
https://doi.org/10.1007/s11042-022-12880-6

Securing content-based image retrieval on the cloud
using generative models

YongWang1 · Fan-chuanWang1 · Fei Liu1 ·Xiao-huWang1

Received: 17 March 2021 / Revised: 8 February 2022 / Accepted: 10 March 2022

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Content-based image retrieval (CBIR) with deep neural networks (DNNs) on the cloud
has tremendous business and technical advantages to handle large-scale image repositories.
However, cloud-based CBIR service raises challenges in image data and DNN model secu-
rity. Typically, users who wish to request CBIR services on the cloud require their input
images remaining confidential. On the other hand, image owners may intentionally (or unin-
tentionally) upload adversarial examples to the cloud servers, which potentially leads to the
misbehavior of CBIR services. Generative Adversarial Networks (GANs) can be utilized
to defense against such malicious behavior. However, the GANs model, if not well pro-
tected, can be easily abused by the cloud to reconstruct the users’ original image data. In this
paper, we focus on the problem of secure generative model evaluation and secure gradient
descent (GD) computation in GANs. We propose two secure generative model evaluation
algorithms and two secure minimizer protocols. Furthermore, we propose and implement
Sec-Defense-Gan, a secure image reconstruction framework which can keep the image data,
the generative model details and corresponding outputs confidential from the cloud. Finally,
We carried out a set of benchmarks over two public available image datasets to show the
performance and correctness of Sec-Defense-Gan.

Keywords Content-based image retrieval · Generative adversarial networks (GANs) ·
Lattice-based homomorphic scheme · secure multiparty computation · Deep neural
networks (DNNs)

1 Introduction

Deep neural networks (DNNs) have shown unprecedented superiority for visual object
recognition, which may be the most powerful approach for Content-Based Image Retrieval

This work is supported by the National Key Research and Development Program of China (Grant No.
2018YFB0804702)

� Yong Wang
cla@uestc.edu.cn

1 School of Computer Science and Engineering, Center for Cyber Security, University of Electronic
Science and Technology of China, Chengdu, China

Published online: 8 April 2022

Multimedia Tools and Applications (2022) 81:31219–31243

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-022-12880-6&domain=pdf
http://orcid.org/0000-0002-0422-5691
mailto: cla@uestc.edu.cn

(CBIR) in recent years [2]. The representative works include robust face detection [3, 21],
face mask detection in the environment of COVID-19 [28] and accurate low resolution
image classification [4]. With the improvement of these DNN models, CBIR as a DNN-
based application is becoming popular in the area of cloud computing. It is a cost-effective
way that mobile users outsource their images onto cloud servers which can generate image
searching results more intelligently with the help of the modern DNN-based features.

Despite the fact that the cloud-based CBIR has tremendous business and technical advan-
tages to handle large-scale image repositories, it raises users’ privacy concerns because they
require users to upload and store images onto the cloud servers in most application sce-
narios. Furthermore, the quality of CBIR services is seriously affected by the well-trained
DNN network itself, which has shown its vulnerability to adversarial samples [29]: care-
fully crafted perturbations added to a legitimate input sample. These disturbances will cause
the legal samples to be misclassified even disable the DNN based CBIR services. In real-
ity, users may intentionally (or unintentionally) upload adversarial examples to the cloud
servers, which potentially leads to the misbehavior of CBIR services.

Generative Adversarial Networks (GANs) [14] have the powerful expression ability to
learn data distribution, which can be widely used to generate adversarial samples [30] or
to defense against malicious inputs [27]. Recently, Pouya Samangouei et al.[27] proposed
Defense-GAN which is effective against both white box and black box attacks. Defense-
GAN leverages the representative power of GAN to diminish the effect of the adversarial
perturbation, by projecting input images onto the range of the GAN’s generator prior to
feeding them to the classifier. However, the generative model in a GAN framework needs
to emulate the data distribution, whose outputs, typically generated images, are obviously
sensitive to users’ privacy. At the same time, the parameters and intermediate results of
a GAN framework are very valuable because of the difficulty of training it. Hence, these
data also require to be protected from cloud servers to avoid being commercially exploited.
Finally, a GAN framework uses Gradient Descent (GD) to select the appropriate outputs.
As was reported in [25, 31], the gradient information can be easily utilized to issue pas-
sive and active white box inference attacks against deep learning algorithms. Typically,
FGSM black-box attack has shown its powerful impacts on DNN algorithms. As a result,
the gradient information has to be kept confidential. Theoretically, Fully Homomorphic
Encryption (FHE) techniques, such as Lattice-based schemes, can potentially handle such
issue. However, it is not efficient because of its design complexity of the operations in
a GAN framework. Specifically, it is time-consuming and laborious to support division
operations with FHE schemes, which is the core of Gradient Descent algorithms. Secure
Multi-party Computation (SMC) can be an alternative solution, but the communication over-
head between users and the cloud server will dramatically increase when the DNN layers or
its inputs become large.

The contributions of this work are mainly summarized as follows:

– We focus on the problem of secure generative model evaluation and secure gradient
descent (GD) computation in GANs. We design two secure de-convolution algorithms
to deal with large inputs based on direct convolution and matrix-vector product meth-
ods respectively. Furthermore, we design two secure gradient computation and update
protocols to accomplish image reconstruction task based on numerical differentiation
and chain rule respectively.

