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Abstract
A two-branch convolutional neural network (CNN) architecture for feature extraction in
person re-identification (re-ID) based on video surveillance is proposed. Highly discrim-
inative person features are obtained by extracting both global and local features. More-
over, an adaptive triplet loss function based on the original triplet loss function is
proposed and is used in the network training process, resulting in a significantly improved
learning efficiency. The experimental results on open datasets demonstrate the effective-
ness of the proposed method.
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1 Introduction

Recent years have witnessed a rapid development of the global economy and continuous
progress of society, and thus, higher requirements have been put forward in various fields for
video surveillance systems, the widespread use of which has brought much convenience for
people’s lives and has also made important contributions to public safety [13].

The targets with the highest frequency of occurrence in surveillance video are
persons. Person re-identification (re-ID) refers to the analysis and judgement of the
trajectory and range of motions of the targets of interest (such as criminal suspects
and terrorists) by retrieving the obtained images of these targets in videos captured by
other surveillance cameras in a timely manner to provide technical support and
decision-making assistance to the government or the security sector. Common person
re-ID tasks are generally composed of a query library and a search library. The query
library contains the targets of interest. The search library consists of person images,
which are generally obtained from videos using target detection algorithms. Specifi-
cally, the image in the query library is compared with each image in the search
library, and the person image with the highest similarity is returned as the final
recognition result. In the era of video data explosion, it is impossible to meet practical
needs by relying only on manual data processing methods. Therefore, it is of
important theoretical and practical significance to research and develop the corre-
sponding person re-ID technology.

As early as in 1996, person re-ID began to draw the attention of researchers [2]. In
2006, Gheissari et al. [6] proposed for the first time the concept of person re-ID in an
academic conference, followed by a surge of relevant studies. The VIPeR dataset is
the first dataset specifically designed for person re-ID research [8] and greatly
promoted the development of person re-ID field. The first related monograph authored
by Gong et al. [7] was published in 2013, which discusses in detail the cutting-edge
technologies and major challenges in the field of person re-ID. In recent years,
researchers have begun to use deep learning to solve problems related to the person
re-ID and have made great breakthroughs [11, 23, 31, 33]. Many research outcomes
have been published in major computer vision conferences and journals, and the
recognition results on multiple datasets have also been significantly improved.

As the topic of person re-ID has attracted increasing attention, many solutions have been
proposed, and good results have been achieved on different test datasets. However, person re-
ID still faces a number of challenges stemming from, for example, illumination changes,
different person postures, varying viewing angles, non-aligned person images, complex image
background, and scale changes.

Therefore, person re-ID in real situations is still one of hot topics in surveillance video
research. In this study, focusing on the challenges including illumination, different person
postures, varying viewing angles, non-aligned person images, complex image background and
scale changes, we propose a two-branch convolutional neural network (CNN) architecture to
extract global and local features of persons from surveillance videos to obtain person features
with strong discriminative ability. Moreover, to address the problems in the network learning
process, we propose an adaptive triplet loss function based on the conventional triplet loss
function to greatly improve the learning efficiency. The experimental results on multiple open
datasets verify the proposed method is effective for person re-ID from practical surveillance
videos.
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2 Related works

One of the key issues in the person re-ID method based on feature extraction is to design a
robust, reliable representation of person features, which should be able to not only identify
different persons but also overcome the influence of complex environment on the identifica-
tion. Current research methods in this category are mainly divided into manual feature
extraction and deep learning-based feature extraction.

2.1 Manual feature extraction methods

In early research on person re-ID, shallow visual features, including color, shape, and
trajectory features, were mainly used to solve the person re-ID problem. In 2012, Farenzena
et al. proposed the symmetry-driven accumulation of local features (SDALF) [4]. According to
the physiological structure of the human body, they divided a human into different parts, from
which various color histogram features based on HSV color space were extracted and then
combined into a whole for person matching. Later, Mignon et al. horizontally divided a person
image into several blocks [22], extracted for each block the color features based on the YUV,
HSV, and RGB color space in addition to the LBP texture features, and finally fused these
different features into a whole to describe a specific person.

