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Abstract
The healthcare industry has always been an early adopter of new technology and
a big benefactor of it. The use of reinforcement learning in the healthcare system
has repeatedly resulted in improved outcomes.. Many challenges exist concerning
the architecture of the RL method, measurement metrics, and model choice. More
significantly, the validation of RL in authentic clinical settings needs further
work. This paper presents a new Effective Resource Allocation Strategy
(ERAS) for the Fog environment, which is suitable for Healthcare applications.
ERAS tries to achieve effective resource management in the Fog environment via
real-time resource allocating as well as prediction algorithms. Comparing the
ERAS with the state-of-the-art algorithms, ERAS achieved the minimum
Makespan as compared to previous resource allocation algorithms, while maxi-
mizing the Average Resource Utilization (ARU) and the Load Balancing Level
(LBL). For each application, we further compared and contrasted the architecture
of the RL models and the assessment metrics. In critical care, RL has tremendous
potential to enhance decision-making. This paper presents two main contributions,
(i) Optimization of the RL hyperparameters using PSO, and (ii) Using the
optimized RL for the resource allocation and load balancing in the fog environ-
ment. Because of its exploitation, exploration, and capacity to get rid of local
minima, the PSO has a significant significance when compared to other optimi-
zation methodologies.
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1 Introduction

Owing to the high prevalence of complex diseases and dynamic shifts in patients' clinical
conditions, clinical processes are dynamic in the health care domain. Using rule-based
procedures defined by physicians based on evidence-based clinical recommendations or best
practices, current treatment recommendation systems are enforced [2]. Furthermore, several
comorbid conditions may not be considered in these protocols and guidelines [5]. Critically ill
patients will benefit from deviation from existing treatment guidelines in an intensive care unit
(ICU) and the personalization of patient care using means not based on rules [13].

Reference can be made to randomized controlled trials (RCTs), systematic evaluations, and
meta-analyses if doctors need to change care for particular patients. However, RCTs may not
be available or definitive for many ICU conditions. It is also possible that many patients
admitted to ICUs may be too ill for inclusion in clinical trials [15]. In addition, just 9% of the
ICU therapy guidelines are based on RCTs [17], and the vast majority of critical care RCTs
have negative findings [28]. We need other approaches, including the use of large observa-
tional data sets, to help clinical decisions in ICUs [1]

Artificial intelligence (AI) systems [39] (using machines to simulate human cognitive
functions) and Machine Learning (ML) techniques can then be fed a vast amount of informa-
tion (using computer algorithms to perform clinical tasks without the need for explicit
instructions). Diagnosis [21], treatment, and resource management [4] in the ICU can then
be supported by AI and ML. One MLmethodology, called Reinforcement Learning (RL) [22],
is especially appropriate for ICU settings considering the complex nature of critically ill
patients.

The main objective of the RL algorithm [7] is to train an agent that can maximize the
cumulative future reward from the state-action pairs given the patients’ state-action trajectories.
When a new state is observed [11], the agent can perform an action, which could choose the
action for the greatest long-term outcome (eg, survival). When the RL agent is well-trained [8],
it is possible to pick the best action given the state of a patient, and we describe this process as
acting according to an optimal policy [37].

We can consider the state as the well-being/condition of a patient [18]. The state of the
patients could depend on static traits (eg, patient demographics including age, gender, ethnic-
ity, pre-existing comorbidity) and longitudinal measurements (eg, vital signs, laboratory test
results). An action is a treatment or an intervention that physicians do for patients (eg,
prescription of medications and ordering of laboratory tests) [27]. The transition probability
is the likelihood of state transitions, and it is viewed as a prognosis. If the well-being in the
new state is improved, we assign a reward to the RL agent, but we penalize the agent if the
patient's condition worsens or stays stagnant after the intervention.

This paper presented two main contributions, (i) Optimization of the RL hyperparameters
using PSO, and (ii) Using the optimized RL for the resource allocation and load balancing in
the fog environment. Figure 1 illustrates the block diagram of the proposed strategy. The main
goal of the system is to achieve a low latency while improving the Quality of Service (QoS)
metrics such as (the allocation cost, the response time, bandwidth efficiency, and energy
consumption). Unlike other resource allocating techniques, ERAS employs a deep RL algo-
rithm in a new manner. Accordingly, ERAS is a suitable algorithm in the case of real-time
systems in FC which leads to load balancing.

