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Abstract
Speech enhancement is the process of enhancing the clarity and intelligibility of speech
signals that have been degraded due to background noise. With the assistance of deep
learning, a novel speech signal enhancement model is introduced in this research. The
proposed model is divided into two phases: (i) Training (ii) Testing. In the training phase,
the noise spectrum and signal spectrum are estimated via a Non-negative Matrix Factor-
ization (NMF) from the noisy input signal. Then, Empirical Mean Decomposition (EMD)
features are extracted from the Wiener filter. The de-noised signal is acquired from EMD,
the bark frequency is evaluated and the Fractional Delta AMS features are extracted. The
key contribution of this study is the use of the Long Short Term Memory (LSTM) model
to properly estimate the tuning factor η of the Wiener filter for all input signals. The
LSTM was trained by the extracted features (EMD) via a modified wiener filter for
decomposing the spectral signal and the output of EMD is the denoised enhanced speech
signal. A comparative evaluation is carried out between the proposed and existing models
in terms of error measures.

Keywords Speechprocessing .Speechenhancement .Empiricalmeandecomposition .Empirical
mean curve decomposition .Wiener filter

1 Introduction

Speech is typically distorted in real-world environments by both room resonances and
background noises [10]. The goal of speech enhancement is to remove a specific amount of
noise from a noisy speech signal while retaining the speech component and reducing speech
distortion as much as possible [29]. Speech augmentation is required in a variety of applica-
tions, including mobile communication and speech recognition [46]. Speech is one of the most
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common ways for humans to share information [11]. Speech is the most critical mode for
interaction in today’s technological society. Speech is indeed a tool that allows us to commu-
nicate with each other [34]. In recent days, Covid-19 is also detected from the speech signal
[26]. To find out presence or absence of Covid-19 the speech signal is used [5]. The goal of
single channel speech enhancement is to improve the quality and intelligibility of speech that
has been corrupted by environmental noises, which degrades many real-world applications
such as speech recognition, hearing aids, and speech telephony [32]. Speech enhancement is a
common technique for improving speech quality [8]. These disruptions diminish speech
quality and intelligibility, particularly whenever the Signal-to-Noise Ratio (SNR) is low.
Binaural speech enhancement strategies are of particular interest for assistive listening devices,
such as hearing aids or headsets, where the end user expects both high speech quality and
speech clarity [38]. The noise corrupted signal is improved by using spatial or temporal
modifications [20]. The speech signal is regarded as the quickest and most natural way to
communicate with humans [12].Understanding distorted speech can be complicated for both
Normal Hearing (NH) and Hearing Impaired (HI) listeners. Many voice-related applications,
such as Automatic Speech Recognition (ASR) and Speaker Identification (SID) seem to
perform poorly in presence of noise [39]. Therefore, speech enhancement is essential.

There’s been a lot of study towards improving speech in noisy environments [2]. Speech
recognition in background noise appears to be difficult for people with hearing loss [3]. The
goal of speech enhancement algorithms is to remove additive background noise from a noisy
speech signal in order to improve its quality or intelligibility [9]. In general, speech enhance-
ment refers to the processing of noisy speech signals in order to improve signal perception via
better decoding by systems or humans [14]. Noises such as airport noise, train noise, and street
noise frequently distort speech signals. These noises have a negative impact on the quality of
the speech signal, especially in voice communication, automatic speech recognition, and
speaker identification [15]. Feature selection is an important step in improving a system for
recognising emotions in speech [2]. Speech recognition in background noise appears to be
difficult for people with hearing loss [3]. Background noise is the primary source of speech
degradation, particularly in hands-free scenarios [22]. The field of speech enhancement (SE) is
concerned with the enhancement of speech signals that have been degraded by noise [16].
Speech enhancement in non-stationary noise environments is a difficult area of study [13].
Speech enhancement aims to improve the clarity and intelligibility of noisy speech [28]. The
major intention behind the speech enhancement is to suppress the noise and to boost up the
SNR of noisy speech signals in challenging environments. The most renowned techniques like
spectral subtraction, Minimum Mean Square Error (MMSE), Log MMSE, OM-LSA, Wiener
filtering, etc. are being more commonly preferred for Speech Enhancement [19]. Speech
enhancement (SE) is the problem of estimating clean-speech signals from noisy single-
channel or multiple-channel audio recordings [27]. Speech enhancement techniques have been
studied for several decades with a variety of promising applications, such as telecommunica-
tions and hearing aid systems, to mitigate the harmful effects of background noise and
interference [33]. Acoustically added background noise to speech can degrade the performance
of digital voice processors used for applications such as speech compression, recognition,
transcription and authentication [7]. The key aim of these speech enhancement methods is to
enhance the Speech SNR. Techniques have been introduced regarding boosting up the speech
quality and compacting speech bandwidth by suppressing the additive background noise [6].
Deep Neural Networks (DNN) are mostly deployed in speech enhancement [41]. This method
generally produces a measure of time-frequency mask that was employed to evaluate the clean
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speech spectrum [21]. Optimal mask generation was also introduced in the traditional method
[44]. But this masking strategy generally provides residual and musical noise in the enhanced
speech. Kalman Filtering (KF) based speech enhancement is introduced in [17]; here the
Linear Prediction Coefficients (LPCs) are calculated using a DNN. Although under nonsta-
tionary noise settings, the noise covariance is computed during speech gaps, which is
ineffective. In addition, a deep audio-visual speech enhancement is suggested [35], but this
approach might break in low SNR values.

Recently, Generative Adversarial Network (GAN) based speech enhancement was utilized
to overcome the traditional difficulties. Especially, Speech Enhancement GAN (SEGAN) [30],
conditional GAN (cGAN) [23], Wasserstein GAN (WGAN) [18], and Relativistic Standard
GAN (RSGAN) [1] techniques were introduced. Despite the success of GAN-based speech
improvement techniques, two major difficulties were present that was training instability and a
lack of consideration for varied speech characteristics [42]. Therefore, researchers have been
making a significant contribution to this field for decades. However, the accuracy and
intelligibility of the outcomes weren’t always adequate.

Thus, to overcome the existing issues, an LSTM with trained speech features and an
adaptive Wiener filter is introduced in this work. The major contribution of this research is
listed below:

& For decomposing the speech spectral signal, a modified wiener filter is introduced.
& In addition, the LSTM model is introduced to properly estimate the tuning factor of the

Wiener filter for all input signals.
& In a testing phase, the LSTMmodel has been trained by the extracted features (EMD) via a

modified wiener filter.

The rest of this paper is organized as: Section 2 addresses the literature works undergone in
speech enhancement. Section 3 tells about the proposed speech enhancement model: an
architectural description. In addition, Section 4 depicts about the processing steps of proposed
speech enhancement model. The results acquired with the proposed work are discussed in
Section 5. This paper is concluded in Section 6.

1.1 Problem statement

Most studies have shown that reducing signal noise without distorting speech is a difficult
challenge, which is one of the main reasons why perfect enhancement systems aren’t available.
In this research, we focus the issues such as lower robustness, not suitable for complex noise
conditions [37], more residual noise existing, lower SNR [45], reduction in speech intellig-
ibility [43], lower denoise effect, lower PESQ [40], and low consideration of speech quality
measures [10].

Compared to the existing models, the proposed work introduces a wiener filter-assisted
deep learning LSTM model. The LSTM model estimates the tuning factor of the Wiener filter
with the aid of extracted features to obtain the de-noised speech signal. For simulation, the
proposed model considers the speech quality measures such as SDR, PESQ, SNR, RMSE,
CORR, ESTOI, and STOI. Moreover, the proposed model attains higher SNR, PESQ,
robustness, and also the proposed model is well suited for complex noisy environments.
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2 Literature review

In 2017, Zou et al. [46] introduced two speech amplification frameworks with super gaussian
speech modeling. Under the assumption that the Discrete Cosine Transform (DCT) coeffi-
cients of clean speech were modelled by Laplacian or a Gamma distribution and the DCT
coefficients of the noise were Gaussian distributed, the clean speech components were
calculated using the MMSE estimator. Then, underneath the condition of speech presence
ambiguity, MMSE estimators were retrieved. The correct estimators of speech statistical
parameters were indeed recommended. A modern decision-directed approach has been used
to approximate the speech Laplacian element. According to the simulation data, the suggested
algorithm generates very little residual disruption and has higher speech efficiency than
Gaussian-based speech amplification algorithms.

In 2020, Zhang et al. [37] developed an LSTM-Convolutional-BLSTM Encoder-Decoder
(LCLED) for enhancing the speech signal. Transpose convolution and skip connection were
both included in the LCLED. Besides that, a priori SNR has been used as a learning objective
of LCLED to achieve a higher level of enhanced speech. Post-processing is done using the
MMSE method. The findings indicate that the suggested LCLED increases the accuracy and
intelligibility of enhanced speech. Furthermore, the running time of the LCLED model was
130 sec.