With the deepening of research, it was found that the use of shallow visual features alone
was unable to well solve the person re-ID problem. Shallow visual features can partially
represent the exterior intrinsic attributes of a person but are poorly adaptable to viewing angles
and illumination. Therefore, researchers began to explore more effective representations of
visual features, mainly including the semantic attributes and advanced visual features of a
person.

In ECCV 2014, Yang et al. proposed the salient color names-based color descriptor
(SCNCD) [29]. They argued that the clothing color of a person is very crucial for recognition;
after extracting a variety of basic colors from a person, they extracted the corresponding color
histograms from different areas of the person image and fused these color histograms as the
final feature description. Liao et al. proposed in 2015 a feature descriptor named LOMO (local
maximal occurrence) [15], described as follows. First, a person image is divided into six
horizontal long stripes, and then a window of a certain size is used to move across each
horizontal stripe to extract the HSV color histogram and SILTP histogram; the feature with the
maximum value among these features is taken as the feature of a horizontal stripe, and finally
the features of all horizontal stripes are combined as the LOMO feature descriptor. The LOMO
feature is strongly invariant with respect to angle and illumination, making it widely applicable
and often used for comparison with other algorithms. Recently, Matsukawa et al. proposed a
feature descriptor named GOG (Gaussian of Gaussian) [21], in which the local area of an
image is modeled by Gaussian distribution to simulate the appearance information of different
local areas; very good results were obtained on multiple different datasets. In addition, some
researchers also studied the use of semantic information and advanced visual features to
represent a person. Because of the stability of the two, good recognition results can be
achieved even if the posture of a person has changed considerably.

Although the abovementioned manual feature extraction methods lead to good results, they
are mostly designed for certain specific situations and unable to achieve satisfactory test results
in other scenarios. In other words, manually extracted features have weak robustness and poor
universality. Moreover, it is difficult to define the validity or applicable situation of each
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feature. In addition, most of the features are obtained using the multifeature fusion method, for
which the fusion strategy of these features cannot ensure that the fused feature is optimal.
Therefore, it is especially important to design more effective feature fusion strategies.

2.2 Feature extraction methods based on deep learning

The person feature extraction methods based on deep learning mainly use CNNs to extract
person features. Compared to those extracted via the traditional manual feature extraction
methods, the features extracted by the CNN model are relatively expressive, and thus the
performance of recognition algorithms established with the CNN model will be substantially
improved.

A common practice is to use the loss function as a constraint to train the parameters of
the model to achieve the goal of “small intraclass distance and large interclass distance.”
In 2016, Geng et al. proposed combining the classification loss and verification loss to
train a network [5]. The main network has a two-stream CNN architecture, which is
connected to the classification subnet and verification subnet. The classification subnet is
used to predict the identity of the image, and the classification error loss is calculated
based on the prediction results. The verification subnet fuses the features of the two
images to determine whether the two images belong to the same person. During the test,
the trained network is directly used to extract person features for re-ID. In fact, there are
many significant researches on the study of multi-branch neural network. Focusing on
object segmentation from video, for example, the paper [18] proposed a novel network,
called CO-attention Siamse Network to adderss the unsupervised object segmentation.
Based on graph theory, Lu et.al. described novel and effective graph networks, and
realized object segmentation perfectly [19, 27]. In 2017, Lin et al. noted that person
identity information alone is not sufficient to learn a model with a high generalization
ability. Therefore, they introduced person attribute labels through the labeled attribute
information of a person so that the model needs to predict not only the person identity
but also each person attribute correctly; the combined constraints of multiple features not
only enhance the generalization ability of the model but also effectively improve its
recognition results [16].