The rest of the paper is organized as follows: Section 2 gives a background for some basic
concepts of the proposed strategy. Section 3 introduces some of the recent previous efforts in
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the field of RL techniques generally, Markov Decision Process, Analogies to Critical
Care, Q-Learning for Neural Networks, and Particle Swarm Optimization (PSO).
Section 4 introduces an Effective Resource Allocation Strategy (ERAS) for the Fog
environment. Section 5 introduces the evaluation results and discussion. Our conclu-
sion is discussed in Section 6.

2 Background and basic concepts

This section introduces some concepts in the field of Reinforcement Learning (RL), Markov
Decision Process (MDP), Analogies to Critical Care, and Particle swarm intelligence.

2.1 Reinforcement learning (RL)

In formal terms, RL is a machine learning approach in which the software agent learns to carry
out certain actions in an environment that results in maximum reward [37]. It does so by
testing and leveraging the information it gains to optimize the reward through repeated trials.
In each step, the RL agent receives evaluative feedback on the performance of its action,
allowing it to improve the performance by trial and error of subsequent actions [18]. Math-
ematically, this sequential decision-making process is called the Markov decision process
(MDP) [27].

2.2 Markov decision process (MDP)

Markov generally means that given the present state, the future and the past are independent
[14]. For MDP, Markov means that the action outcomes depend only on the current state, not
the history. The MDP is characterized by four main components: (i) A state which at each
moment reflects the environment; (ii) An action that the agent takes at each time which affects
the next state; (iii) a transition that provides an estimation of reaching various subsequent states
that represent the environment in which an agent will interact; (iv) a reward function is the
observed feedback given a state-action pair. The solution of the MDP is an optimized set of
rules and is called the policy.

In some applications, including autonomous control, board games, and video games, RL
has already emerged as an efficient method to solve complex control problems with large-
scale, high-dimensional data [14, 19, 25]. RL has been shown to be capable of learning
complex sequential decisions at the human level. For example, Alpha Go is an RL agent for
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playing the strategy board game Go. Alpha Go has learned a policy using the current state of
the Go stones, and then decide what the next position for white/black stone on the board to
maximize the opportunity of winning.

2.3 Analogies to critical care

Given the vast volume and granular nature of reported data, RL is well suited for critical care
to provide sequential therapy recommendations, refine therapies, and improve outcomes for
new ICU patients. By automatically testing different care options, RL also has the ability to
extend our knowledge of current clinical protocols. The RL agent analyzes the patient
trajectories and derives a policy, a tailored treatment plan that optimizes the likelihood of
favorable clinical outcomes, through trial and error (eg, survival). Since this computerized
method is an effort to emulate the thinking process of the human clinician, RL has also been
named the AI clinician [33].

2.4 Q-learning for Neural networks

The Q-learning is a model-free RL algorithm that tells an agent what action to take
under what conditions to learn the quality of actions. It requires no environmental
model, and without adaptation, it can handle problems with stochastic transitions and
rewards. It can be directly implemented in a Neural Network (NN). In Q-learning,
there is no direct assignment of Q values such as the table-based view, instead, an
error function is presented to calculate the difference between the existing Q value
and the new value. Double DQN appears more robust to this more challenging
evaluation, suggesting that appropriate generalizations occur and that the found solu-
tions do not exploit the determinism of the environments. This is appealing, as it
indicates progress towards finding general solutions rather than a deterministic se-
quence of steps that would be less robust.

2.5 Particle swarm optimization (PSO)

Particle swarm optimization is a global optimization approach for situations where the optimal
solution is a point or surface in an n-dimensional space. In this space, hypotheses are drawn
and seeded with a starting velocity, as well as a route for communication between the particles.
Particles then flow across the solution space, with each timestep resulting in an evaluation
based on some fitness criterion. Particles within their communication grouping are accelerated
over time towards those particles with higher fitness levels. The fundamental benefit of this
approach over other global reduction procedures like simulated annealing is that the enormous
number of members that make up the particle swarm makes the process extremely resistant to
local minima.