– We propose Sec-Defense-Gan, a secure image reconstruction framework, which
can diminish the effect of the adversarial perturbation by reconstruction adversar-
ial examples uploaded from the image data owner without leaking any information

31220 Multimedia Tools and Applications (2022) 81:31219–31243

to the cloud. Sec-Defense-Gan consists of two major components, i.e., SecGan and
SecMinimizer . SecGan provides a secure generative model evaluation functionality
while SecMinimizer performs secure gradient update.

– We apply Sec-Defense-Gan into secure content-based image retrieval system which
assumes that the image data owner may be adversary. The system can protect the image
data, the GANs model details (e.g., weight matrix) and the image retrieval results from
the cloud, while defending against the adversarial examples which have a different
distribution of the training samples used by the NN model.

The rest of the article is organized as follows. We review the related works in Section 2.
Section 3 explains the preliminaries. In Sections 4, 5 and 6, we described our framework and
implementations in detail. The experimental evaluations are shown in Section 7. Finally, we
discuss and draw brief conclusions in Section 8.

2 Related work

Content-based image retrieval (CBIR) has been studied for several decades. CBIR technolo-
gies are typically of high computational complexity and storage-consuming because images
need to be indexed by their visual contents (features). Hence, it is an inevitable choice
to store users’ images onto the cloud servers which can further provide CBIR services.
Although outsourcing CBIR services to the cloud has great business advantages, privacy
concerns arises because users default that the cloud service providers are not trustworthy.

Homomorphic encryption (HE) based techniques can be apply to secure CBIR service.
In such schemes, users encrypt images pixel by pixel by utilizing a homomorphic cryptosys-
tem (e.g., Paillier[26], ElGamal[10], or Lattice-based AHE[8]), which allows the cloud to
index and process their images in the encrypted domain. Hsu et al.[18] proposed a high-
precision CBIR algorithm by adopting Paillier cryptosystem to encrypt private images. This
approach is suffered from significative ciphertext expansion, which leads to slow encryp-
tion and decryption time and scalability issues. Hu et al. [19] further proposed an efficient
scheme for SIFT feature extraction by utilizing the ring-Learn-With-Error (r-LWE) homo-
morphic cryptosystem[6], different from their previous scheme proposed in [18], their
batched secure multiplication protocol is built on Some-What Homomorphic Encryption
(SWHE) scheme that enables the two parties to securely compute the products of multiple
pairs of private integers simultaneously, with computation and communication costs greatly
reduced. A variant work proposed by Zheng et al.[33] replaced Paillier ciphertexts with
pointers to a ciphertext table. It reduced the number of encryption operations and minimized
ciphertext expansion. Li et al.[22] proposed a double-decryption SIFT feature extraction
scheme based on the BCP cryptosystem, which is an additively homomorphic scheme with
two independent decryption algorithms.

Although HE-based schemes allow the cloud server to process and index their encrypted
images, which is semantically secure. Unfortunately, they present much higher time and
space complexity[11]. More importantly, these schemes naturally are facing with cipher-
text expansion and noise growth problems[5, 7–9, 13, 24]. These have potentially negative
effects on the scalability and accuracy. For example, schemes in [19, 22, 33] can only deal
with the integer values of SIFT vectors and accept limited additive homomorphic operations.
It is hardly applicable when considering CBIR with deep features, such as features extracted
by convolutional neural networks (CNNs), because these schemes perform very poorly due

31221Multimedia Tools and Applications (2022) 81:31219–31243

to the large multiplicative depth in a CNN. The last but not the least, these schemes natu-
rally assume that image owners are honest. It requires design of HE based de-convolution
operations when apply GAN to defense against such malicious users.

In this work, we consider the secure reconstruction of the generative model in a
GAN framework by utilizing the homomorphic encryption in conjunction with multi-party
computation.

3 Preliminaries

3.1 Generative adversarial networks (GANS)

GANs include two neural networks, generative model G and discriminative model D.
G : R

k �→ R
n maps a low-dimensional latent space to high-dimensional sample space

of x. D is a binary neural network classifier. In the training phase, G and D are typically
learned in an adversarial fashion using actual input data samples x and random vectors z. An
isotropic Gaussian prior is usually assumed on z. While G learns to generate outputs G(z)

that have a distribution similar to that of x, D learns to discriminate between “real” samples
x and “fake” samples G(z). D and G are trained in an alternating fashion to minimize the
following min − max loss:

min
G

max
D

V (D, G) =
Ex∼ρdata(x)[log(D(x))] + Ez∼ρz(z)[log(1 − D(G(z)))]. (1)

It was shown that the optimal GAN is obtained when the resulting generator distribution
ρg = ρdata(x) [14]. Because GANs are difficult to train in practice [16], many alterna-
tive formulations have been proposed. Wasserstein GANs (WGANs) [16] have shown the
stability of their training methods, which use the Wasserstein distance in a loss function:

min
G

max
D

VW (D, G) =
Ex∼ρdata(x)[D(x)] − Ez∼ρz(z)[D(G(z))]. (2)

One of WGANs application scenario is to use a WGAN trained on legitimate training
samples to defense against adversarial samples.