The rapid development of deep learning has promoted significant improvement in the
person re-ID performance. At present, research on target feature extraction based on deep
networks has the following deficiencies. First, the training datasets for person re-ID are
generally small, and thus the trained network model tends to be overfitted, leading to
insufficient generalization ability of person re-ID in real surveillance scenarios. Second, the
deep features extracted based on deep learning networks are unable to effectively distinguish
fine-grained target recognition; therefore, it is necessary to construct a new type of network to
extract more essential target features.

3 Person re-ID based on CNN feature extraction

Due to the complexity and diversity of real surveillance scenarios, the effectiveness of
traditional person re-ID methods based on manual features is far from satisfactory. Therefore,
an increasing number of studies have focused on personal re-ID based on CNN. In 1989,
LeCun et al. proposed for the first time a network capable of multilayer training named LeNet
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network [12], which was subsequently thoroughly studied by many researchers. ResNet is a
more frequently used CNN for person re-ID.

3.1 Residual neural network (ResNet) architecture

Researchers have already realized that as the number of network layers is increased, the
network can be expressed more effectively. Therefore, theoretically better results can be
obtained with a deeper model. However, experimental findings reveal that a deep network is
prone to the degradation problem, that is, as the network depth increases, the accuracy of the
network becomes saturated or even decreases. This is because when the depth of CNN exceeds
a certain number of layers, it will be very difficult to train the CNN due to the problems of
gradient disappearance and gradient explosion, thus affecting the final recognition accuracy.

ResNet was proposed by He et al. of Microsoft Research in 2016 [9]. By using the residual
unit, ResNet successfully trained a CNN with a depth of 152 layers. ResNet has a small
number of parameters, and the residual unit designed by it can very quickly accelerate the
training of neural networks. Moreover, the accuracy of the model is also greatly improved.
ResNet learns the difference between the input and output of the network, i.e., the residual
H(x) − x. Such a residual hopping structure enables some information at the front end of the
network to be directly transmitted to the back end of the network without the need for
calculation in the middle layer. Therefore, the problem of gradient disappearance can be
avoided during training so that the network can be trained very deeply.

ResNet is referenced to the VGG19 network, and on this basis, downsampling is performed
using convolution with a step size of 2, the full connection layer is replaced by the pooling
layer, and the residual units are added through a short-circuit mechanism. These operations not
only significantly reduce the number of parameters in ResNet but also improve the expres-
siveness of the network. Commonly used residual networks include ResNet18, ResNet34,
ResNet50, ResNet101, and ResNet152.

ReseNet50 is used as the backbone network in most of the deep learning-based person re-
ID algorithms. To facilitate comparison with relevant algorithms, we also used ResNet50 as a
backbone network to carry out relevant research.

3.2 Person feature extraction based on a two-branch CNN

Good results were achieved via the use of CNNs for global person feature extraction during the
early stage of person re-ID. With the development of research, it was found that use of global
features only is not sufficient for person re-ID. Global features are effective for identifying
persons with large differences in shape and color and poor otherwise. Therefore, researchers
gradually paid attention to person re-ID based on local features. Attempts were made to extract
local features of a person and then combine them with global features for person re-ID. Such a
design can often achieve better results for person re-ID compared with use of only global
features.

Currently, there are many methods for person re-ID based on combinations of global and
local features. These methods focus on how to extract effective local features. Typical
algorithms include Spindle Net [32], PDC [25], PL-Net [30], and GLAD [28]. Some of these
algorithms directly divide a person image horizontally, extract the features separately from the
divided image blocks, and finally combine them as a local feature. Using the key points of the
human body for estimation, some other algorithms first obtain the key points of persons in the

Multimedia Tools and Applications (2022) 81:39169–39184 39173



image. Then, the image is divided into blocks for different parts of the human body based on
the key points, features of different blocks of the human body image are extracted, and the
features of these different parts of the body are combined to yield the final representation of the
features. There are also algorithms that, according to the physiological structure of the human
body and combining with the algorithm for estimation of human body key points, divide the
person image into horizontal blocks for different parts, separately extract features from the
divided image blocks, and finally fuse them into a local feature.