3 Related work

This section introduces some of the recent various RL models in subsection 3.1. It also
introduces the relevant works focused on optimizing hyperparameters for various RL tech-
niques in subsection 3.2.
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3.1 RL models

This section introduces some of the recent various RL models. When the RL agent is well-
trained, it is possible to pick the best action given the state of a patient, and we describe this
process as acting according to an optimal policy. A policy is analogous to a clinical protocol.
Nonetheless, a policy has advantages over a clinical protocol because it is capable of capturing
more personalized details of individual patients. A policy can be represented by a table where
it maps all possible states with actions.

Alternatively, a policy may also be interpreted by a Deep Neural Network (DNN),
where the DNN model generates the highest likelihood of an intervention given the
feedback of a patient's state. Using various RL algorithms, an optimal policy can be
learned. Some widely applied RL algorithms include Q-Learning for Neural Networks
[30], the Fitted-Q-Iteration (FQI) [30], Deep Q Network (DQN) [20], actor-critic
network [29], and model-based RL [36]. More technical details about various RL
models have been explained [9, 26]. The Comparison of some of the recent various
RL models is shown in Table 1.

3.2 Optimization of RL hyperparameters

This section contains works that are linked to hyperparameter optimization in various Deep
Reinforcement Learning (DRL) techniques.

The authors proposed Population-Based Bandits (PB2), a pioneering, proven, and
effective population-based training (PBT-style) approach in [38]. In comparison to
PBT, the approach allows for the detection of outstanding hyperparameter settings
with fewer agents. With multiple RL trials, the authors show that PB2 can achieve
exceptional results on a small computational budget. Authors in [35] recently present-
ed an online hyperparameter adaption approach for DRL. An upgraded approach to
population-based training was used to provide an effective online hyperparameter
adaption method (PBT). The recombination operation, inspired by the GA, is intro-
duced into the population optimization to speed up the population's convergence to
the best hyperparameter configuration. The authors confirmed the usefulness of this
strategy and found that it produced better outcomes than PBT, which is a traditional
approach that they have used in the past.

In [31], Liessner et al. describe a model-based hyperparameter optimization for
DDPG, which was found to be effective in industrial settings. In their work, the
optimization is enhanced to include strictness on the available training time for the
DDPG algorithm in the chosen domain. The authors demonstrated that DDPG
hyperparameters could be tuned even when the time was limited.The authors em-
ployed a Genetic Algorithm (GA) to identify suitable HER+DDPG hyperparameters
and optimized DDPG hyperparameters in [40]. The hyperparameters that require fewer
epochs to learn superior task performance were discovered using GA. In robots
manipulation duties, they used this strategy for reach, fetch, push, slide, place, pick,
and open processes. Authors in [23] recommended using the Bayesian technique to
modify hyperparameters in DRL. Chen et al. conducted the most comprehensive RL
hyperparameters investigation, preferring to construct the AlphaGo algorithm via
Bayesian optimization. Traditional approaches will never be able to produce these
results. Bayesian optimization enhanced AlphaGo's chances of winning and helped
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Table 1 Comparison of some of the recent various RL models

Algorithms Basic Idea Strength Weakness

Q-Learning for
Neural
Networks [30]

In Q-learning, there is no
direct assignment of Q
values such as the
table-based view, instead,
an error function is pre-
sented to calculate the dif-
ference between the
existing Q value and the
new value.

This is called off-policy
learning.

Amazing result: Q-learning
converges to optimal poli-
cy even if you’re acting
sub optimally

i. You have to explore
enough

(several ten thousands of
episodes have to be done
until an optimal or near
optimal policy has been
found)

ii. You have to eventually
make the learning rate
small enough

Fitted-Q-Iteration
(FQI) [30]

The basic concept behind
NFQ is that the update is
done off-line, with a
whole range of transfer
experiences rather than
uploading on-line the
neural value function
(which leading to issues
with Q-learning).