3.2 Defense-GAN algorithm

Defense-Gan is a new framework proposed by samangouei [27] for the purpose of defend-
ing against adversarial attacks in classification problems. Defense-Gan employs a novel
defense strategy which use a WGAN trained on legitimate (un-perturbed) training samples
to “denoise” adversarial examples. At inference time, given a trained GAN generator G and
an image x to be classified, z∗ is first found to minimize

min
z

‖G(z) − x‖22 (3)

This non-convex minimization problem is approximated by performing a fixed number
of L Gradient Descent (GD) steps using R different random initialization of z. Figure 1
further shows the process of L Gradient Descent (GD) steps in detail:

G(z∗) is then given as an input to the CBIR system. The overview of this application
scenario is illustrated in Fig. 2.

31222 Multimedia Tools and Applications (2022) 81:31219–31243

Fig. 1 L steps of Gradient Descent are used to estimate the projection of the image onto the range of the
generator. Sign G denotes the generator network and Z0 denotes a group of random vectors. Given an image
x, Z0 is updated by minimizing the loss iteratively and get the result ZL. Finally, z∗ is selected from the
vector group ZL by executing the function argmin

3.3 Packed additively homomorphic encryption (PAHE)

A general abstraction of packed additively homomorphic encryption (PAHE) schemes sup-
ports packing multiple plaintexts into a single ciphertext, performing SIMD homomorphic
additions (SIMDAdd), scalar multiplications (SIMDScMult) and permuting the plaintext
slots (Perm).

– SIMDAdd: Given ciphertexts [u] and [v], SIMDAdd outputs an encryption of their
componentwise sum, namely [u + v].

– SIMDScMult: Given a ciphertext [u] and a plaintext v, we can output an encryption
[u ◦ v] (where ◦ denotes component-wise multiplication of vectors).

– Perm: Given a ciphertext [u] and one of a set of primitive permutations Π defined by
the scheme, the Perm operation outputs a ciphertext [uΠ], where [uΠ] is defined as
([uΠ(1)], [uΠ(2)], . . . , [uΠ(n)]), namely the vector uwhose slots are permuted according
to the permutation Π .

PAHE includes an encryption algorithm, a deterministic decryption algorithm, and a
homomorphic evaluation algorithm. The encryption algorithm takes a plaintext message
vector �u from some message space and encrypts it using a private key sk into a ciphertext
denoted as [�u]. The decryption algorithm takes the ciphertext [�u] and the key sk and recov-
ers the message vector �u. The homomorphic evaluation algorithm takes as input one or more
ciphertexts that encrypt messages �u0, �u1, · · · , and outputs another ciphertext that encrypts
a message �u = f (�u0, �u1, · · ·) for some function f . The function f is constructed by using
the three basic homomorphic operations: Single Instrument Multiple Data (SIMD) addition

Fig. 2 An application of DEFENSE-GAN in CBIR system. The GAN is trained on the available classifier
training dataset in an unsupervised manner. The classifier can be trained on the original training images, their
reconstructions G(z∗) using the generator G. As long as the GAN is appropriately trained and has enough
capacity to represent the data, original clean images and their reconstructions should not defer much

31223Multimedia Tools and Applications (2022) 81:31219–31243

(SIMDAdd), SIMD scalar multiplication (SIMDScMult), and permuting the plaintext slots
(Perm).

Generally, a PAHE schema is parameterized by four constants that are the cyclotomic
order m, the ciphertext modulus q, the plaintext modulus p, and the standard deviation σ

of a symmetric discrete Gaussian noise distribution (χ). It satisfies: (1) IND-CPA security,
which requires that ciphertexts of any two messages �u and �u′ be computationally indis-
tinguishable; and (2) Function Privacy, which requires that the ciphertext generated by
homomorphic evaluation, together with the private key sk, reveals the underlying message,
namely the output f (·), but does not reveal any other information about the function f .

For any a linear layer in this paper, which is either Deconv or FC layer, it can be eval-
uated by homomorphic matrix-vector multiplication and homomorphic convolution. The
PAHE scheme ensures that nothing about the linear layer’s inputs or outputs will be leaked.

3.4 Secure 2-PC computation

Secure two-party computation (2-PC) is a type of protocols that allow two parties to jointly
compute a function (f1(x, y), f2(x, y)) ← f (x, y)without learning each other’s input. The
Obliv-C [32] is a robust 2-PC garbled circuits implementation. It provides an extensible pro-
gramming tool for secure computation by exposing the important aspects of data-oblivious
computation, while providing a high-level language and the ability to seamlessly integrate
with standard C code. Programs typically read, process, and output data in native C code,
performing only the secure computation in Obliv-C code.

The main language addition is an obliv qualifier, applied to C types and constructs.
Typing rules enforce that obliv types remain secret unless explicitly revealed. Code within
oblivious functions and conditionals cannot modify public data, except within a qualified
obliv block, in which the code is always executed. These rules allow programmers to reason
about data security and develop modular libraries. Recent evaluation of Obliv-C [17] indi-
cates its usability on a range of criteria, including language expressiveness, capabilities of
the cryptographic back-end, and accessibility to developers.

For any a non-linear layer in this paper, which typically is ReLU or Sigmod, it can
securely be calculated by the secure 2-PC computation scheme.