The above methods for the extraction of local features from a person image are simple,
straightforward, easy to understand, and consistent with the human recognition process, thus
also achieving good recognition results. However, it can be observed that these methods rely
on the algorithm for estimation of human body key points, which is very time consuming and
hence very inefficient for both the training process and practical applications. Moreover, in the
process of feature extraction using the above algorithms, the local features and global features
do not constrain and promote each other, and hence the learning efficiency must be improved.

Based on the above considerations, a CNN that can simultaneously extract the global and
local features of a person is designed in this section. ResNet50 is used as the backbone
network, and the first three layers of the network are used to extract the basic features of the
image. Two branches are designed on the high-level semantic-level features to extract the
global features and local features, respectively, of a person. The two parts work both
collaboratively and separately, with weight sharing for the first three layers and independent
weights for the subsequent advanced layers. In this manner, like the principle of human
cognition of things, not only the overall information of a person can be seen but also the local
information of different scales can be taken into account. Details of the network architecture
are shown in Fig. 1.

For building the positive and negative samples. The positive samples include that the Re-ID
persons with different person postures, illumination changes, varying viewing angles, non-
aligned person images, complex background, and scale changes. The negative samples include
that the person (different the Re-ID person) images with the different cases as same as positive
samples.

In Fig. 2, GMP stands for the global maximal pooling used for feature dimension reduction;
1 × 1 conv represents connection with a convolutional layer of size 1 × 1; Ltriplet denotes a
triplet loss function; and Lsoftmax is a cross entropy loss function.

Fig. 1 Schematic diagram of the feature extraction network architecture
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The overall feature is the overall description of the pedestrian. In this paper, the pedestrian
overall feature extraction method first goes through Resnet50, then goes through Global Max
pooling (GMP) to reduce the dimension of the feature, and finally enters two channels. One
channel is operated through a 1 × 1 CONV and trained with Ltriplet(Triplet Loss). The other
channel is to directly enter the features extracted from Resnet50 into the full link layer. The
function used in this channel is cross entropy loss function (Lsoftmax). In this way, the overall
feature extraction of two dimensions is realized.

The local feature map extracted from the first three layers of RESNET 50 is divided into
several horizontal strips. Each strip passes through the fourth and fifth layers of RESNET 50,
and the output results are reduced by GMP feature dimension, and then enter two channels. In
the first channel, 1 × 1 Conv operation is performed, and use triplet loss function to trained the
local features. The second channel converges each horizontal strips, then 1 × 1 Conv operation
is performed, and uses cross entropy loss as the training function to obtain the local features.
After the above operation, two global features and two local features are obtained. The
approach for horizontal division of the feature map simulates the division of the human body
structure. Each stripe area of the feature map represents a different part of the human body. The
full learning of these stripe areas is actually learning of the individualized areas of different
parts of the human body, which is conducive to the learning of a discriminative feature of a
person. Moreover, it can be seen that this design is in line with the human approach of judging
a person. This is because in real life, it is often only necessary to determine who a person is
based on parts of him or her rather than the appearance information. This recognition strategy
of inferring the whole from the local is simple and effective, and the local branches in the
designed network play exactly such a role. From another perspective, if the information based
on each small piece can be recognized correctly, then the accuracy of recognition by
combining all small pieces of information will naturally increase significantly.

3.3 Design of network loss functions

The loss function of a network is used to evaluate the degree of difference between the
predicted value of the model and the real value. It is often used as the objective function of a
neural network and represents the optimization direction of an algorithm. In person re-ID,
commonly used loss functions include the cross entropy loss function, comparison loss
function [26], triplet loss function [24], and optimized triplet loss function [10]. Besides these
conventional loss function, there are many novel loss functions were proposed. For the task of

Fig. 2 The heat-map of features
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regression tracking, to balance training data, a shrinkage loss was suggested to penalize the
importance of easy training data, its dramatic effectiveness was demonstrated by several
benchmark datasets [17, 20].