In 2021, Khattak et al. [29] proposed a “phase compensated perceptually weighted -order
Bayesian estimator” to modify both magnitude and phase spectra to improve noisy speech.
They have changed the step of noisy speech spectra alone in the proposed methodology.
Second, they have manipulated the magnitude-spectra using a perceptually motivated-order
Bayesian estimator. Further, to obtain a stronger gain function, the estimator combines the
benefits of the perceptually-weighted and -order spectral amplitude estimators. To recreate the
interference attenuated speech signals, the compensated phase spectra, and approximate
magnitude spectra were merged. Using the NOIZEUS and AURORA repositories, the pro-
posed speech amplification strategy was tested for various noise ranges (0 dB to +10 dB) in
terms of quantitative accuracy and intelligibility tests. In both non-stationary and stationary
noisy settings, the proposed improvement approach significantly enhances productivity and
ensures intelligibility.

In 2020, Tan et al. [45] introduced a Fully Convolutional Neural Network (FCNN) “to
achieve end-to-end speech enhancement. The encoder and decoder, as well as an extra
Convolutional-Based Short-Time Fourier Transform (CSTFT) layer and CISTFT layer, were
applied to simulate forward as well as inverse STFT operations, respectively. Since the
fundamental phonetic information of speech is presented more clearly by Time-Frequency
(T-F) representations, these layers seek to incorporate frequency-domain knowledge into the
proposed model. In addition, the Temporal Convolutional Module (TCM), which would be
successful for processing the long-term correlations of speech signals, was indeed integrated
amongst encoder and decoder. According to the experimental findings, the suggested para-
digm consistently outperforms other competitive speech amplification models.

In 2020, Zhu et al. [43] used the “Deep Neural Network (DNN)-augmented colored-noise
Kalman filter” to develop a novel speech enhancement system. The authors have modelled the
noise as well as clean speech signal in the form of an Autoregressive (AR) process. The multi-
objective DNN was trained via LPCs to map the Line Spectrum Frequencies (LSF) from the
noisy acoustic features. The denoising was done to the noisy speech by applying the ‘colored-
noise Kalman filter with DNN estimated parameters”. Finally, residual noise in the Kalman-
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filtered speech was removed using a post-subtraction procedure. The proposed work has
achieved the best estimation accuracy for street noise and produced better outcomes in unseen
noise.

In 2021, Wei et al. [40] have proposed a Constant Q Transform (CQT) intending to enhance
the resolution of the lower frequency speech signals. The NMF/ Sparse NMF (SNMF)
algorithm has been used in the backend. At low SNR, PESQ, and STOI the experimental
results demonstrate that the proposed approach outperforms the Short-Time Fourier Transform
(STFT) baseline in terms of enhancement ability.

In 2020, Zhou et al. [32] have suggested a modified bark spectral distortion loss mecha-
nism, which can be thought of as an auditory perception-based MSE to replace the traditional
MSE in DNN-based speech amplification approaches to increase objective perceptual effi-
ciency even further. When compared to DNN-based methods using the traditional MSE
criteria, experiments demonstrated that the proposed method can boost speech enhancement
efficiency, particularly in terms of objective perceptual quality in all experimental settings.

In 2021, Chen et al. [10] have proposed a multi-objective-based multi-channel speech
amplification approach. For dealing with noise and reverberation, the proposed work used the
Bidirectional Long Short-Term Memory (BiLSTM) network. To the BiLSTM network, the
Log-Power Spectra (LPS) of noisy speech was given as an input for each channel of the
microphone array to predict the LPS and Ideal Ratio Mask (IRM) of clean speech. The
intermediary LPS including IRM obtained features from both channels was further treated
as a single LPS using a fusion layer. Moreover, among the clean speech LPS and the fused
single-channel, the interaction taking place was learned via a DNN. Experimental findings
showed the suggested speech amplification method’s viability and adaptability.

The advantages, as well as the challenges of the existing literature works discussed in the
literature section, are manifested in Table 1.

3 Proposed speech enhancement model: An architectural description

The proposed speech enhancement model’s design is shown in Fig. 1, with the overall
mechanism divided into “two main phases (i) Training Phase (ii) Testing Phase”.

The proposed model will be constructed by following three major phases: (a) noise
spectrum and signal spectrum estimation, (b) feature extraction, (c) speech enhancement. In
the training phase, the noisy signal W(t) (“airport noise, exhibition noise, restaurant noise,
station noise, and Street noise”) is incorporated into the clear speech signal S(t). The formu-
lated noisy speech signal is shown in Eq. (1)

R tð Þ ¼ S tð Þ þW tð Þ ð1Þ
Then, for this R(t), the NMF-based spectrum is estimated to find the noise spectrum SpeN(n)
and signal spectrum SpeS(n) respectively. The obtained spectrum (noise and signal) is given as
input to the statistical wiener filter, from which the filtered signal F(n) is generated. Since the
tuning factor η plays a key role in the Wiener filter, it has to be determined for each signal and
is trained in the LSTM algorithm. These, filtered signals F(n) are subjected to EMD, from
which the denoised signal can be obtained. Then, from the denoised signal acquired via EMD,
the bark frequency b(n) is evaluated. Then, from the computed bark frequency, the fractional
delta AMS-based features are extracted. Subsequently, with these extracted features fFD − AMS,
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the LSTM algorithm (a deep learning model) is trained. The LSTM provides the suited tuning
factor ηtuned for the entire input signal in modified Wiener filter.

This ηtuned is fed as input to EMD via a modified wiener filter for decomposing the spectral
signal, and the output of EMD is the denoised signal.

4 Processing steps of proposed speech enhancement model

This is the initial step, where the noise spectrum SpeN(n) and signal spectrum SpeS(n) are
extracted from the noisy signal R(t). The NMF model has higher physical significance and is
simpler to easy than the traditional matrix decomposition algorithm; this is the reason behind
the utilization of the NMF in this research work. We can get a priori information in voice
applications by using train data with NMF instead of the clean signal.

To improve the speech signal, the noisy signal and the speech signal in the time-frequency
(γ, p) domain is computed using STFT as defined in Eq. (2). In Eq. (3), the clear speech STFT
S(p, γ) the distorted speech STFT R(p, γ), and the noise signal STFT W(p, γ) are included in
the pth frequency bin of the γ frame. Eq. (3) shows the statistical formula for the “noisy
speech’s magnitude spectrum” approximation, which is the most often, used assumption for
NMF-based speech and audio signal processing.

Table 1 Review on Speech Enhancement models

Author
[Citation]

Adopted Technique Advantages Drawbacks

Zou et al.
[46]

DCT ✓ Better speech quality
✓ Lower MMSE

• Higher computational
complexity

Zhang
et al.
[37]

LSTM-convolutional-BLSTM
encoder-decoder network

✓ Reduces the model complexity
and training time

✓ Improves the quality and the
intelligibility of enhanced
speech

• Lower robustness
• Not applicable for complex

noise condition

Khattak
et al.
[29]

Phase compensated
perceptually weighted-order
Bayesian estimator

✓ Applicable to noise sources
with fast-changing Spectrum

• No consideration on the
constant Or slowly varying
frequency information

Tan et al.
[45]

FLGCNN ✓ Higher STOI • Lower SNR
• More residual noise exists

Zhu et al.
[43]

DNN-Augmented
Colored-Noise Kalman Fil-
ter

✓ Lessen the voice mumbling
✓ Remove the residual noise
✓ In both seen and unseen noise

conditions, has a strong
generalization capability.

• There is no balance between
residual noise and voice
distortion.

• Reduction in speech
intelligibility

Wei et al.
[40]

Nonnegative matrix
factorization

✓ Increases the low-frequency
resolution of the speech

✓ Improved SNR
✓ Focused mainly on

low-frequency signals

• Lower denoise effect
• Lower PESQ

Zhou
et al.
[32]

DNN ✓ Improved objective perceptual
quality

✓ Achieves a better PESQ score

• Reduced noise suppression

Chen
et al.
[10]

BiLSTM network ✓ Achieves good robustness
against reverberations as well
as distortion

• Low consideration of speech
quality measures

3652 Multimedia Tools and Applications (2023) 82:3647–3675



R p; γð Þ ¼ S p; γð Þ þW p; γð Þ ð2Þ

jR p; γð Þj ¼ jS p; γð Þ þW p; γð Þj ð3Þ

Fig. 1 Schematic overview of the proposed work
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Eq. (5) shows the magnitude spectrum matrices of the various signals and jp, γ shows the
magnitude spectral value corresponding to γ frame for the pth bin. The frequency bin count is
denoted by H, and the time frames are denoted by I.