4 The secure GAN reconstruction framework

4.1 Framework overview

As is illustrated in Fig. 3, there are three entities in Sec-Defense-Gan, i.e., the cloud servers
(S1 and S2), the image owner, and the model provider.

A model provider provides a pre-trained WGAN model to the cloud servers, who treat
the pre-trained WGAN model details (e.g., weight matrix) as sensitive and hopes it to be
protected from the cloud servers. We assume the model provider is honest because it has
no motivation to provide a “fake” pre-trained model. Technically, this assumption could be
easily guaranteed by the access control and authorization mechanism.

An image owner generates or collects images and outsources the image data onto the
cloud servers. We assume that the image data are sensitive and needs to be protected from
the cloud servers. We also assume that the image owner can potentially be malicious, who
may intentionally (or unintentionally) upload adversarial examples to the cloud servers.

31224 Multimedia Tools and Applications (2022) 81:31219–31243

Fig. 3 The overview of Sec-Defense-Gan

These adversarial examples are carefully crafted perturbations added to a legitimate input
samples which can cause the legitimate samples to be misclassified at inference time.

The cloud servers (S1 and S2) filter out adversarial examples uploaded from the image
owners by running the pre-trained WGAN model. We assume that the cloud servers follow
the semi-honest adversary model, i.e., they follow the protocol specifications and algorithms
exactly, but may attempt to learn additional information by analyzing intermediate compu-
tations. In general, secure protocols under the semi-honest model are more efficient than
those under the malicious adversary model, and most of the practical SMC protocols are
secure under the semi-honest model. We refer the readers to [12] for more details about the
security definitions and models. By the semi-honest model, we implicitly assume that the
cloud servers do not collude. This model is realistic in the current cloud service market,
because S1 and S2 could be cloud servers which are provided by legitimate, well-known
companies (e.g., Amazon, Google, and Microsoft), collusion between any of them is highly
unlikely.

Our system goal is to protect the image data, the outsourced WGAN model details (e.g.,
weight matrix), and the outputs of the WGAN model from the cloud servers S1 and S2,
while defending against the adversarial examples which have a different distribution of the
training samples used by the classifier.

An image owner splits an image I into two additive shares Ia and Ib, w.r.t Ia = I + Ib,
which are then stored onto S1 and S2 respectively. In addition, S2 holds the pre-trained
WGAN model to reduce adversarial noise of the uploaded images. The WGAN model
is outsourced by the model provider after the model parameters (e.g., weight matrix) are
encrypted with sk. S2 carries out the homomorphic operations of the linear layers of the
WGAN model. S1 keeps its private key sk and runs Yao’s GC protocols with S2 to perform
the secure computations of the non-linear layers. S1 and S2 holds a share, {G(z∗)a, G(z∗)b},
of the final outputs of the WGAN model, which can be treated as the inputs of the classifier
(e.g., VGG-16) for the image I .

4.2 The functionalities of sec-defense-Gan

As is illustrated in Fig. 4, the primary functionalities of our system consists two components:
Secure SecGan and SecMinimizer

31225Multimedia Tools and Applications (2022) 81:31219–31243

Fig. 4 The functionalities of Sec-Defense-Gan. Given an addition share image (Ia, Ib), servers S1 and S2
securely execute image reconstruction using L steps of Gradient Descent, in which SecGan executes the
generator forward propagation algorithm and the SecMinimizer executes the updating of Z. The output of
Sec-Defense-Gan is the reconstructed image Irec

– {G(z)a,G(z)b} ← SecGan([z]). Given encrypted vectors [z], it returns a pair of set
G(z)a,G(z)b by cooperatively performing the secure evaluation of a GAN model,
where G(z)a is held by S1 and G(z)b is kept by S2. For the outputs of the WGAN G(z)

that have a distribution similar to that of I , we have G(z) = G(z)a − G(z)b.
– z∗ ← SecMinimizer({G(z)a, G(z)b}, {Ia, Ib}). Given a pair of set {G(z)a,G(z)b}

from SecGan([z]) and the additive share form {Ia, Ib} of image I , it finds z∗ by
cooperatively running a fixed number L of Gradient Descent (GD) steps.

5 The implementation of SecGAN

The generative model used in GANs includes four layers (Fig. 5).

– FC(m) is a fully-connected layer with m outputs. Its input is a 128-dimensional vector
z.

– DeConv(m, k ×k, s) is deconvolution with m feature maps, filter size k ×k, and stride
s.

– Relu is the Rectified Linear Unit activation function.
– Sigmod is the Smooth activation function.

The layers used in GANs can be classified into two types: linear layers (e.g., FC and
DeConv) and non-linear layers (e.g., Relu and Sigmod). There are many works that
proposed 2-PC secure computation of non-linear layer functions [20]. As for the linear lay-
ers, Homomorphic based solutions can achieve good performance. However, considering

31226 Multimedia Tools and Applications (2022) 81:31219–31243

Fig. 5 The generative model in GANs consists of an FC layer, three Relu layers, three De-convolution layers
and a Sigmod layer

the de-convolution, a practical solution is needed to achieve both the security and effi-
ciency. On the other hand, we try to convert operations in both linear layers (e.g., FC

and DeConv) into the same homomorphic operations to deal with linear layers in one
shot.