The cross entropy loss function describes the distance between two probability distribu-
tions, and the smaller the cross entropy, the closer the two are. This loss function can lead to
relatively good results for coarse-grained target classes. For fine-grained recognition tasks such
as person re-ID, it can neither guarantee that the intraclass distance of samples is small enough
nor that the interclass distance of samples is large enough. Therefore, the learning outcomes
are very limited. Consequently, it is necessary to include the constraints on the spatial
distribution of samples in the design of the loss function. Only by including the spatial
constraints can the same class of samples be clustered in the feature space while different
classes of samples be far apart from each other, which is conducive to the subsequent
recognition. The triplet loss function based on the distance constraint between positive and
negative samples is often used.

The triplet loss function [24] is a commonly used loss function for tasks such as retrieval
and fine-grained recognition. Unlike the cross entropy loss function introduced above, the
triplet loss function constraints the pairwise distance between samples; through constant
iterative learning, it can decrease the intraclass distance and increase the interclass distance
of samples in the feature space, thereby distinguishing different classes of persons.

The triplet loss function can decrease the distance between pairs of positive samples and
increase the distance between pairs of negative samples. Finally, the person images of the same
label form clusters in the feature space to distinguish different persons. However, we also
observed that the triplet loss randomly sampled three images from the training data. Although
this approach was simple, most of the samples were sample pairs that were simple and easy to
distinguish. Thus, there were problems such as low training efficiency and nonideal conver-
gence results. Therefore, it has been found that use of harder samples to train the network can
make full use of the complex distribution characteristics of the training data, thereby improving
the generalization ability of the network. Therefore, there appears a triplet loss function with
batch hard mining.

The triplet loss function with batch hard mining (TriHard Loss function) is an optimization
of the above basic triplet loss function [10]. By optimizing the network input triplets, each
triplet involved in each training is optimal, thus improving the training efficiency and
convergence speed of the network.

The core idea of TriHard Loss is as follows. To form a training batch, P persons with IDs
are randomly selected, and K different images are randomly selected for each person, that is,
one batch contains P × K images. Then, for every image a in the batch, we can select the
hardest positive sample and the hardest negative sample, which together with a form a triplet.
First, the image set with the same ID as a is defined as A, and the remaining sets (with different
ID) are B. Then, the TriHard Loss is expressed as

Ltrihard ¼ 1

P � K
∑

a∈batch
maxda;p

p∈A
−minda;n

n∈B
þm

 !
þ

ð1Þ

where m is the manually set interval between pairs of positive and negative samples, da, p
represents the distance between the sample a and its positive samples, da, n represents the
distance between the sample a and its negative samples, and ()+ represents the greater value of
the calculation result and zero. TriHard Loss fully utilizes the idea of batch hard mining in the
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loss calculation. Specifically, it calculates the distance between a and each image in feature
space and then selects the positive sample p with the longest distance from a and the negative
sample n with the smallest distance from a to calculate the loss. Thus, TriHard Loss usually
leads to better results than the traditional triplet loss.

We find that the interval between the positive and negative sample pairs in the triplet loss
function is always fixed during the training. However, this fixed interval setting has an
inevitable defect. When the interval is relatively large, the network needs to learn a relatively
large interval in the feature space at the beginning of training, which is very difficult for the
network. When the interval is relatively small, the network can be easily trained at the
beginning and the learning outcomes are good; however, with the continuous deepening of
learning, the setting of small intervals can greatly reduce the learning effect of the network, and
at this time, a relatively large interval should be set instead to increase the learning difficulty of
the network so that the network can continue to learn.

Second, we also find that during each training, TriHard Loss only selects the hardest
samples of a sample a to participate in the training while ignore other samples, resulting in
low training efficiency and insufficient learning. For the sample a, although other samples are
not the hardest, they are the second hardest. With the continuous iteration of training, these
second-hardest samples will gradually become the hardest and thus participate in the training.
Therefore, for the sample a, during each training, we should consider that not only the hardest
samples need to be fully learned but also other second-hardest samples need to participate in
learning. Only in this manner can the learning efficiency of the network be improved and the
convergence speed be accelerated.