J ¼ jp;γ
h i

∈NH�I
þ ð4Þ

Eq. (4) is separately used in the training stage for the training data JS∈NH�ISþ and JW∈NH�IWþ ,

and the results are the basis matrices in terms of clear speech FS ¼ rSHl
� �

∈NH�LSþ and noise

FW ¼ rWHl
� �

∈NH�LWþ , respectively. Moreover, L denotes the total number of base vectors. In

Eq. (5), T′ denotes the transpose of a H × I matrix ζ, whose entities are equal to one. In the

enhancement stage, the basis matrices are fixed as FS ¼ FS½ FW � ∈NH� LSþLWð Þ
þ . The activa-

tion matrix EbT ¼ ET 0
S E

T 0
W

� �T 0
∈N LSþLWð Þ

þ �IbT corresponding to the noisy speech is estimated

from JbT∈N
H�IbTþ by means of employing the NMF activation update. Furthermore, the clear

speech spectrum is evaluated from the speech signal only after obtaining the activation matrix
as per Eq. (6), with the help of the Wiener Filter (WF). In Eq. (6), the approximate Positive
Semi-Definite (PSD) matrices corresponding to simple speech are denoted by V′S = [V′S(p,
γ)], while the measured PSD matrices corresponding to noisy speech are denoted by V 0

W

¼ V 0
W p; γð Þ½ � ∈N

H�IbTþ . The next solution is obtained by temporal smoothing the time, as seen
in Eq. (7) and (8). Moreover, Eq. (7) and (8), demonstrate the temporal smoothing factor of
speech ωT and noise ωW, respectively.

F←F⊗
J=F:Eð ÞE

ζE
;

E←E⊗
F J=F:Eð Þ

FT
0
ζ

ð5Þ

Q ¼ V 0
S

V 0
S þ V 0

W
⊗bT ð6Þ

V 0
S p; γð Þ ¼ ρSV

0
S p; γ−1ð Þ þ 1−ρTð Þ FSES½ �pγ

� �2
ð7Þ

V 0
W p; γð Þ ¼ ρWV

0
W p; γ−1ð Þ þ 1−ρWð Þ FWEW½ �pγ

� �2
ð8Þ

The signal spectrum SpecS and the noise spectrum SpecN is obtained as the outcomes. The
Wiener filtering method is used to filter the received noise spectrum SpecN and signal spectrum
SpecS.
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4.1 Wiener filter

“The Wiener filter’s purpose is to compute a statistical estimate of an unknown signal by
taking a similar signal as an input and filtering it to create the estimate as an output”. The
Wiener filter is being used on a wide scale in signal amplification techniques [36]. The Wiener
filter is premised on the idea of estimating the clean signal from the distorted noise signal. The
major goal of the Wiener filter is to diminish the noise from the corrupted signal. Thus, the
approximation is done by reducing the MSE between the target signal and the noise distorted
signal.

The estimated noise spectrum SpecN and signal spectrum SpecS are fed as input to statistical
wiener filtering, in which SpecN and SpecS are filtered. The solution to this frequency-domain
optimization problem is given by the filter transfer function shown in Eq. (9). The signal
spectrum SpecS and the noise spectrum SpecN are treated as uncorrelated and stationary signals
to arrive at this equation. Moreover, SpecS has a power spectral density of pdfS(ω), while SpecN
has a power spectral density of pdfW(ω). Moreover, Eq. (10) shows the statistical formula for
SNR, and Eq. (11) shows how the SNR formula can be used in the filter conversion function.
Moreover. GW(ω) represents the approximate signal magnitude range.

F ωð Þ ¼ pdf S ωð Þ
pdf S ωð Þ þ pdf W ωð Þ ð9Þ

SNR ¼ pdf S ωð Þ
GW ωð Þ ð10Þ

F ωð Þ ¼ 1þ 1

SNR

� �−1
ð11Þ

At the end of filtration, the filtered signal F(n) is generated. Then, from these filtered signals,
the features like the EMD, bark frequency, and delta AMS are extracted.

4.2 Empirical mode curve decomposition

The EMD features are extracted from F(n). Huang proposed EMD as an adaptive strategy in
which a limited number of Intrinsic Mode Functions (IMF) were applied to reflect complex
data. IMFs ye(n) and residue q(n) are decomposed from the data set F(n). Eq. (12) describes the
logical formula that corresponds to this decomposition.

y nð Þ ¼ ∑
e
ye nð Þ þ y nð Þ ð12Þ

The steps are given below:

Step 1: Initialization,
Step 2: The dth IMF is removed using the measures below.

(a) Let k0(n) ≔ qd − 1(n) and m ≔ 1 in the equation.
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(b) The entire km − 1(n) ‘s local maxima and minima are established.
(c) Using cubic splines interpolation, the envelope UBm − 1(n) is defined by the maxima

and LBm − 1(n) for km − 1(n) by the minima.
(d) he mean zm − 1(n) for both envelopes belonging to km − 1(n) is calculated as

zm−1 nð Þ ¼ 1
2 UBm−1 nð Þ−LBm−1 nð Þð Þ. Low-frequency local pattern is the name given

to this moving mean. Furthermore, the assessment of high-frequency local detail
takes place through the shifting method.

(e) km(n) ≔ km − 1(n) − zm − 1(n) is used to shape the mth dimension.

& If km(n) does not meet any of the IMF conditions, the shifting process is continued by
increasing mm + 1 at step (b).

& If km(n) satisfies all of the IMF conditions, then set yd(n) ≔ km(n) and qd(n) ≔ qd −

1(n) − yd(n)
Step 3: If qd(n) represents a residuum, the shifting process may be stopped; otherwise,
resume the shifting process by increasing d, d + 1 and starting from step 1.

Furthermore, the EMD algorithm immediately achieves the completeness of the decomposi-

tion process as y nð Þ ¼ ∑
v

d¼1
yd þ q, which represents an identity. Since equivalent frequencies

can be used by neighbouring IMFs at different time points, the locally orthogonal IMFs
provided by the EMD algorithm do not guarantee global orthogonality. As a result of this,
the bark frequency b(u) is obtained.

4.3 Fractional DeltaAMS feature

The spectrum amplitudes of b(n) are the AMS characteristics. The delta features are introduced
by the minute variations in the frequency and time domains, and let f(tim, freq) be the AMS
function vector to b(n). The determined feature vector is also known as Eq. (13) – Eq. (15).

f tim; freqð Þ ¼ f tim; freqð Þ;Δ f T
�
tim; freq

�
;Δak

�
tim; freq

�h i
ð13Þ

Δ f Tim tim; freqð Þ ¼ f tim; freqð Þ− f tim−1; freqð Þ;
wheretim ¼ 2;…; Tim

ð14Þ

Δ f Tim tim ¼ 1; freqð Þ ¼ f tim ¼ 2; freqð Þ− f tim ¼ 1; freqð Þ ð15Þ
The measured delta function vector across frequency and time is denoted by ΔfTim(tim, freq).
The fractional calculus is used to obtain the most important delta-AMS features in the delta-
AMS features. Incorporating the fractional calculus improves the convergence speed while
reducing computing load. As a result, Eq. (15) can be rewritten as

Δ f tim; freqð Þ ¼ f tim−1; freqð Þ≅Eσ Δ f tim; freqð Þ½ � ð16Þ
Here, t and s represents the windows length and count of frames, respectively and Eσ[Δf(tim,
freq)] is fractional calculus. The incorporation of Eσ[Δf(tim, freq)] into delta-AMS features
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plays a key role in enhancing the speech signal. The formulated FD-AMS is denoted as per Eq.
(17) and Eq. (18), respectively. The extracted fractional delta-AMS features are denoted as fFD

− AMS.

Δ f Tim tim; freqð Þ ¼ Eσ Δ f tim; freqð Þ½ � ð17Þ

Δ f Tim tim; freqð Þ ¼ Δ f tim; freqð Þ− 1

2
Δ f tim−1; freqð Þ−

1

6
1−σð ÞEσ Δ f tim−2; freqð Þ½ �−

1

24
σ 1−σð Þ 2−σð Þ Δ f tim−3; freqð Þ½ �

ð18Þ

The LSTM network is trained with the extracted features fFD − AMS.

4.4 LSTM network

For speech enhancement, the extracted features fFD − AMS are subjected to LSTM. A list of
repeating LSTM cells has been used in the LSTM setup. Each LSTM cell is made up of three
multiplicative units, which represent the “forget gate, input gate, and output gate” [31]. These
units enable LSTM memory cells to store and transfer data for longer periods of time. Let the
variablesM and C denotes the hidden and cell states, respectively. The operation is performed
by the benchmark LSTM cell while generating outputs ηtuned. The formulation of LSTM is
given below:

I t ¼ σ J IX t þ KIMt−1 þ BIð Þ ð19Þ

Ft ¼ σ J FX t þ K FMt−1 þ BFð Þ ð20Þ

Ot ¼ σ JOX t þ KOMt−1 þ BOð Þ ð21Þ

Ct ¼ FtCt−1 þ I tGt ð22Þ

Gt ¼ tanh JGX t þ KGMt−1 þ BGð Þ ð23Þ

Mt ¼ Ottanh Ctð Þ ð24Þ
Here, It, Ft, and Ot are the input, forget, and output gates at a time t. The weights which map
the hidden layer input to the input, forget as well as output gates are represented as JI, JF, and
JO. The weight matrices which map the hidden layer output to gates are denoted by KI, KF, and
KO. BI, BF, BO and BG are the bias vectors. The sigmoid function σ is used to represent the gate
activation function. Furthermore, the cell outcome and layer outcome is denoted by Gt andMt

respectively. The architecture of the LSTM is shown in Fig. 2.
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4.5 Modified wiener filtering

The importance of the tuning ratio ηtuned has been well established in this research work. Based
on the b(u)(bark frequency) of the NMF-based filtered EMD signal, the estimated tuning ratio
of the Wiener filter is fine-tuned by LSTM. Mathematically, b(u) can be expressed by Eq. (25).

b uð Þ ¼ 13arctan 0:76uð Þ þ 3:5arctan 0:33uð Þ2
h i

ð25Þ

For tuning η in a much precise manner, we have introduced a new modified wiener filter
model, which overcomes the drawbacks of the existing wiener filtering model. The existing
wiener filter couldn’t estimate the power spectra efficiently; it is challenging for the existing
wiener filtering to acquire the perfect restoration for the random nature of the noise. Moreover,
the existing wiener filter is comparatively slow to apply since they require working in the
frequency domain. Interestingly, our new modified wiener filter overcomes all these draw-
backs. The newly developed modified wiener filter can be formulated as per Eq. (26).

