-DCNN model has a
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Fig. 7 Training loss for original mask R-CNN (orange), mask R-DCNN (blue) and mask R-DDCN (red) for
120 epoch

higher tendency of overfitting to the training dataset. In other word, the proposed mask
R-DDCN model has a higher generalization ability, which is expected due to the DDC
module that serves to improve the capability of the proposed method in modeling unknown
transformation.

In Table 2, YOLOv3, original mask R-CNN, mask R-DCNN and mask R-DDCN were
evaluated in term of mAP50. Both YOLOv3 andMask R-DDCN are different in term of their
backbone of deep neural networks. YOLOv3 uses a variant of DarkNet [32] whereas Mask
R-DDCN uses ResNet-101 as its backbone. As in mAP50, mask R-DDCN could achieve
87.5% using the testing dataset. This indicates that proposed mask R-DDCN achieves a
higher accuracy as compared to original Mask R-CNN, deformable convolution methods
and YOLOv3 when the IoU threshold is 0.5, which means that the prediction boundary
and ground truth boundary are overlapping more than 50%. The performance of proposed
method improved the crack segmentation from 63.3% to 87.5% as compared to [21]. How-
ever, mAP50 is insufficient to evaluate the accuracy as a higher IoU threshold should be

Epoch

V
al
id
at
io
n
L
os
s

Fig. 8 Validation loss for original mask R-CNN (orange), mask R-DCNN (blue) and mask R-DDCN (red)
for 120 epoch
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Table 2 Number of trained parameters, percentage of mean average precision and classification rate compar-
ison between YOLOv3, mask R-CNN with ResNet-50 and ResNet-101, R-DCNN and R-DDCN after 120
epoch

Method #params mAP50 mAP70 mAP75 Acc

YOLOv3 [21] 40.55M 28.7 – – –

Mask R-CNN w/ ResNet-50 [21] 44.00M 63.3 – – –

Mask R-CNN w/ ResNet-101 63.73M 83.3 80.0 66.7 95.33

Mask R-DCNN 63.74M 83.3 73.3 66.7 89.33

Mask R-DDCN 63.74M 87.5 83.3 76.7 96.67

used for accuracy sensitive task like crack identification. As for the higher level evaluation
metrics, which is mAP70, original mask R-CNN achieved 80.0%, mask R-DCNN achieved
73.3% whereas mask R-DDCN achieved 83.3%. This result implies that the proposed
method is able to predict more accurately than its original and deformable convolution coun-
terpart as more prediction boundary and ground truth boundary are overlapping more than
70%. In addition, both mask R-CNN andmask R-DCNN achieved mAP75 of 66.7%whereas
mask R-DDCN achieved 76.7%. This indicates that the proposed method can predict pre-
cise boundary than its original and deformable convolution counterpart as more prediction
boundary and ground truth boundary are overlapping more than 75%. In term of classifi-
cation rate, mask R-DDCN can achieve classification rate of 96.67%, which is higher than
mask R-CNN and mask R-DCNN to identify the correct types of cracks. In term of number
of trained parameters, the proposed mask R-DDCN has 63.74 million parameters which has
only extra 0.01 million parameters as compared to mask R-CNNmodel. As a result, the pro-
posed mask R-DDCN with the combination of denoised mechanism and deformable kernel
can detect accurate crack boundary regardless of the shape and orientation of the cracks.

Figure 9 shows the comparison of validation result, which is the red region on crocodile,
longitudinal and transverse crack between original mask R-CNN, mask R-DCNN and mask
R-DDCN. Crocodile cracks refer to cracks with the appearance of a distinctive irregular
shaped pattern of small cracks, which resemble the hide of crocodiles. Longitudinal cracks
are cracks parallel to pavement’s or concrete center line while transverse cracks are cracks
at approximately right angles to the pavement’s or concrete’s center line. The red regions
indicated in Figs. 9 and 10 are pixel-wise outputs generated as part of the output from
Mask R-CNN, Mask R-DCNN and the proposed Mask R-DDCN. A detection bounding
box is drawn to indicate the classification of correct cracks. As for the validation result on
crocodile cracks, original mask R-CNN and mask R-DCNN demonstrated the signs of miss-
ing segmentation on the crack but it showed better crack segmentation using the proposed
mask R-DDCN. On the other hand, the detection result on longitudinal crack displayed
accurate segmentation by the proposed mask R-DDCNwhereas the original and deformable
counterpart shown signs of over-segmentation and missing segmentation respectively. Fur-
thermore, the detection result on transverse crack displayed wrong classification of crack by
original mask R-CNN and mask R-DCNN whereas the proposed mask R-DDCN showed
good instance segmentation with correct crack classification. As a result of visual compar-
ison with all three methods, Mask R-DDCN shows the most convincing results in crack
segmentation and detection. Due to the deformation of DDCmodule is introduced in stage 5
of Mask R-DDCN by turning the fixed kernel into sampling location, higher computation is
required to train the model with the ResNet-101 architecture as the backbone. However, the
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(a) (b) (c)

Fig. 9 Detection result of validation dataset on crocodile cracks, longitudinal cracks and transverse crack
using (a) mask R-CNN, (b) mask R-DCNN and, (c) the proposed mask R-DDCN

computational cost could be addressed by improving hardware limitation such as graphical
processing unit.

Mask R-DDCN has a higher capability in modeling unknown geometric transforma-
tion or variation compared to the original mask R-CNN due to the incorporation of DDC
module in the backbone which augments the sampling points of convolution kernel with
denoised offset field. The original mask R-CNN, mask R-DCNN and mask R-DDCN are
trained using the crack dataset [27] and, the modeling capability of all methods are evaluated
using random image from real world situation that contain geometric variation or transfor-
mation to a certain degree. In Fig. 10, the real-life cracks dataset is used to determine a
more pragmatic approach evaluation and to obtain a more realistic comparison results with
the multiple techniques, including our proposed R-DDCN model. The results from three
images showing on the (a) and (b) gave incomplete and inaccurate crack detection and seg-
mentation in the real-life images using mask R-CNN and mask R-DCNN respectively. As
shown in Fig. 10c, mask R-DDCN could improve the crack detection and segmentation
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Fig. 10 Detection result of real application dataset on crocodile cracks and longitudinal crack using (a) mask
R-CNN, (b) mask R-DCNN and (c) the proposed mask R-DDCN

due to the proposed method have a superior capability in modeling unknown variation or
transformation over the original and deformable convolution counterpart.

7 Conclusion

Mask R-DDCN is proposed in this paper to extract irregular shape of crack identification
in real time application. The denoised deformable convolution is introduced to optimize
the augmentation of the sampling location of the convolution kernel with filtered offset. It
is capable of improving capability of the CNNs in modeling unknown geometric transfor-
mation and improving the accuracy of the model with higher computational requirement.
Experimental results shown that the proposed mask R-DDCN has lower validation loss and
also improved the accuracy of mAP75 from 66.7% to 76.7%. Mask R-DDCN can classify
three type of cracks, i.e. crocodile, longitudinal and transverse cracks with 96.67% classifi-
cation rate. In future work, more cracks with different geometric transformation or variation
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can be added to improve the capability of model in modeling unknown transformation. A
more powerful backbone such as ResNeXt [42] could be adopted together with DDC for
the improved performance in cracks identification.
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