Considering the above two points, we propose an adaptive TriHard Loss based on the
original TriHard Loss.

First, we let the interval between pairs of positive and negative samples increase with the
increasing number of iterations. The dynamic interval is expressed as follows:

madaptive ¼ k � epochþ b ð2Þ
where the left side of the equation represents the dynamic interval, k represents the degree of
increase in interval, epoch represents the number of times that all data are trained in a round,
and b represents an initial interval. With this design, the interval is small at the beginning of the
training, and as the training continues, the interval gradually increases. Thus, during the whole
training process, the feature intervals can all be fully learned, and the training efficiency will
also be greatly improved.

Second, for every sample in the batch, regardless of whether it is a positive or negative
sample, we assign an appropriate weight according to the distance between the two, so that
every sample in the batch participates in training each time, greatly accelerating the efficiency
of network learning. We refer to the improved TriHard Loss as the adaptive TriHard Loss,
which is expressed as follows:

Loss ¼ 1

P � K
∑

a∈batch
∑
p∈A

wpda;p− ∑
n∈B

wnda;n þ madaptive

 !
þ

ð3Þ

where A represents the set of samples in a batch belonging to the same class as that of the
sample a and B represents the set of samples in a batch belonging to different classes from that
of the sample a. To calculate the specific loss for the sample a, we calculate the sum of
weighted distances between the positive and negative sample pairs, respectively, formed with
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the sample a and then combine with the adaptive interval between sample pairs to obtain the
loss of the sample a. The corresponding loss is calculated for each sample in the batch to obtain
the overall loss. wp and wn are the weights assigned to the positive and negative samples,
respectively, of sample a. They are expressed as follows:

wp ¼ eda;p

∑
pi∈A

eda;pi
;wn ¼ e−da;n

∑
ni∈B

e−da;ni
ð4Þ

The adaptive TriHard Loss can not only dynamically adjust the interval between positive and
negative sample pairs but also set the adaptive weight. Therefore, the efficiency and stability of
training can both be greatly improved, and the convergence speed will also be faster,
effectively reducing the risk of overfitting.

4 Experimental results and analysis

In this section, we first explore the outcomes and effects of different forms of loss function and
verify the effectiveness of the loss function proposed in this paper. Second, for the branches of
local feature extraction, we explore the influence of dividing the feature map into different
number of stripes on recognition. Finally, we also test the effectiveness and performance of
different branches in the network.

4.1 Experimental configuration and parameter settings

The system environment of this study includes an Ubuntu 16.04 operating system, Intel Core
i7-7700 K CPU, 8 GB memory, NVIDIA GeForce GTX 1080 graphics card, PyTorch 0.4
open source deep learning framework, CUDA 8.0, and cuDNN 5.0.

The parameters during model training are as follows: the size of the input image =384 ×
128; use of ADAM optimization algorithm for training, with the exponential decay rates of the
first and second moment estimation, beta1 and beta2, being 0.9 and 0.999, respectively, and
epsilon = 10−8; initial learning rate =2 × 10−4, epoch = 200, and delay of learning rate at the
140th and 180th epochs, respectively, at a rate of 5 × 10−4; batch_size = 48, K = 4, and P = 12.

For the parameters in Eq.(2), we conduct statistical analysis on the distance of eigenvectors
of inner-class samples in the experimental data set. The average intra-class distance is about
0.6. In order to increase the separability between classes, the inter-class distance after network
training is set according to the principle of 3 times variance, and the expected inter-class
distance after iteration is 6 times the intra-class distance, i.e., 3.6. According to this principle,
under the constraint condition of epoch = 200, we set the initial B as 1.6 and K as 0.01.

In terms of experimental data, we mainly use the Market1501 dataset, and the subsequent
experimental environment and parameters are basically consistent with the above settings.

4.2 Evaluation indices for person re-ID algorithm

The commonly used indices for evaluating person re-ID algorithms include rank-k and mAP.