H ωð Þ ¼ R ωð Þ
R ωð Þ þ En= Ey−En

� 	
:α:R ωð Þ ð26Þ

Here, En denotes the noise-free speech, Ey points to the energy of the noise speech energy, and
R(ω) is the noisy speech signal. In addition, α represents the noise suppression factor.

The properly estimated tuning ratio ηtuned acquired from LSTM is fed as input to the Wiener
filter, instead of the constant η. The outcomes of the Modified Wiener filter are the filtered

signal Fu tð Þ. Again, Fu tð Þ is decomposed using EMD and the result is the enhanced denoised

signal S tð Þ. The training library is built using the established b(u) and tuning ratio ηtuned as
inputs during the training phase. The testing procedure is described as an online procedure,
while the training procedure is described as an offline procedure. In the offline phase, the
required tuning factor for various noises is identified, and the LSTM is trained with this
information.

In the training process, the training library is constructed by giving the known b(u) and
tuning ratio ηtuned as inputs. The testing process is said to be the online process, while the
training process is an offline process. The appropriate tuning factor for diverse noises is
identified in the offline process and with this, the LSTM is trained. The tuning element is

Fig. 2 The architecture of LSTM
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associated with the qualified network in the online mechanism, where the real improvement
process takes place.

5 Results and discussion

MATLAB was used to implement the recently adopted speech amplification model. The data
collection for the current study work was obtained from [4]. The five noise categories in this
database, namely “airport noise, exhibition noise, restaurant noise, station noise, and street
noise,” are added to speech signals at differing SNR levels (0 dB, 5 dB, 10 dB, and 15 dB,
respectively) to measure the efficacy of the suggested work for speech enhancement. Memory
bandwidth is the amount of memory that can be used to process files in a second The total
memory of the system utilized is 12GB in which the memory bandwidth of the proposed
method is 1.6GB. The time step for each sequence is given in Table 2. Here time step
represents the number of samples.

Figure 3 depicts the spectrums of the clean signal, noised signal (mixture of clean and noise
signal), and de-noised signal for the airport, exhibition hall, restaurant, train station, and street,
respectively. Signal-to-Distortion Ratio (SDR), Perceptual Evaluation Of Speech Quality
(PESQ), Signal-To-Noise Ratio (SNR), Root-Mean-Square Error (RMSE), Correlation
(CORR), Extended STOI (ESTOI), Short-Time Objective Intelligibility (STOI), and Cumula-
tive Squared Euclidean Distance (CSED) are all used to analyze the performance of the
proposed work. The comparative evaluation is made between the proposed and the existing
models like multi-features+ DCNN based speech enhancement [15], Diminished Empirical
Mean Curve Decomposition (D-EMCD) [14], Neural Network (NN) + auto correlation,
Spectral Subtraction [7], Optimal Modified Minimum Mean Square Error Log-spectral Am-
plitude (OMLSA) [6], Two-step Noise Reduction (TSNR) [24], Harmonic Regeneration Noise
Reduction (HRNR) [25], and Regularized Nonnegative Matrix Factorization (RNMF) [9],
respectively.

5.1 Influence on airport noise under varying SNR

& In order to validate our proposed work as a significant one even under varying noise
conditions, we have added the airport noise signal Wair(t) onto the clear speech signal S(t).
The formulated noisy speech signal Rair(t) is validated for varying SNR levels R(t) = S(t)
+ W(t). At 0 dB, 5 dB, and 10 dB, 15 dB, respectively we have added theWair(t) onto the
S(t). Now, the formulated airport noisy signal Rair(t) is validated over the existing models
like multi-features+ DCNN based Speech Enhancement, D-EMCD, NN + auto correla-
tion, spectral subtraction, OMLSA, TSNR, HRNR, and RNMF in terms of SDR, PESQ,

Table 2 Time step for sequence

Sequence Time steps

1 22,529
2 22,529
3 22,529
4 22,529
5 22,529
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SNR, RMSE, CORR, ESTOI, STOI, respectively. The obtained results are tabulated in
Tables 3, 4, 5 and 6, which corresponds to different SNR rates of 0 dB, 5 dB, 10 dB, and
15 dB, respectively. When looking at the results, it’s clear that the proposed work
delivered the best results, with higher SDR, PESQ, CORR, ESTOI, STOI, and SNR, as
well as a lower RMSE. Initially, when Rair(t) is added at 0 dB, the proposed work seems to
have achieved the highest value as 6.89, which is the best score compared to multi-

Fig. 3 The spectrum of the clean signal, noised signal (mixture of clean and noise signal), and de-noised signal
for (a)airport, (b)exhibition hall, (c) restaurant, (d) train-station, and (e) street noise
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features+ DCNN based Speech Enhancement = 5.98, D-EMCD = 4.83, NN + auto
correlation = −43.19, spectral subtraction = −8.80, OMLSA = -23.11, TSNR = −7.41,
HRNR = −7.42, and RNMF = 5.82. In addition, PESQ of the proposed work is 2.17 at
SNR = 0 dB, which is 4.9%, 10.43%, 75.06%, 74.7%, 40.78%, 40.78%, 34.95%,
36.325% and 11.09% better than the existing models like like multi-features+ DCNN
based Speech Enhancement, D-EMCD, NN + auto correlation, spectral subtraction,
OMLSA, TSNR, HRNR, and RNMF, respectively. When, Rair(t) is added at SNR =
5 dB, the proposed work is PESQ of the proposed work is 2.57, which is the maximal

Table 3 Performance evaluation of proposed model over existing for Airport Noise at varying SNR = 0 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based
Speech Enhancement [15]

5.98 2.07 32.47 0.02 0.88 0.46 0.75 4472.1

D-EMCD [14] 4.83 1.95 5.18 0.02 0.83 0.51 0.72 1870.3
NN + auto correlation −43.19 0.54 −0.01 0.04 −0.000003 0.0008 1 7169.1
Spectral Subtraction [7] −8.80 0.55 −0.21 0.04 −0.003 0.14 0.39 4923.3
OMLSA [6] −23.11 1.29 −22.20 0.56 0.07 0.36 0.58 4931
TSNR [24] −7.41 1.41 −1.004 0.05 0.01 0.34 0.55 3410.6
HRNR [25] −7.42 1.38 −0.88 0.05 0.01 0.32 0.56 3352.9
RNMF [9] 5.82 1.93 2.78 0.03 0.80 0.47 0.68 0
Proposed 6.89 2.17 35.20 0.02 0.89 0.51 0.73 1758.1

Table 4 Performance evaluation of proposed model over existing for Airport Noise at varying SNR = 5 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based
Speech Enhancement [15]

10.55 2.41 36.05 0.02 0.95 0.61 0.84 4676.9

D-EMCD [14] 9.26 2.36 8.23 0.02 0.92 0.64 0.81 1606.9
NN + auto correlation −43.25 0.53 −0.004 0.04 −0.000004 0.0006 1 7952.9
Spectral Subtraction [7] −7.70 0.82 −0.18 0.04 −0.005 0.19 0.47 4530.9
OMLSA [6] −22.66 1.32 −22.19 0.55 0.08 0.48 0.67 4754.4
TSNR [24] −6.77 1.86 −0.89 0.05 0.02 0.46 0.66 3215.7
HRNR [25] −6.81 1.85 −0.82 0.05 0.02 0.44 0.66 3161.4
RNMF [9] 8.23 2.31 3.67 0.03 0.87 0.61 0.76 2999
Proposed 10.87 2.57 38.29 0.01 0.95 0.71 0.84 1471.6

Table 5 Performance evaluation of proposed model over existing for Airport Noise at varying SNR = 10 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based
Speech Enhancement [15]