Overcomes the problems
with the Q-learning.

Using the whole training data
leads to faster
convergence and more
reliability.

The parameters for the
supervised learning
portion of the overall (RL)
learning problem do not
need to be modified.

Advantages of NFQ are the
following: (i) Offline; (ii)
Model-free; and (iii)
Works with random tra-
jectories.

Complex algorithm

Deep Q Network
(DQN) [20]

Deep Q-Networks combines
Q-Learning with deep
learning (Deep Neural
Network (DNN)). The in-
put for the DNN is the
current state (s), while the
output is the Q-values for
all actions Q(s,a,w)≈
Q*(s,a). The loss function
is used to calculate the
difference between the ac-
tual output and the target
output.

□ All the past experience is
stored by the user in
memory

□ The next action is
determined by the
maximum output of the
Q-network

□ The loss function here is
mean squared error of the
predicted Q-value and the
target Q-value – Q*.

□ Both the target network
and the experience replay
dramatically improve the
performance of the
algorithm.

Using only previous setup
will not help Q* to
converge easily because of
two reasons:

(i) Samples correlation:
samples that occur
consecutively are mostly
very same which doesn’t
add any diversity to the
model.

(ii) Non-stationary targets:
targets already change as
the policy improves (better
rewards so better Q-
-values).

Double
Q-learning [3]

In the original Double
Q-learning algorithm, two
value functions are learned
by assigning each experi-
ence randomly to update
one of the two value
functions, such that there
are two sets of weights, _
and _0. For each update,
one set of weights is used
to determine the greedy
policy and the other to
determine its value.

Double Q-learning can find
an estimate for the maxi-
mum value of a set of
stochastic values and it is
shown that this sometimes
underestimates rather than
overestimates the maxi-
mum expected value.

The selection of the action, in
the argmax, is still due to
the online weights θt. This
means that, as in
Q-learning, we are still
estimating the value of the
greedy policy according to
the current values, as
defined by θt. However,
we use the second set of
weights θ’t to fairly
evaluate the value of this
policy. This second set of
weights can be updated
symmetrically by
switching the roles of θ
and θ’.

Although there are many RA algorithms they have many limitations such as i) most of them depend on the
response time to decide whether to assign a task to fog or to cloud which is not plausible. ii) They don't consider
the task's requirements such as the priority of the task and the number of tasks. (iii) Calculating the capacity is
difficult in some cases such as in the case with varying packet sizes. (iv) They may cause network bottleneck.
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gather crucial data that can be used to create updated self-play agents using Monte
Carlo Tree Search (MCTS). This practice, on the other hand, demands extensive
testing and specialized knowledge. Furthermore, these techniques can only adapt to
a single hyperparameter and cannot adapt to a variety of hyperparameters.

Similarly, authors in [32] developed a population-based training strategy (PBT).
They suggested the OMPAC method, which is a different approach that focuses on
the evolutionary mechanism. OMPAC was the first population-based technique to
implement DRL's multiple hyperparameter adaptation. The population-based neural
network training (PBT) strategy, which effectively employs a static computational
budget to optimize a population of models and their hyperparameter configuration to
achieve the optimal output, was also used by the authors in [6]. Machine translation,
DRL, and GANs all performed well using the proposed method. On the other hand,
PBT uses rudimentary stochastic perturbations to achieve hyperparameter adaptation,
which is ineffectual in tracking changes in potential temporary ideal hyperparameter
configuration. These techniques can only adapt to a single hyperparameter and cannot
adapt to a variety of hyperparameters.

4 Effective resource allocation strategy (ERAS) for fog environment

This section introduces a new Effective Resource Allocation Strategy (ERAS) for the Fog
environment. EARS is suitable for real-time systems such as healthcare applications. ERAS
tries to achieve effective resource management in the Fog environment via real-time resource
allocating. In the health care systems, the patient data is sent to the most appropriate server to
handle it. This server is administrated by a specific healthcare organization. In the proposed
system, the fog layer consists of two main modules as shown in Fig. 2, namely: (i) Data
Preparation Algorithm (DPA), and (ii) Resource Management Algorithm (RMA).