The de-convolution in the Deconv layer is the transpose of convolution, which returns a
feature map that has the same shape as the training samples. We can implement it by utiliz-
ing Lattice-based PAHE scheme. There are two methods to implement the de-convolution,
i.e., direction convolution and matrix-vector product. The remaining problem is to pad the
inputs for direct convolution, or convert the Deconv to matrix multiplication and addition
operations. For ease of description, the Deconv layer can be defined by 5 parameters: s is
used to denote the stride, k = kw = kh denotes the filter size (width and height), i = iw = ih
denotes the input size, pa = paw = pah denotes the padding size and o = ow = oh

denotes the output size.
The direct convolution can be thought of as dilating the input (by adding s − 1 zeros

between adjacent input elements), padding it with k− 1 zeros, and cross-correlating it with
the filter. For convolution, we use half (SAME) padding (padding size pa′ is �k/2�) and unit
strides (s′ is 1). That is, the output size is the same with the input size of the convolution.
For s = 1, k = 2n+1, n ∈ N, we have pa = pa′, its output size is o = i−(k−1)−2p = i.
Taking Fig. 6(a) as an example, let the input size i = 5, k = 3 and s = 1, we have pa = 1,
the output size is o = i = 5, i.e, we only need to pad the original input (blue entries) with
zeros (white entries). As for s > 1, the padding size is pa = k − pa′ − 1 and the output
size is o = s · (i − 1) + k − 2 · pa′. Taking Fig. 6(b) as another example, let the input size
i = 3, k = 3, s = 2 and pa = 1, the output size is o = 5, it is equivalent to convolute 3× 3
filter over a 3 × 3 input (with s − 1 = 1 zero inserted between inputs) padded with a 1 × 1
border of zeros using unit strides.

The disadvantage of direct convolution is its inefficiency. It will increase addition and
multiplication operations in the ciphertext when padding zeros to the input. Let’s consider
convolution process again, for any input size i = ih = iw , filter size k = kh = kw, stride

31227Multimedia Tools and Applications (2022) 81:31219–31243

(a)

(b)

Fig. 6 Examples of direct convolution. (a) denotes the size invariant convolution. (b) denotes the convolution
with different in/output shapes

s, and output size o = oh = ow. We have o = i+2p−k
s

+ 1, pah = s × (oh − 1) + kh − ih
and paw = s × (ow − 1) + kw − iw , where pah and paw is the height and the width of the
padding size respectively. Hence, we have

patop = pah/2

padown = pah − patop

palef t = paw/2

paright = paw − palef t (4)

where patop, padown, palef t and paright are the number of elements required in the four
direction of the input matrix: up, down, left and right.

We use matrix-vector product to represent convolution process. First, we initialize a (oh∗
ow) × (ih ∗ iw) sparse matrix C with zeros. Then, we use a matrix with the same shape as
the input, where each value is set to the index number of the input elements, i.e., 1, 2, ...,
ih × iw . We pad the matrix with zeros according to the (4). We slide the filter with stride s

on the padded matrix. Each time that the filter slides, we record the kh × kw filter window.
Finally, we fill each value of the filter into the element with non-zero index number in the
corresponding sparse matrix C.

Consider a de-convolution with i = 4, k = 3 and s = 3, according to the (4), we have
patop = 1, padown = 1, palef t = 1 and paright = 1. Let’s take the first slide as an example
in Fig. 7, we record the 3 × 3 filter window, and the non-zero positions are 1, 2, 5 and 6.
Hence, we fill each value of the filter (i.e., w1,1, w1,2, w2,1 and w2,2) into them. Similarly,

31228 Multimedia Tools and Applications (2022) 81:31219–31243

Fig. 7 An example of matrix-vector product with the sparse matrix. Filter size is 3 × 3, sparse matrix size is
4 × 16, and we set i = 4, k = 3, s = 3

we can fill the non-zero positions in the sparse matrix by sliding the filter window with
stride s = 3.

Single channel de-convolution. The sparse matrix C can be derived directly. Figure 8
shows an example of single channel de-convolution that is parameterized as i = 2, k = 2,
s = 1, pa = 0 and o = 3. Considering the corresponding forward convolution process,
its input size is i′ = 3 and its output size is o′ = 2. The sparse matrix C is of size 4 × 9.
We flatten the input X into a 4-dimensional vector. Hence, the de-convolution can be easily
computed by linear operation that is the matrix-vector product Y = CT X, where CT is the
transpose of C.

Multiple channel de-convolution. The sparse matrix C can be derived by matrix splic-
ing. We use co × ci × kh × kw denotes the filter size and ci × ih × iw denotes the input.
Figure 9 shows an example of multiple channel de-convolution with ci = 3, co = 2, i = 2,
k = 2, s = 1 and pa = 0. The input X is of size 3× 2× 2, the filter is of size 2× 3× 2× 2
and the output Y is of size 2 × 3 × 3. Considering the corresponding forward convolution
process, its input is of size 2 × 3 × 3 and its output is of size 3 × 2 × 2. Its filter is of size
3 × 2 × 2 × 2 which is obtained by reversing input and output channels of de-convolution,
i.e., co × ci × kh × kw → ci × co × kh × kw . For each output channel corresponding to
ci filters, we have ci sparse matrices. We horizontally join these ci sparse matrices and ver-
tically join the co output channels. Hence, we obtain the sparse matrix C with the size of
no × ni = (co ∗ ow ∗ oh) × (ci ∗ iw ∗ ih) = 18 × 12. Finally, we perform linear operation
Y = CT X that takes the 3× 2× 2 size of input matrix flattened as a 12-dimensional vector
and produces an 18-dimensional vector. The latter is reshaped as the 2×3×3 size of output
matrix.