13.69 2.69 10.57 0.01 0.97 0.75 0.89 4604.2

D-EMCD [14] 12.45 2.69 10.54 0.01 0.96 0.77 0.88 1392.5
NN + auto correlation −45.51 0.45 −0.001 0.04 0.00003 −0.00006 1 9049.1
Spectral Subtraction [7] −7.46 0.99 −0.21 0.04 −0.002 0.25 0.52 4275.7
OMLSA [6] −22.42 1.47 −22.19 0.56 0.08 0.59 0.74 4621.7
TSNR [24] −6.69 2.28 −0.91 0.05 0.02 0.59 0.75 3032.3
HRNR [25] −6.73 2.31 −0.85 0.05 0.02 0.59 0.75 3016.9
RNMF [9] 9.36 2.53 4.53 0.03 0.89 0.71 0.82 2761.1
Proposed 13.19 2.63 40.68 0.009 0.972 0.79 0.91 1291.9
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value when compared to multi-features+ DCNN based Speech Enhancement = 2.41, D-
EMCD = 2.36, NN + auto correlation = 0.53, spectral subtraction = 0.82, OMLSA =
1.32, TSNR = 1.86, HRNR = 1.85, and RNMF = 2.31. In addition, the proposed work
has achieved the maximal ESTOI as 0.71, which is 13.83%, 8.6%, 99.9%, 71.9%,
31.4%,31.4%, 34.8%, 37.65%, and 13.5% better than the existing models like multi-
features+ DCNN based Speech Enhancement, D-EMCD, NN + auto correlation, spectral
subtraction, OMLSA, TSNR, HRNR, and RNMF, respectively at SNR = 5 dB. In
addition, when Rair(t) is added at 10 dB, the proposed work seems to have attained the
favorable outcome as shown in Table 4. The CORR of the proposed work at SNR =
10 dB is 0.97, which is 0.18%, 0.14%, 99.9%, 92%, 91.85%, 91.85%, 97.6%, 97.7% and
8.4% better than the existing models like the existing models like multi-features+ DCNN
based Speech Enhancement, D-EMCD, NN + auto correlation, spectral subtraction,
OMLSA, TSNR, HRNR, and RNMF, respectively. Moreover, on observing the outcomes
from Table 5, the proposed work had achieved the least RMSE as 0.007, which is 50.2%,
34.1%, 82.8%, 83.2%, 98.6%, 98.6%, 84.5%, 84.4%, and 69.2% better than the existing
models like multi-features+ DCNN based Speech Enhancement, D-EMCD, NN + auto
correlation, spectral subtraction, OMLSA, TSNR, HRNR, and RNMF, respectievly. The
change is made in the wiener filter. Furthermore, the LSTM model is used to accurately
estimate the tuning factor of the Wiener filter for all input signals. During the testing phase,
the extracted features (EMD) were used to train the LSTMmodel using a modified Wiener
filter. Thus, the proposed work had enhanced the quality of the speech signal even under
the airport environment.

5.2 Influence on exhibition hall noise under varying SNR

The noise created from the exhibition hall Whall(t) is added to S(t) at varying SNR rates. The
formulated noisy signal R(t) = S(t) + Whall(t) is evaluated in terms of SDR, PESQ, SNR,
RMSE, CORR, ESTOI, STOI, respectively. The result acquired is tabulated in Tables 7, 8, 9
and 10, corresponding to varying SNR rates: 0 dB, 5 dB, and 10 dB, 15 dB, respectively.
When addingWhall(t)=0 dB to S(t), the proposed work has achieved the highest SNR as 34.27,
which is better than existing models like the existing models like multi-features+ DCNN based
Speech Enhancement = 5.24, D-EMCD = 5.16, NN + auto correlation = −0.006, spectral

Table 6 Performance evaluation of proposed model over existing for Airport Noise at varying SNR = 15 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based
Speech Enhancement [15]

15.2 3.06 10.01 0.01 0.97 0.84 0.93 4851.6

D-EMCD [14] 14.21 2.97 11.91 0.01 0.97 0.84 0.91 1303.6
NN + auto correlation −47.09 0.64 −0.0004 0.04 0.00002 0.00006 1 10,307
Spectral Subtraction [7] −7.49 1.07 −0.24 0.04 −0.004 0.27 0.54 4136.2
OMLSA [6] −22.26 1.67 −22.19 0.56 0.08 0.66 0.77 4562.3
TSNR [24] −6.75 2.75 −0.92 0.05 0.02 0.69 0.80 2940.4
HRNR [25] −6.78 2.79 −0.88 0.05 0.02 0.68 0.79 2929
RNMF [9] 9.95 2.72 5.15 0.02 0.90 0.75 0.84 0
Proposed 16.48 2.98 42.97 0.007 0.98 0.89 0.95 1018.8
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subtraction = −0.31, OMLSA = −22.20, TSNR = −0.99, HRNR = −0.87, and RNMF =
2.81. In addition, the RMSE of the proposed work is 18.7%, 17.7%, 53.5%, 55.18%, 96.4%,
96.4%, 58.5%, 57.9% and 36.3% better than the existing models like the existing models like
multi-features+ DCNN based Speech Enhancement, D-EMCD, NN + auto correlation,
spectral subtraction, OMLSA, TSNR, HRNR, and RNMF, respectively. In addition, when

Table 7 Performance evaluation of proposed model over existing for exhibition Hall Noise at varying SNR =
0 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based
Speech Enhancement [15]

5.36 1.73 5.24 0.02 0.86 0.52 0.69 4607.1

D-EMCD [14] 5.26 1.88 5.16 0.02 0.83 0.56 0.73 2406.2
NN + auto correlation −41.66 0.43 −0.006 0.04 −0.00003 −0.00009 1 6885.2
Spectral Subtraction [7] −9.78 0.43 −0.31 0.04 −0.006 0.15 0.39 4998.4
OMLSA [6] −23.21 1.15 −22.20 0.56 0.07 0.43 0.61 5203.8
TSNR [24] −7.32 1.24 −0.99 0.05 0.01 0.43 0.61 3570.9
HRNR [25] −7.35 1.21 −0.87 0.05 0.01 0.42 0.62 3523.7
RNMF [9] 6.22 1.85 2.81 0.03 0.79 0.53 0.69 4127
Proposed 5.84 1.81 34.27 0.02 0.87 0.51 0.72 2392.1

Table 8 Performance evaluation of proposed model over existing for exhibition Hall Noise at varying SNR =
5 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based
Speech Enhancement [15]

10.60 1.98 8.41 0.02 0.95 0.51 0.76 4181.5

D-EMCD [14] 9.37 2.25 8.15 0.02 0.92 0.68 0.82 2048.5
NN + auto correlation −46.41 0.60 −0.002 0.04 0.00001 0.0002 1 7163.5
Spectral Subtraction [7] −8.64 0.72 −0.24 0.04 −0.004 0.21 0.46 4556
OMLSA [14] −22.64 1.34 −22.19 0.56 0.08 0.53 0.69 4956.9
TSNR [24] −6.90 1.79 −0.96 0.05 0.02 0.54 0.70 3218.2
HRNR [25] −6.94 1.79 −0.89 0.05 0.02 0.54 0.71 3179
RNMF [9] 8.69 2.19 3.84 0.03 0.86 0.64 0.77 3873.4
Proposed 9.11 2.13 36.81 0.01 0.93 0.56 0.77 2000.4

Table 9 Performance evaluation of proposed model over existing for exhibition Hall Noise at varying SNR =
10 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based
Speech Enhancement [15]

13.76 2.49 12.95 0.01 0.97 0.65 0.87 4376.1

D-EMCD [14] 12.55 2.58 10.38 0.01 0.96 0.77 0.88 1812.9
NN + auto correlation −47.84 0.39 −0.0009 0.04 −0.00001 0.0009 1 8363.9
Spectral Subtraction [7] −7.67 0.92 −0.22 0.04 −0.006 0.25 0.51 4502.9
OMLSA [6] −22.39 1.49 −22.19 0.56 0.08 0.61 0.74 4761.9
TSNR [24] −6.69 2.25 −0.93 0.05 0.02 0.62 0.76 3168.5
HRNR [25] −6.73 2.26 −0.88 0.05 0.02 0.62 0.76 3094.6
RNMF [9] 10.26 2.48 4.81 0.02 0.89 0.72 0.83 0
Proposed 14.65 2.66 41.59 0.009 0.97 0.73 0.86 1543.1
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theWhall(t) is added to S(t) at 5 dB, the SNR of the proposed work is 36.81, which is 77.16%,
77.85%, 99.9%, 99.3%, 39.7%, 39.7%, 97.3%, 97.52%, and 89.5% better than the existing
models multi-features+ DCNN based Speech Enhancement, D-EMCD, NN + auto correla-
tion, spectral subtraction, OMLSA, TSNR, HRNR, and RNMF, respectively. In addition, the
CORR of the proposed work is 2.1%, 0.4%, 99.9%, 99.56%, 91.8%, 91.8%, 97.9%, 97.9%,
and 6.9% better than the existing models like multi-features+ DCNN based Speech Enhance-
ment, D-EMCD, NN + auto correlation, spectral subtraction, OMLSA, TSNR, HRNR, and
RNMF, respectively. Moreover, when the Whall(t) is added at 10 dB to S(t), the R(t) acquired
from the proposed work in terms of PESQ is 2.663, which is better than existing models like
multi-features+ DCNN based Speech Enhancement = 2.49, D-EMCD = 2.58, NN + auto
correlation = 0.39, spectral subtraction = 0.92, OMLSA = 1.49, TSNR = 2.25, HRNR =
2.26, and RNMF = 2.48, respectively. Moreover, whenWhall(t) is applied at 15 dB to S(t), the
proposed speech signal is 0.3%, 0.7%, 84.3%, 64.4%, 44.2%, 44.2%, 8.6%, 8.15%, 8.15% and
6.3% better than the existing work in terms of PESQ. Moreover, in case of SNR for Whall(t)
applied at 15 dB, the proposed work is 67.8%, 71.7%, 99.9%, 99.43%, 48.3%, 48.3%, 97.8%,
97.9%, and 87% better than the existing models like multi-features+ DCNN based Speech
Enhancement, D-EMCD, NN + auto correlation, spectral subtraction, OMLSA, TSNR,
HRNR, and RNMF, respectively. The final result is indeed a speech-enhanced signal with
negligible noise. The wiener filter has undergone changes. Moreover, for all input signals, the
LSTM model is used to accurately estimate the Wiener filter tuning factor. The extracted
features (EMD) were used to train the LSTM model using a modified Wiener filter during the
testing phase. Therefore, from the evaluation, it is clear that the proposed work is applicable
even under the exhibition hall.