(1) rank-k
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The rank-1 matching rate (rank-1) [1] is a commonly used index, which refers to the
probability that the image to be queried and the image that ranks the first in similarity in the
search library belong to the same target, i.e.,

rank−1 ¼
∑

i∈1;2;…;m
Si

m
ð5Þ

where m is the total number of images and si is a flag variable representing whether the ith
image to be queried and the image ranking the first in similarity belong to the same target (si=1
if so, and si=0 if not). In general, a larger rank-1 means a better performance of the model.
Therefore, rank-1 is the most direct and the most important index, and it has been used
extensively to evaluate the performance of the model.

The k-matching rate (rank-k) denotes the probability that the image in the top k-position of
similarity ranking in the retrieval database belongs to the same pedestrian as the image to be
retrieved. Commonly used are rank-1, rank-3, rank-5, rank-10, and rank-20. As with rank-1, a
larger rank-k means a better performance of the model. The rank-k index represents the
judgment of whether there exists at least one image in the first k images belonging to the
same person as the image to be queried. Hence, rank-k is a reflection of the comprehensive
search ability of the model and can more comprehensively measure the performance of the
model than rank-1.

(2) mAP

Because the rank-k index cannot well measure the recall rate of the model, Zheng et al. in 2015
introduced for the first time the mean average precision (mAP) index into the evaluation system
for person re-ID [3]. The mAP index is a trade-off between the precision rate and the recall rate
and can more objectively and comprehensively evaluate the performance of the model.

Based on the combinations of real categories and model prediction categories, Common
classification problems can be divided into four cases, namely, true positive (TP), false positive
(FP), true negative (TN), and false negative (FN). The precision rate P and the recall rate R are
as follows:

P ¼ TP
TP þ FP

ð6Þ

R ¼ TP
TP þ FN

ð7Þ

Then, a two-dimensional curve (called P-R curve) can be drawn by taking the precision rate P
as the vertical coordinate and the recall rate R as the horizontal coordinate. The area enclosed
under the P-R curve is called the average prevision (AP), and the mean of AP values of all
classes is called mAP.

4.3 Experimental comparison of loss functions

In this section, the effects of different loss functions are tested. ResNet50 is used as the
backbone network. The outputs of the last convolutional layer of ResNet50 are used as the
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person features. Then, the Euclidean distance is used to calculate the similarity for recognition.
The parameters of different loss functions remain consistent during the training. Market1501
[3] is used as test dataset. The test results of different loss functions are reported in Table 1.

It can be observed that because the triplet loss constraints the distance between sample
pairs, it has better test results than the softmax loss, which also shows that it is not enough to
learn different classes only; rather, an in-depth learning of the distance relationship between
classes is also required. Second, comparison of the triplet loss and the TriHard Loss finds that
both mAP and rank1 indices are greatly improved, indicating that batch hard mining can be of
great hep to the triplet loss in that improving the quality of triplet sampling ensures the
availability of high-quality triplets every time to train the network to improve the training
results. Finally, a comparison of our proposed adaptive TriHard Loss and the original TriHard
Loss reveals that mAP and rank-1 are increased by 1.7% and 1.4%, respectively, indicating the
effectiveness of our proposed adaptive TriHard Loss.

4.4 Experimental results of person feature extraction

As is known from the introduction of the network architecture in earlier sections, local feature
extraction requires horizontal division of the feature map. Therefore, experiments are carried
out on the number of horizontal stripes resulting from the division of the feature map to obtain
the optimal design of the network architecture. The detailed experimental results are reported
in Table 2.