Cloud Layer

IoT Layer Fog Layer

RMADPA

Sampling Par��oning

Balancing

Healthcare 
Organiza�on

Alert

Ac�on

Fig. 2 Effective Resource Allocation Strategy (ERAS)
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4.1 Data preparation algorithm (DPA)

One of the most challenging tasks in any machine learning project is data preparation. The
reason for this is that each dataset is unique and tailored to the project. Nonetheless, there are
enough similarities amongst predictive modeling projects that we can establish a rough
sequence of phases and subtasks that you will most likely complete. The DPA is divided into
three sub-modules, namely: (i) Sampling Module (SM), (ii) Partitioning Module (PM), and (ii)
Balancing Module (BM).

i. Sampling Module (SM)

In SM, the incoming data is divided into subgroups (or strata) that share a similar
characteristic using a stratified sampling algorithm. In stratified sampling, it may also
be appropriate to choose non-equal sample sizes from each stratum. In SM, data is
first sampled according to the location it comes from. Then it will be sampled
according to its type. Data can be classified into three categorize: (i) Not or Low
Critical: Examples are the logging of training activity, weight, or body posture. Such
data can be examined by a doctor when needed. If the system fails to log some data
points, the patient is still safe. ii) Critical Data: data in critical conditions. Examples
are cardiac monitoring via ECG with automatic alarms once critical situations are
detected [10]. The criticality requires fast response time, i.e., real-time response.
Context Management merely observes patients, devices, or employees to figure out
their context and help by improving planning or taking proper decisions [16]. How-
ever, data, in this case, is not urgent but it gains some degree of criticality due to
real-time response need. (iii) Very Critical Data Control: The detected events are not
only used to alert personnel, but also to control devices. This kind of data needs
feedback and real-time response. An example is a device that regulates the amount of
oxygen provided to a patient [12].

ii. Partitioning Module (PM)

PM splits the data into three samples. The model is built on the training set, and the
model is applied to the testing set to establish its credibility. However, the testing set
can then be used to further refine the model. If the performance of the model needs
improvement, the parameters can be changed, and the model is then rebuilt using the
training sample, after which the performance on the testing set is examined. The
validation sample, which unlike the training and testing sets played no role in
developing the final model, is then used to assess the model the model’s performance
against unseen data.

iii. Balancing Module (BM)

The BM achieves the balancing of the data by discarding (reducing) records in the higher-
frequency categories. The reason is that when you boost the record you will run the risk of
duplicating anomalies in the data.
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4.2 Resource management algorithm (RMA)

RL is an Artificial Intelligence technique in which an agent takes an action in an
environment to gain rewards. The agent receives the current environment state and
takes an action accordingly. The taken action leads to a change in the environment
state and then the agent will be informed of the change through a reward. The
proposed RMA is based on Optimized Reinforcement Learning (RL) algorithm to
achieve low latency for a fog environment. In RL, an agent learns to interact with the
environment to achieve a reward. This section is divided into two subsections which
are (i) Optimized Reinforcement Learning (ORL), and (ii) Resource Allocation Algo-
rithm (RAA).

4.2.1 Optimized reinforcement learning (ORL)

RL is a machine learning technique that uses examples to develop optimum control-
lers, making it an ideal option for improving heuristic-based controllers utilized in the
most popular and widely used optimization algorithms. RL techniques have the
benefit over other approaches to optimization techniques in that they do not require
previous knowledge of the basic system dynamics, and the system designer is free to
set reward criteria that best match the controller performance desiderata. For example,
in the event of time restrictions, a good incentive may be achieving the smallest loss
in the shortest length of time. A simple variation of the Particle Swarm Optimization
(PSO) algorithm employs a population of potential solutions (referred to as a swarm)
(called particles). A few basic equations are used to move these particles about in the
search space. The particles' motions are governed by their individual best-known
position in the search space, as well as the best-known position of the entire swarm.
When better places are located, they will be used to steer the swarm's movements.
The procedure is repeated in the hopes that a suitable answer will be found someday,
although this is not guaranteed. Particle Swarm Optimization (PSO) is used to
optimize reinforcement learning. PSO has a significant significance when compared
to other optimization methodologies, because of its exploitation, exploration, and
capacity to get rid of local minima. The selected set hyperparameters to be optimized
are (i) learning rate (lr), (ii) batch size (bs), (iii) discount factor (df), and (iv) reward
(r). The overall steps of the ORL are shown in Algorithm 1.