5.3 Influence on restaurant noise under varying SNR

The restaurant noiseWrest(t) is added to S(t) at varying SNR rates. The formulated noisy signal
R(t) = S(t) + Wrest(t) is evaluated in terms of SDR, PESQ, SNR, RMSE, CORR, ESTOI,
STOI, respectively. The result acquired is tabulated in Tables 11, 12, 13 and 14, corresponding
to varying SNR rates: 0 dB, 5 dB, and 10 dB, 15 dB, respectively. While addingWrest(t)=0 dB,
the SNR of the proposed work is 33.90, which is better than the existing models like multi-
features+ DCNN based Speech Enhancement =5.99, D-EMCD = 4.55, NN + auto correla-
tion = −0.009, spectral subtraction = −0.17, OMLSA = −22.21, TSNR = −1.05, HRNR =

Table 10 Performance evaluation of proposed model over existing for exhibition Hall Noise at varying SNR =
15 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based Speech
Enhancement [15]

16.23 2.82 13.85 0.01 0.98 0.79 0.93 4601

D-EMCD [14] 15.03 2.88 12.16 0.01 0.97 0.85 0.92 1666.9
NN + auto correlation −47.88 0.45 −0.0004 0.04 0.00002 0.0005 1 9176.9
Spectral Subtraction [7] −7.52 1.03 −0.24 0.04 −0.005 0.27 0.54 4272.4
OMLSA [6] −22.26 1.62 −22.19 0.56 0.08 0.67 0.77 4637.6
TSNR [24] −6.73 2.65 −0.93 0.05 0.020 0.69 0.80 3036.8
HRNR [25] −6.76 2.67 −0.89 0.05 0.02 0.69 0.80 2974.6
RNMF [9] 11.13 2.72 5.59 0.02 0.91 0.78 0.86 3443.7
Proposed 17.27 2.90 43.01 0.007 0.98 0.81 0.91 1567.6
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−0.92, and RNMF = 2.58, respectievly. In addition, for Wrest(t)=0 dB, the RMSE of the
proposed work is 0.02, which is 26.4%, 20.6%, 52.3%, 53.4%, 96.3%, 96.3%, 57.9%, 57.3%
and 36.5% better than the existing models like the existing models like multi-features+ DCNN
based Speech Enhancement, D-EMCD, NN + auto correlation, spectral subtraction, OMLSA,
TSNR, HRNR, and RNMF, respectievly. Moreover, when adding Wrest(t) at 5 dB, the CORR
of the proposed work is 0.93016, which is better than models like multi-features+ DCNN
based Speech Enhancement = 0.91, D-EMCD = 0.92, NN + auto correlation = −0.000008,
spectral subtraction = −0.005, OMLSA = 0.08, TSNR = 0.02, HRNR = 0.02, and RNMF =

Table 11 Performance evaluation of proposed model over existing for restaurant noise at varying SNR = 0 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based
Speech Enhancement [15]

5.29 2.05 5.99 0.03 0.86 0.56 0.78 4416

D-EMCD [14] 3.76 1.93 4.55 0.03 0.81 0.51 0.69 1964
NN + auto correlation −44.85 0.47 −0.009 0.04 −0.00001 0.0001 1 6974.2
Spectral Subtraction [7] −9.14 0.55 −0.17 0.043 −0.003 0.13 0.37 4852.8
OMLSA [6] −23.03 1.37 −22.21 0.56 0.07 0.37 0.58 4977.1
TSNR [24] −7.69 1.37 −1.05 0.05 0.01 0.34 0.55 3560.1
HRNR [25] −7.71 1.35 −0.92 0.05 0.005 0.32 0.55 3538
RNMF [9] 5.19 1.85 2.58 0.03 0.78 0.49 0.66 3378.8
Proposed 5.37 2.22 33.90 0.02 0.86 0.55 0.73 1765.8

Table 12 Performance evaluation of proposed model over existing for restaurant noise at varying SNR = 5 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based
Speech Enhancement [15]

8.92 2.35 7.89 0.01 0.91 0.62 0.85 4117.3

D-EMCD [14] 8.69 2.27 7.87 0.02 0.92 0.65 0.81 1729.6
NN + auto correlation −41.91 0.55 −0.003 0.04 −0.000008 −0.0002 1 8276.5
Spectral Subtraction [7] −7.90 0.80 −0.19 0.04 −0.005 0.19 0.46 4413.9
OMLSA [6] −22.56 1.31 −22.19 0.56 0.08 0.49 0.67 4773.8
TSNR [24] −7.06 1.84 −0.98 0.05 0.02 0.49 0.68 3129.5
HRNR [25] −7.09 1.85 −0.91 0.05 0.02 0.48 0.68 3100.8
RNMF [9] 7.96 2.19 3.55 0.03 0.86 0.62 0.76 0
Proposed 8.96 2.38 36.87 0.01 0.93 0.65 0.81 1598.8

Table 13 Performance evaluation of proposed model over existing for restaurant noise at varying SNR = 10 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based
Speech Enhancement [15]

11.72 2.68 10.87 0.01 0.96 0.78 0.93 4177

D-EMCD [14] 11.89 2.66 10.09 0.01 0.95 0.77 0.87 1532.7
NN + auto correlation −44.57 0.48 −0.0009 0.04 −0.000007 0.0004 1 9166.9
Spectral Subtraction [7] −7.57 0.96 −0.22 0.04 −0.004 0.25 0.52 4297.5
OMLSA [6] −22.38 1.49 −22.19 0.56 0.08 0.59 0.74 4651
TSNR [24] −6.73 2.24 −0.91 0.05 0.02 0.59 0.76 3098.7
HRNR [25] −6.76 2.26 −0.85 0.05 0.02 0.58 0.75 3050.4
RNMF [9] 9.31 2.45 4.37 0.03 0.88 0.71 0.81 2974.8
Proposed 13.94 2.77 40.97 0.009 0.97 0.79 0.90 1273.3
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0.86, respectievly. In addition, the PESQ of the proposed work is 0.12%, 4.7%, 77.01%,
66.4%, 45.1%, 45.1%, 22.7%, 22.49% and 8.1% better than the existing models like the
existing models like multi-features+ DCNN based Speech Enhancement, D-EMCD, NN +
auto correlation, spectral subtraction, OMLSA, TSNR, HRNR, and RNMF, respectievly.
Moreover, when the Wrest(t)=10 dB is added to the input clear speech signal, the processed
outcomes from proposed model has generated a higher speech quality signal’s. here, when
Wrest(t)=10 dB, the RMSE of the proposed work is 33.6%, 31.9%, 78.3%, 78.8%, 98.3%,
98.3%, 80.5%, 80.37% and 64.6% better than the existing models like the existing models like
multi-features+ DCNN based Speech Enhancement, D-EMCD, NN + auto correlation,
spectral subtraction, OMLSA, TSNR, HRNR, and RNMF, respectievly. In addition, ESTOI
of the proposed work is 0.79, which is 0.15%, 3.9%, 99.9%, 68.9%, 25.3%, 25.3%, 25.79%,
26.8% and 11.455 better than the existing models like the existing models like multi-features+
DCNN based Speech Enhancement, D-EMCD, NN + auto correlation, spectral subtraction,
OMLSA, TSNR, HRNR, and RNMF, respectievly. Moreover, when the Wrest(t)=15 dB is
added to the clear signal, the processed outcomes from the proposed work in terms of SNR is
6.4%, 72.1%, 99.9%, 99.4%, 46.2%, 46.28%, 97.7%, 97.86% and 88.04% better than the
existing models like the existing models like multi-features+ DCNN based Speech Enhance-
ment, D-EMCD, NN + auto correlation, spectral subtraction, OMLSA, TSNR, HRNR, and
RNMF, respectievly. The modification is made to the wiener filter. The improved wiener filter
is used rather than using conventional one. Thus, the betterment of the proposed work has been
proved over the other existng models.