Fig. 8 An example of single channel de-convolution

31229Multimedia Tools and Applications (2022) 81:31219–31243

Fig. 9 An example of multiple channel de-convolution

Secure De-convolution with large inputs. The lattice-based PAHE scheme can be used
to evaluate matrix-vector product over ciphertext, such as the libraries provided by Gazelle
[20]. In the PAHE scheme, the input is packed into a single n-slots ciphertext so that it allows
us better utilization of SIMD and control the noise growth. However, the packing methods
require that the input size ni and the output size no are smaller than n. Let’s consider the
noise in the ciphertext. In the lattice-based PAHE scheme, the noise is bounded by the coef-
ficients of the sampled error polynomials, the plaintext size and the number of operations
(addition and multiplication). We refer readers to [1] for details. In our framework, the size
of a plaintext is a single machine word (64 bits). The coefficients of the sampled error poly-
nomials are pre-defined constants. The number of homomorphic operations is determined
by the size of the sparse matrix C, which is no × ni . The matrix-vector product results can
be correctly decrypted if η < q/(2p) where η is the overall at most noise growth. We have
η = ni · p · √

n · ηc where ηc is the noise growth of the element wise multiplication between
C and X. Hence, the maximum size of the input, ni , should satisfy ni < q/(2 ·p2 ·√n ·ηc).
In practice, when ni is larger than n, a straight forward way is to divide the input into small
blocks and pack each of them [20, 23]. Figure 10(a) shows that the original input X and C

are split into n × n sized blocks that are to be packed independently. However, the homo-
morphic additions of these blocks are required to achieve the final matrix-vector products.
When ni becomes particularly large, there will be too many number of blocks involved in
the homomorphic additions. Consequently, the noise level introduced by these operations
may cause the decryption failed.

Since we have two semi-honest servers (S1 and S2) in our framework, the sever S1 keeps
the private key sk and decrypts the encrypted intermediate results before performing non-
linear layer computations based on 2-PC secure computation. S2 performs homomorphic
evaluation of the linear layers. Obviously, the success of decryption will clear the noise
introduced by homomorphic operations. Therefore, we combine PAHE and 2-PC plaintext
addition techniques. The idea is to divide the input (X and C) into blocks to perform homo-
morphic matrix-vector product separately on S2. After adding a uniform random vector �r to
each intermediate ciphertext homomorphically, S2 sends them to S1, the latter performs the

31230 Multimedia Tools and Applications (2022) 81:31219–31243

Fig. 10 Examples of divide and conquer technique

decryption. After the additions in plaintext, S1 encrypts the results with sk and sends it back
to S2. S2 gets the matrix-vector product results by subtracting �r homomorphically. In this
way, it can accept large number of inputs and correctly perform homomorphic matrix-vector
product (homomorphic additions and multiplications) with low memory consumption (see
Section 7). Figure 10(b) takes a group of column block summation as an example, S2 obtains
ciphertext [yij] by performing homomorphic matrix-vector product on each block [Cij] and
[Xj], where i = 1, ..., no/n and j = 1, ..., ni/n. Then, S2 gets [yij + �rj] = [yij] + �rj
by homomorphically adding uniform random vector �rj to [yij], which are sent to S1. The
latter decrypts them with the private key sk to get the plaintexts yij + �rj . After which, the
summation of the plaintexts

∑ni/n

j=1 yij + �rj is encrypted again by S1, denotes as [yi + �r],
and sent back to S2. S2 removes the random vector �r by homomorphically subtracting
[yi] = [yi + �r] − �r to get the correct ciphertexts of the matrix-vector product results, i.e.,
[yi], where i = 1, 2, ...no/n.

6 The implementation of SecMinimizer

The implementation of SecMinimizer includes three components:

– (Z0a, Z0b) ← GenRandV ec(R, d). It returns a pair of d-dimensional vector sets
(Z0a = {z(i)

0a }Ri=1, Z0b = {z(i)
0b }Ri=1, each of which has R vectors. S1 (S2) gener-

ates the d-dimensional vector set Z0a (Z0b) with Gaussian distribution, respectively.

31231Multimedia Tools and Applications (2022) 81:31219–31243

Then, S1 encrypts Z0a and sends the ciphertext [Z0a] to S2. The latter gets the ini-
tial vector set Z0 in the encrypted form by performing homomorphic addition, i.e.,
[Z0] = [{z(i)

0a }Ri=1] + [{z(i)
0b }Ri=1]. [Z0] is used as the initial input of SecGan.