It can be found from observation of the above experimental results that with increasing
number of divided stripes, both the mAP and rank-1 values of the model first increase and then
decrease, a variation pattern that is consistent with common sense. The smaller the number of
divided stripes in the feature map, the closer the results to those of the global feature. As a
coarse-grained person descriptor, the global feature can only be used to compare the overall
appearance and outline of different persons, but it is not sufficient to distinguish persons that
require local fine comparison, resulting in a low recognition rate at the beginning. With
increasing number of divided stripes, the model will pay more attention to the individualized
area in each of the different stripes to learn more discriminative local features, and therefore the
results will be increasingly better. However, as the number of divided stripes increases, the
information contained in each stripe area decreases, leading to disordered network learning and
lowered learning outcomes. Therefore, d = 6 is generally used as the default setting.

To illustrate the effectiveness of the network designed in this paper, we conduct experi-
ments on the global feature branch, local feature branch, and the combination of the two,
respectively, in the network to clarify the function of each branch. The loss function is set as
1*CrossEntropy Loss +2*Adaptive TriHard Loss, where 1* CrossEntropy Loss represents the
use of one times the cross entropy loss function, and 2*Adaptive TriHard Loss represents the
use of two times the adaptive TriHard Loss. Hence, the final total loss function contains both

Table 1 Test results of different loss functions

Loss function mAP (%) rank1(%)

Softmax 41.3 65.8
Triplet loss 54.8 75.9
TriHard Loss 68.0 83.8
Ladaptive 69.7 85.2
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the cross entropy loss function and the adaptive TriHard Loss, making the overall learning
outcome of the network better. The detailed experimental results are reported in Table 3.

In Table 3, “Global” denotes the global features and “Local” represents the local features.
From Table 3, it can be found that local features have a significant effect on the values of mAP
and rank-1, which means that the local feature branch can provide the discriminative part of a
person. Second, it can be observed that the combination of the global feature branch and the local
feature extraction branch achieves the best results, indicating that although the local feature
branch is highly efficient, there is still some overall information that is not learned, and the global
feature branch can exactly make up for this defect. Therefore, it is illustrated that the two are
highly complementary and can promote each other to jointly improve the recognition outcomes.

Moreover, we compare the multibranch network proposed in this paper with a similar
algorithm published recently (see Tables 4 and 5) using the test datasets of CUHK03 [14] and
Market1501 [3].

As can be observed from the above tables, compared with other algorithms that are based
on combinations of global and local features, the network proposed in this paper achieves the
best results, and values of each index far exceed those of the other algorithms, indicating the
effectiveness of the multibranch network.

To show the performance of feature extraction proposed in this paper intuitively, we give
the corresponding heat-map for several images as shown in Fig. 2.

In the heat map, the redder the color of the region means that the features of the region play
a greater role in recognition. From Fig. 2, it can be founded that the color on the human body is

Table 2 Effect of the number of divided stripes in the feature map on the network performance

Number of local regions divided, d mAP (%) Rank-1(%)

1 75.4 88.5
2 79.7 90.3
4 81.8 92.7
6 83.4 93.2
8 81.6 92.4
12 80.5 90.8

Table 3 Test results of different branches of the network

Networks with different branches mAP (%) rank1(%)

Global 75.4 88.5
Local 83.4 93.2
Global + Local 84.6 93.8

Table 4 Test results of different algorithms on the CUHK03 dataset

Algorithm Rank-1(%) Rank-5(%) Rank-10(%)

Spindle Net [32] 88.5 97.8 98.6
PDC [25] 88.7 98.6 99.2
PL-Net [30] 82.8 96.6 98.6
GLAD [28] 85.0 97.9 99.1
This paper 90.6 98.7 99.4
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more red relative to the background. It shows that the feature extraction network proposed in
this paper can pay more attention to the human body, which is conducive to person re-
identification.

5 Conclusion

This paper first introduces a CNN-based person feature extraction method; second, a
multibranch network architecture combining a global feature branch and a local feature branch
is constructed, and the construction of each branch of the network is described in detail; third,
the loss functions commonly used in person re-ID are discussed, and an adaptive triplet loss
function is proposed. In the experiments, the effects of various types of loss functions are
validated, the rationality of the design of the multibranch network architecture is also demon-
strated, and the effectiveness of the setting of global feature branches and local feature
branches is verified.
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