4.2.2 Resource allocation algorithm (RAA)

In computing systems, resource allocation is the process of allocating available system
resources to distinct activities that are ready to be done. This is a procedure that has a
substantial impact on the system's overall performance. A list of activities or process-
es that are ready to be executed at a specific moment, as supplied by a system
scheduler, is typically fed into resource allocation algorithms. The Resource Alloca-
tion Algorithm (RAA) learns to select the best server to execute the incoming request.
Firstly, the input is the data in the NCT, and finally, the output is the balanced
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system with high performance and lowest latency. The overall steps of the RAA are
shown in Algorithm 2.
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5 Implementation and evaluation

FC runs applications in fog devices between cloud and end devices. This paradigm has used
the benefits of cloud and edge for distributed data and low latency. IoT sensors which are
located in the lower layer of the architecture, are responsible for receiving and transmitting
data through the gateways to the higher layer. The actuators in the lowest level, are also
responsible for system controls. FC provides filtering and analysis of data by edge devices.
Each application of a fog network has different topology. The Resource Allocation Module
(RAM) and the Effective Prediction Module (EPM) are implemented using python.

5.1 Mobile HEALTH dataset

The Mobile HEALTH (MHEALTH) [34] dataset contains vital signs and body motion
recordings for 10 volunteers during several physical activities. Sensors placed on the subject's
chest, right wrist, and left ankle are used to measure the motion experienced by diverse body
parts, namely, acceleration, rate of turn, and magnetic field orientation. The main character-
istics of MHEALTH Dataset are shown in Table 2.

In this paper, theMHEALTH is used to detect the possibility of a heart attack. Hence, a new extra
column (column 24) is added to have the values of the probability of attack. Column24 has threemain
valueswhich are; (i) 1 for strong probability, (ii) 2 for average probability, (iii) 3 for low probability. In
order to simplify the classification, only 560 instances are selected from the MHEALTH Dataset for
training and 240 instances are selected for testing. A number of training dataset instances for each
probability is shown in Table 3. A sample of MHEALTH Dataset is shown in Table 4.

5.2 Performance metrics

The performance of ERAS vs. previously mentioned LB algorithms can be compared by
considering the following metrics shown in Table 5.

Table 2 MHEALTH Dataset Characteristics

Data Set Characteristics: Attribute
Characteristics:

Associated
Tasks:

Number of
Attributes:

Number of
Instances:

Missing
Values?

Multivariate, Time-Series Real Classification 23 161,280 N/A

Table 3 Used MHEALTH Dataset

Heart_Attack_Probability 1 2 3

No. of Training Dataset Instances 180 175 205

Table 4 A sample of MHEALTH Dataset

chest sensor
(X axis)

chest sensor
(Y axis)

chest sensor
(Z axis)

electrocardiogram
signal (lead 1)

…… Heart_Attack_Probability

−9.7409 0.68291 0.7562 −0.06698 …… 1
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5.3 ERAS implementation

ERAS algorithm has been compared with LC, RR, WRR, and AWRR. The values of
makespan are shown in Table 6 and in Fig. 3. The values of ARU are shown in Table 6
and in Fig. 4. The values of LBL are shown in Tables 7, 8 and in Fig. 5.

Table 5 the Performance metrics to evaluate the proposed ERAS scheme

Metric Definition Notes

Makespan It is the total execution time in which
task get scheduled or completely
executed.

It can be called Completion Time (CT)
CT: is the time at which process

completes its execution.

Makespan always should be low [24].

Average
Resource
Utilization
(ARU)

It is the complete utilization of each
resource present in fog environment.

For better performance, ARU ratio should be high.

Load Balancing
Level (LBL)

For better performance, LBL should be high
(https://archive.ics.uci.
edu/ml/datasets/MHEALTH+Dataset).