– (Z∗
a , Z∗

b) ← Minimizer(Xa, Xb). Given the secret shares Xa and Xb of input X, it
returns the secret shares Z∗

a and Z∗
b of the optimal vector set Z∗, where z∗

i = z∗
ai + z∗

bi ,
z∗
i ∈ Z∗, z∗

ai ∈ Z∗
a , z∗

bi ∈ Z∗
b . Z∗

a is held by S1 and Z∗
b is kept by S2. We use mean

squared error (MSE) L(X,Z) = ||G(Z) − X||22 as the loss function, where G(Z) =
G(Z)a + G(Z)b is the outputs of the WGAN by invoking the function SecGan. We
use L iterations of gradient descent (GD) to find the optimal vector set Z∗.

– (X′
a,X

′
b) ← Reconstruction(Z∗

a , Z∗
b). Given the optimal vector set Z∗

a holding by
S1, and Z∗

b holding by S2, S1 and S2 cooperatively invoke argmin and the function
SecGan to obtain the final reconstructed input X′, which is split into two shares X′

a

holding by S1 and X′
b holding by S2.

The overall view of the secure minimizer is illustrated in Algorithm 1. It includes secure
gradient computation and secure gradient update based on the garbled circuits.

6.1 Secure gradient computation: approximation

For the sake of simplicity, we assume R = 1. Given the loss function L(X, z) = ||G(z) −
X||22, a straight forward computation is using the numerical differentiation to approximate
the true value of the gradient by choosing a small h, such as symmetric difference quotient.
Hence, the finite difference approximation of the gradient for the vector z is:

∇zL(z, X)|z=z(i) = lim
h→0

L(z(0), ..., z(i) + h, ...) − L(z(0), ..., z(i) − h, ...)

2h
(5)

where z is a vector of size 128, and X is a given input of the size ih × iw .

31232 Multimedia Tools and Applications (2022) 81:31219–31243

Note that S1 and S2 keep the additive shares G(z)a , G(z)b of the SecGan outputs and
Xa , Xb of the inputs respectively, hence, we have

L(z, X) = ||G(z) − X||22
= ||(G(z)a + G(z)b) − (Xa + Xb)||22
= ||(G(z)a − Xa) + (G(z)b − Xb)||22 (6)

The gradient descent update is computed recursively as follows:

z1 = z0 + η × ∇zL(z, I)|z=z0

z2 = z1 + η × ∇zL(z, I)|z=z1

...

zL = zL−1 + η × ∇zL(z, I)|z=zL−1 (7)

Let’s take first iteration as an example. Recall that S1 keeps the additive share z0a and
∇zL(z,X)a |z=z0 , S2 keeps another share z0b

and ∇zL(z, X)b|z=z0 , we have

z1 = (z0a − z0b
) + η × (∇zL(z, X)a |z=z0 − ∇zL(z, X)b|z=z0)

= (z0a + η × ∇zL(z, X)a |z=z0) − (z0b
+ η × ∇zL(z, X)b|z=z0) (8)

Accordingly, we let S1 and S2 independently compute x = G(z)a −Xa and y = G(z)b −
Xb. Then, they compute the loss function L(z, X) further the gradient ∇zL(z, X) using
2-PC secure computation based on the garbled circuits. The inputs of the circuits include
x from S1, y and randomly generated number r from S2. The outputs are r denoted as
∇zL(z,X)b to S2 and ∇zL(z, X) + r denoted as ∇zL(z,X)a to S1. According to the (8),
S1 and S2 can independently compute x = z0a + η × ∇zL(z, X)a |z=z0 and y = z0b

+
η × ∇zL(z, X)b|z=z0 . Similarly, the gradient can be updated by using garbled circuits. The
garbled circuits can be implemented using sum, multiplication and division gates.

6.2 Secure gradient computation: chain rule

The numerical differentiation requires repeatedly invoking the function SecGan to get the
outputs. For example, when z is a 128-dimensional vector, it needs call 256 times of the
function SecGan to compute ∇zL(z, X)|z=z(i) . Obviously, its efficiency is very low. On the
other hand, its accuracy is dependent on h and the Linear property of the function SecGan,
which may cause the results unacceptable.

We can find derivative of the composite functions by the chain rule. The derivative of
the composition equals the derivative of the outside function with respect to the inside,
and times the derivative of the inside function. The number of functions that make up the
composition determines how many differentiation steps are necessary.

Let’s consider the loss function again, we have

∇zL(z, X) = ∂L(z, X)

∂G(z)
· ∂G(z)

∂z
(9)

where L(z, X) is a scalar and G(z) can be treated as a matrix. Hence, ∂L(z,x)
∂G(z)

=
Mean(2 × (G(z) − X)) has the same shape as G(z). For the ∂G(z)

∂z
, we can compute ∂G(z)

∂z

by the chain rule. Taking the WGAN network as an example in Fig. 5, we use of to denote
the output of the FC layer, oi

r denotes the output of the i-th ReLU layer, oi
d denotes the

output of the i-th DeConv layer and oσ denotes the output of the Sigmod layer. Let’s say

31233Multimedia Tools and Applications (2022) 81:31219–31243

we have the composite function G(z) = oσ (o3d(o3r (o
2
d(o2r (o

1
d(o1r (of (z)))))))). We give the

mathematical derivation as follows:

∂G(z)

∂z
= ∂oσ

∂o3d

· ∂o3d

∂o3r
◦ ∂o3r

∂o2d

· ∂o2d

∂o2r
◦ ∂o2r

∂o1d

· ∂o1d

∂o1r
◦ ∂o1r

∂of

· ∂of

∂z
(10)

where ’·’ denotes the matrix-vector product and ’◦’ denotes component-wise product
between vectors. If we can compute the gradient of each layer independently, we can convert
the (10) to the two type of operations. Consequently, we can utilize the PAHE scheme
instead of 2-PC secure computation to securely calculate the gradient of the WGAN, which
will make our implementation simpler and more efficient.