5.4 Influence on railway station noise under varying SNR

To the clear speech signal S(t), the railway station noise Wrail(t) is added under varying SNR
rates, and the outcomes acquired after de-noising is evaluated in terms of SDR, PESQ, SNR,
RMSE, CORR, ESTOI, STOI, respectively. The results acquired are tabulated in Tables 15,
16, 17 and 18 corresponding to varying SNR rates: 0 dB, 5 dB, and 10 dB, 15 dB respectively.
On applying theWrail(t) at SNR = 0 dB, the SNR of the proposed work is 35.03, which is the
highest value and it is 83.26%, 84.2%, 99.9%, 99.9%, 36.6%, 36.6%, 97.6%, 97.9%, and
92.65% better than the existing models like multi-features+ DCNN based Speech Enhance-
ment, D-EMCD, NN + auto correlation, spectral subtraction, OMLSA, TSNR, HRNR, and
RNMF, respectively. In addition, Wrail(t) is applied to S(t) at 5 dB, the proposed had achieved
the least RMSE as 0.01, which is the least value when compared to multi-features+ DCNN

Table 14 Performance evaluation of proposed model over existing for restaurant noise at varying SNR = 15 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based
Speech Enhancement [15]

13.98 2.96 38.67 0.01 0.98 0.81 0.97 4826.8

D-EMCD [14] 13.82 2.91 11.50 0.01 0.97 0.84 0.91 1375.6
NN + auto correlation −45.91 0.49 −0.0003 0.04 0.00003 0.002 1 10,500
Spectral Subtraction [7] −7.44 1.05 −0.24 0.04 −0.005 0.28 0.54 4145.3
OMLSA [6] −22.26 1.59 −22.19 0.56 0.08 0.66 0.77 4573.3
TSNR [24] −6.74 2.62 −0.92 0.05 0.02 0.68 0.80 2944.5
HRNR [25] −6.77 2.66 −0.88 0.05 0.02 0.68 0.79 2923.7
RNMF [9] 9.77 2.62 4.94 0.02 0.89 0.77 0.84 2747.8
Proposed 15.44 2.88 41.32 0.009 0.98 0.85 0.93 1255.8
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based Speech Enhancement = 0.02, D-EMCD = 0.02, NN + auto correlation = 0.04, spectral
subtraction = 0.04, OMLSA = 0.56, TSNR = 0.05, HRNR = 0.05, and RNMF = 0.03. In
addition, the RMSE of the proposed work after the application of Wrail(t) at SNR = 10 dB is
0.0083884, which is 32.6%, 35.3%, 80.4%, 80.9%, 98.4%, 98.49%, 82.4%, 82.2% and 67.6%
better than the existing models multi-features+ DCNN based Speech Enhancement, D-EMCD,
NN + auto correlation, spectral subtraction, OMLSA, TSNR, HRNR, and RNMF, respec-
tively. In addition, while applying the Wrail(t) at SNR = 15 dB, the proposed work has

Table 15 Performance evaluation of proposed model over existing for station noise at varying SNR = 0 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based Speech
Enhancement [15]

6.18 2.10 5.74 0.03 0.87 0.45 0.75 4140.4

D-EMCD [14] 6.11 2.01 5.52 0.03 0.86 0.47 0.69 2117.4
NN + auto correlation −43.04 0.52 −0.009 0.04 −0.00001 0.0004 1 7277.9
Spectral Subtraction [7] −8.78 0.59 −0.17 0.04 −0.007 0.13 0.41 5326.7
OMLSA [6] −23.61 1.14 −22.20 0.56 0.06 0.33 0.55 5066.9
TSNR [24] −6.96 1.41 −0.83 0.05 0.01 0.32 0.55 3502.5
HRNR [25] −7.02 1.31 −0.722 0.05 0.01 0.28 0.55 3433.7
RNMF [9] 6.67 1.99 2.57 0.03 0.82 0.45 0.67 0
Proposed 7.40 2.26 35.03 0.02 0.89 0.53 0.74 1904.9

Table 16 Performance evaluation of proposed model over existing for station noise at varying SNR = 5 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based Speech
Enhancement [15]

11.42 2.34 9.92 0.02 0.96 0.54 0.83 4485.2

D-EMCD [14] 9.90 2.45 8.35 0.02 0.93 0.65 0.81 1770.9
NN + auto correlation −43.05 0.58 −0.003 0.04 0.00001 0.0012 1 7636.7
Spectral Subtraction [7] −7.59 0.86 −0.18 0.04 −0.002 0.19 0.48 4981.5
OMLSA [6] −22.88 1.37 −22.19 0.56 0.074 0.47 0.66 4827.3
TSNR [24] −6.69 1.96 −0.88 0.05 0.02 0.46 0.69 3293.8
HRNR [25] −6.75 1.89 −0.80 0.05 0.02 0.42 0.66 3211.3
RNMF [9] 8.34 2.33 3.39 0.03 0.87 0.60 0.77 3494.5
Proposed 11.98 2.57 39.25 0.01 0.96 0.66 0.82 1537.3

Table 17 Performance evaluation of proposed model over existing for station noise at varying SNR = 10 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based Speech
Enhancement [15]

13.45 2.46 11.68 0.01 0.97 0.77 0.92 4316

D-EMCD [14] 12.53 2.73 10.52 0.01 0.96 0.76 0.87 1534.6
NN + auto correlation −48.81 0.53 −0.001 0.04 0.00003 −0.001 1 8473.8
Spectral Subtraction [7] −7.49 0.99 −0.21 0.04 −0.005 0.24 0.52 4366.4
OMLSA [6] −22.47 1.49 −22.19 0.56 0.08 0.59 0.73 4668.8
TSNR [24] −6.67 2.35 −0.91 0.05 0.02 0.60 0.75 3066.5
HRNR [25] −6.71 2.34 −0.85 0.05 0.02 0.59 0.75 3048.8
RNMF [9] 9.52 2.55 4.47 0.03 0.89 0.70 0.82 0
Proposed 14.81 2.798 41.61 0.008 0.98 0.77 0.89 1380.5
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achieved the highest SNR value as 40.21, while the existing models had recorded the SNR
value as multi-features+ DCNN based Speech Enhancement = 9.49, D-EMCD = 11.6, NN +
auto correlation = −0.0004, spectral subtraction = −0.23, OMLSA = −22.19, TSNR = −0.93,
HRNR = −0.87, and RNMF = 5.05. Furthermore, after analyzing the proposed work with
Wrail(t)=15 dB, the proposed work seems to have obtained the best results. During the testing
phase, the extracted features (EMD) were used to train the LSTM model using a modified
Wiener filter. As a result of the evaluation, it is clear that the proposed study is effective in
improving the speech signal even when station noise is present.

5.5 Influence on street noise under varying SNR

The street noiseWstreet(t) is added to the clear signal S(t) at varying, SNR, as well as the results
obtained after de-noising, are measured in terms of SDR, PESQ, SNR, RMSE, CORR, ESTOI,
and STOI. The obtained results are tabulated in Tables 19, 20, 21 and 22, which correspond to
different SNR rates of 0 dB, 5 dB, 10 dB, and 15 dB, respectively. From the acquired
outcomes, the RMSE of the proposed work is found to be lower even under every variation
in the application of Wstreet(t) rate. At SNR = 0 dB, 10 dB, 15 dB, 20 dB, the proposed work
had achieved the least value RMSE as 0.02, 0.01, 0.009 and 0.006 respectively. Moreover, on
analyzing the other outcomes, the proposed work had recorded the highest SDR, PESQ, SNR,
CORR, ESTOI, and STOI, which are said to be the appropriate values for speech enhance-
ment. In addition on addingWstreet(t) at 5 dB, the SNR of the proposed work is 39.26, which is
the better value when compared to existing models like multi-features+ DCNN based Speech

Table 18 Performance evaluation of proposed model over existing for station noise at varying SNR = 15 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based
Speech Enhancement [15]

14.83 2.63 9.48 0.02 0.97 0.69 0.88 4909.3

D-EMCD [14] 14.04 3.01 11.6 0.01 0.97 0.84 0.91 1437.1
NN + auto correlation −45.75 0.55 −0.0004 0.04 −0.000009 −0.0009 1 10,002
Spectral Subtraction [7] −7.41 1.07 −0.23 0.04 −0.003 0.26 0.54 4170.2
OMLSA [6] −22.29 1.64 −22.19 0.55 0.08 0.66 0.77 4586.9
TSNR [24] −6.70 2.81 −0.93 0.05 0.02 0.68 0.79 2963.7
HRNR [25] −6.73 2.79 −0.88 0.05 0.02 0.67 0.79 2947.7
RNMF [9] 9.96 2.71 5.05 0.02 0.90 0.76 0.84 2838.8
Proposed 15.02 2.79 40.21 0.01 0.97 0.85 0.93 1312.3

Table 19 Performance evaluation of proposed model over existing for street noise at varying SNR = 0 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based
Speech Enhancement [15]