ARU can be calculated as in (1) and LBL can be calculated as in (2).

Table 6 Makespan analysis (in ms)

Number of tasks LC RR WRR AWRR ERAS

50 95.33 96 93.13 87.95 84.87
90 169.34 170.98 167.78 164.66 150.75
130 232.48 235.01 230.21 225.81 220.71
150 280.74 285.11 279.85 275.01 270.89

Fig. 3 Makespan for ERAS vs Previous LB algorithms
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Fig. 4 ARU for ERAS vs Fig. 3 Makespan for ERAS vs Previous LB algorithms Previous LB algorithms

Table 7 ARU Analysis (%)

Number of tasks LC RR WRR AWRR ERAS

50 42.85 42.85 57.14 71.42 72.58
90 57.14 42.85 57.14 71.42 76.28
130 71.42 71.42 71.42 85.71 86.89
150 71.42 71.42 85.71 85.71 88.11

Table 8 LBL Analysis (%)

Number of tasks LC RR WRR AWRR ERAS

50 28.57 28.57 42.85 57.14 59.04
90 42.85 28.57 57.14 71.42 72.45
130 57.14 57.14 71.42 71.42 73.45
150 71.42 57.14 71.42 85.71 86.14

Fig. 5 LBL for ERAS vs Previous LB algorithms
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Figure 3 explained that ERAS algorithm gives lower Makespan as compared to previous
resource allocating algorithms. Figures 4 and 5 explained that ERAM algorithm gives better
result as compared to previous resource allocating algorithms as it achieved the higher ARU
and higher LBL. Hence all the above results have shown that ERAS algorithm performs better
for makespan, ARU and LBL as compared to LC, RR, WRR, and AWRR.

The fog computing architecture is centralized but without traffic as each fog region has a
master node (fog master) which is responsible for managing and controlling all requests in this
region. There is no large requests (send and receive messages all the time) as the fog master
has a huge database which contains information bout the whole nodes in its region. Hence,
there is no need for send and receive messages all the time. It first checks its database for the
required information.

ARU ¼ BS þ OLð Þ
FSs

*100% ð1Þ

LBL ¼ BS
FSs

*100% ð2Þ

Where, BS: is the number of Balanced Fog Servers, OL: is the number of Overloaded Fog
Servers, and FSs: is the number of all available Fog Servers.

6 Conclusions and future work

This paper presented a new Effective Resource Allocation Strategy (ERAS) for Fog environ-
ment, which is suitable for Healthcare applications. ERAS tries to achieve effective resource
management in Fog environment via real-time resource allocating as well as prediction
algorithm. ERAS is composed of two main modules, namely: (i) Data Preparation Algorithm
(DPA), and (ii) Resource Management Algorithm (RMA). The DPA is responsible for
sampling, partitioning, and balancing data to be in the appropriate form for analyzing and
processing. The RMA learns to select the best server to execute the incoming request. The
RMA uses Reinforcement Learning (RL) algorithm to achieve low latency. Comparing the
ERAS with the state-of-the-art algorithms, ERAS achieved the minimum Makespan as
compared to previous resource allocation algorithms, while maximizing the Average Resource
Utilization (ARU) and the Load Balancing Level (LBL). For each application, we further
compared and contrasted the architecture of the RL models and the assessment metrics. In
critical care, RL has tremendous potential to enhance decision-making. In future work, we aim
to test ERAS using various datasets. This paper presented two main contributions, (i)
Optimization of the RL hyperparameters using PSO, and (ii) Using the optimized RL for the
resource allocation and load balancing in the fog environment. Because of its exploitation,
exploration, and capacity to get rid of local minima, the PSO has a significant significance
when compared to other optimization methodologies. The selected set hyperparameters to be
optimized are (learning rate (lr) – batch size (bs) - discount factor (df) – reward (r)). Optimized
hyperparameters regularly produced better total rewards at test time than a commonly used
reference hyperparameter suggested by an expert, according to the findings. The
hyperparameters of RL algorithms have been shown to affect their efficiency.
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