6.61 1.88 6.38 0.02 0.89 0.45 0.70 4097.1

D-EMCD [14] 6.50 2.05 5.83 0.02 0.86 0.51 0.71 2275.8
NN + auto correlation −29.07 0.39 −0.01 0.04 −0.000001 −0.003 1 6669.8
Spectral Subtraction [7] −8.79 0.69 −0.16 0.04 −0.01 0.11 0.39 7117.7
OMLSA [6] −23.38 1.29 −22.20 0.48 0.07 0.33 0.58 5198.1
TSNR [24] −6.36 1.23 −0.88 0.04 −0.06 0.24 0.49 4264.4
HRNR [25] −6.37 1.11 −0.77 0.04 −0.06 0.20 0.50 4264.5
RNMF [9] 7.20 2.09 2.75 0.03 0.83 0.49 0.682 4175
Proposed 6.82 1.95 35.06 0.02 0.86 0.45 0.71 2330.5
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Enhancement = 8.91, D-EMCD = 8.65, NN + auto correlation = −0.003, spectral subtrac-
tion = −0.18, OMLSA = −22.19, TSNR = −0.89, HRNR = −0.81, and RNMF = 3.49.
Moreover, when Wstreet(t)=10 dB is applied to the clean speech signal, the outcome from the
proposed work in terms of RMSE = 0.009, which is better than the existing models like multi-
features+ DCNN based Speech Enhancement = 0.01, D-EMCD = 0.01, NN + auto correla-
tion = 0.04, spectral subtraction = 0.04, OMLSA = 0.48, TSNR = 0.05, HRNR = 0.05, and
RNMF = 0.02. Moreover, for all input signals, the LSTMmodel is used to accurately estimate
the Wiener filter tuning factor. The extracted features (EMD) were used to train the LSTM
model using a modified Wiener filter during the testing phase. Therefore from the evaluation, it
is clear that the proposed work is much significant for enhancing the speed signal.

5.6 Statistical Anaysis

Table 23 shows the statistical analysis of the proposed model over existing methods. On
considering the SDR measure, the STD value of the proposed model is 4.23%, 10.20%,
5.42%, 82.84%, 86.82%, 92.29%, 92.29%,and 58.46% better than the existing multi-features+
DCNN based Speech Enhancement, D-EMCD, NN + auto correlation, spectral subtraction,
OMLSA, TSNR, HRNR, and RNMF models. In RMSE measure, the best value of the
proposed model is 40%, 40%, 85%, 85%, 98.75%, 85%, 85%, and 70% superior to existing
models multi-features+ DCNN based Speech Enhancement, D-EMCD, NN + auto correla-
tion, spectral subtraction, OMLSA, TSNR, HRNR, and RNMF, respectively. Further consid-
ering the SNR measure, the best value of the proposed model is 33.90, which is the better

Table 21 Performance evaluation of proposed model over existing for station noise at varying SNR = 10 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based
Speech Enhancement [15]

13.77 2.71 9.97 0.01 0.97 0.77 0.89 4742.3

D-EMCD [14] 13.45 2.77 11.07 0.01 0.96 0.76 0.87 1766.5
NN + auto correlation −39.2 0.42 −0.0018 0.04 −0.00003 0.0002 1 8980.5
Spectral Subtraction [7] −8.35 1.02 −0.22 0.04 −0.006 0.23 0.50 4747.7
OMLSA [6] −21.74 1.73 −22.19 0.48 0.09 0.64 0.79 4659.5
TSNR [24] −6.68 2.25 −0.93 0.05 −0.02 0.57 0.77 3031.1
HRNR [25] −6.72 2.29 −0.87 0.05 −0.02 0.56 0.78 3009.6
RNMF [9] 10.05 2.65 4.86 0.02 0.90 0.70 0.82 0
Proposed 14.74 2.83 41.76 0.009 0.98 0.78 0.89 1422.5

Table 20 Performance evaluation of proposed model over existing for station noise at varying SNR = 5 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based
Speech Enhancement [15]

12.29 2.47 8.91 0.01 0.96 0.59 0.80 4628.4

D-EMCD [14] 10.49 2.41 8.65 0.02 0.93 0.64 0.79 1964.3
NN + auto correlation −41.19 0.35 −0.0032 0.04 0.00002 −0.003 1 7176.4
Spectral Subtraction [7] −8.47 0.84 −0.18 0.04 −0.009 0.21 0.47 5217.1
OMLSA [6] −21.99 1.50 −22.19 0.48 0.09 0.49 0.67 4858.9
TSNR [24] −7.06 1.88 −0.89 0.05 −0.01 0.44 0.67 3119.2
HRNR [25] −7.09 1.89 −0.81 0.05 −0.01 0.42 0.68 3073.4
RNMF [9] 8.62 2.37 3.49 0.03 0.86 0.60 0.76 3934
Proposed 11.85 2.54 39.26 0.01 0.96 0.66 0.83 1738.8
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value when compared to existing models like multi-features+ DCNN based Speech Enhance-
ment = 5.24, D-EMCD = 4.55, NN + auto correlation = −0.01, spectral subtraction = −0.31,
OMLSA = −22.21, TSNR = −1.05, HRNR = −0.92, and RNMF = 2.57 respectively.
Likewise, other measures also show a better performance. Therefore, from the analysis, the
proposed model is proven to be a suitable model for speech enhancement.

5.7 Discussions

The major goal of this study is to enhance the speech signals with various noise sources. The
results section evaluated the proposed model with different noise sources such as “airport
noise, exhibition noise, restaurant noise, station noise, and street noise”. The various noise
sources are analyzed under different SNR values in terms of speech quality measures. By
utilizing the modified wiener filter and extracted features assisted LSTM model, the denoised
speech signal is obtained. Compared to the existing models, the proposed method achieves
higher SDR, PESQ, CORR, ESTOI, STOI, and SNR, as well as lower RMSE values.
Moreover, the proposed model overcomes the drawbacks such as reduction in speech intel-
ligibility [43], lower PESQ [40], lower robustness [37], not being suitable for complex noise
environments [37], lower speech quality [10], and low SNR [45] [29]. However, this proposed
method lacks at some noise sources and it did not determine the spectral magnitude and
spectral phase estimation.

5.8 Practical implication

The main potential applications of the proposed model are given below:

& Hearing aids
& Automatic speech recognition
& Mobile communications
& Video captioning for teleconferences
& Voice over Internet protocol
& Hand-free communications

This research provides better outcomes and it suits many potential application fields.

Table 22 Performance evaluation of proposed model over existing for station noise at varying SNR = 15 dB

Approach SDR PESQ SNR RMSE CORR ESTOI STOI CSED

multi-features+ DCNN based
Speech Enhancement [15]

17.98 2.93 13.53 0.01 0.99 0.86 0.95 4567.2

D-EMCD [14] 14.98 2.98 12.20 0.01 0.97 0.82 0.89 1597.3
NN + auto correlation −43.03 0.50 −0.00043 0.041 0.00008 0.003 1 9153.8
Spectral Subtraction [7] −8.46 1.10 −0.24 0.04 −0.009 0.27 0.54 4621.3
OMLSA [6] −21.55 1.85 −22.19 0.48 0.09 0.73 0.83 4601.2
TSNR [24] −6.64 2.59 −0.94 0.05 −0.02 0.65 0.82 2978.2
HRNR [25] −6.66 2.57 −0.89 0.05 −0.02 0.65 0.82 2931.2
RNMF [9] 10.56 2.75 5.44 0.02 0.91 0.75 0.83 3281.5
Proposed 17.99 3.21 44.84 0.0061 0.99 0.87 0.93 1278.4
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6 Conclusion

In this modern world, there is a need to improve the speech signal, where the target speech
signal is disturbed by different noise sources. This research considered the various noise
problems for speech enhancement that is similar to real-world situations and many noise
sources which simultaneously diminish the quality and intelligibility of the speech. In this
work, a novel speech signal enhancement model was introduced with the assistance of a deep
learning model. The main contribution of this research lies in the proper estimation of the
tuning factor η of the Wiener filter for all input signals. The training of η was done using the
LSTM model. The experimental outcomes at various input SNRs have verified the supremacy
of the proposed model with respect to SDR, PESQ, SNR, RMSE, CORR, ESTOI, STOI,
respectively. Especially, for airport noise, the PESQ of the proposed work is 2.17 at SNR =
0 dB, which is 4.9%, 10.43%, 75.06%, 74.7%, 40.78%, 40.78%, 34.95%, 36.325%, and
11.09% better than the existing multi-features+ DCNN based Speech Enhancement, D-
EMCD, NN + auto correlation, spectral subtraction, OMLSA, TSNR, HRNR, and RNMF
models. Additionally, in RMSE measure, the best value of the proposed model is 40%, 40%,
85%, 85%, 98.75%, 85%, 85%, and 70% superior to existing models multi-features+ DCNN
based Speech Enhancement, D-EMCD, NN + auto correlation, spectral subtraction, OMLSA,
TSNR, HRNR, and RNMF, respectively. Thus, the superiority of the proposed model has been
proven with complex-noise environments. In the future, we consider the issue and develop the
speech enhancement model with advanced GAN.
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