Let’s take a close look at each layer:

– Derivative of FC and DeConv layer. The FC layer performs the matrix-vector prod-
uct. Hence, given the inputs x, we have

∂of

∂x
= W , where W is the weight matrix used

by FC layer. Recall that we can transform the de-convolution into matrix-vector prod-

uct as well, similarly, given the inputs x, we have
∂oi

d

∂x
= Ci , where Ci is the sparse

matrix used in the i-th DeConv layer.
– Derivative of ReLU layer. Given the inputs x, the outputs of the i-th Relu layer is

defined as oi
r (x) = max(0, x). The derivative of the i-th ReLU layer is:

oi′
r (x) =

{
1, if x > 0
0, otherwise

Hence, we have ∂oi
r

∂x
= Ri , where Ri has the same shape of the input x.

– Derivative of Sigmod layer. Given the inputs x, the outputs of the Sigmod layer is
defined as oσ (x) = 1

1+e−x . The derivative of the Sigmod layer is

o′
σ (x) = oσ (x)(1 − oσ (x))

Hence, we have ∂oσ

∂x
= o′

σ (x), which is a vector with the same shape of the inputs x.

Based on the gradient calculations above, the (10) can be transformed to:

∇zL(z, x) = L ◦ G · C3 ◦ R3 · C2 ◦ R2 · C1 ◦ R1 · W (11)

where G denotes ∂oσ

∂o3d
, L is ∂L(z,x)

∂G(z)
.

Now, we can use chain rule to calculate the gradient of the WGAN by only invoking
the function SecGan once. It is very fortunate that the operations involved in (11) are
matrix-vector product and component-wise vector product. Therefore, we can use the PAHE
scheme combined with the 2-PC plaintext addition to implement the secure gradient com-
putation, which is the same as the secure de-convolution computation technique proposed
in Section 5. Considering the last layer of the example in Fig. 5, [L] is an encrypted vector
of size 784×1. Hence, [L]◦ [G] is an encrypted vector of size 784×1. [C3] is an encrypted
matrix of size 12544 × 784, so [L] ◦ [G] · [C3] is an encrypted vector of size 12544 × 1.
This process continues for each layer, and we finally get the encrypted vector, [∇zL(z, x)],
of size 128×1. In Section 7, we will further show the detailed information and performance
of each layer.

31234 Multimedia Tools and Applications (2022) 81:31219–31243

7 Experimental evaluation

Dataset Mnist. We select the Mnist dataset of handwritten digits to measure the feasibility
of our framework. The MNIST dataset has a training set of 60,000 examples and a test set
of 10,000 examples. The training set is made up of numbers written by 250 different people
and the value of each label is an integer between 0 and 9. Each image consists of 28 × 28
pixels, each pixel is represented by a gray value. We randomly selected 5,000 images in our
experiments. They are grouped by content into 10 categories, each of which contains 500
images and is corresponding to an integer number of 0 to 9. In the experiments, we selected
distinct collections of images, containing 500, 1,000, 1,500,..., and 5,000 distinct images,
respectively.

Dataset coral. The publicly available Coral database has been used for the CBIR task. The
database consists of 1,000 test images which are divided into 10 different classes. Each
class consists of 100 images. The classes are created based on the different objects available
in the images. The classes are African peoples, elephant, beach, rose, building, horse, bus,
mountain, dinosaur, and food dish.

The attacking model. We take Fast Gradient Sign Method (FGSM) under black-box
attack model to evaluate the effectiveness of our framework. Given an image x and its
corresponding true label y, the FGSM under black-box attack sets the perturbation δ to:

δ = ε · sign(�xJ(x, y)). (12)

It has been shown that FGSM under black-box attack [15] is extremely fast rather than
optimal. It simply uses the sign of the gradient at every pixel to determine the direction with
which to change the corresponding pixel value.

The FGSM under black-box attack assumes that adversaries have no access to the neural
network parameters, neither do they have access to a large training dataset. The adver-
sary trains a substitute model using a very small dataset augmented by synthetic images.
Adversarial samples are then found by applying the FGSM method on the substitute model.

Evaluation metrics. We evaluate the performance of the implementation of the functions
SecGan and SecMinimizer respectively, which includes the time consumption (termed
as time cost), the memory space consumption (termed as memory cost), and the overall
communication overhead between the cloud servers S1 and S2 (termed as communication
cost). The communication cost refers to the size of the intermediate data in bytes exchanged
between the servers. The functions include online and offline phases. The online phase
begins with the cloud servers S1 and S2 sharing their inputs and the generation of random
vector z. Then, S1 and S2 execute the input reconstruction task by cooperatively running
L steps of GD. The offline phase includes the pre-process of the inputs and the circuits
garbling. The classification accuracy (termed as accuracy) with adversary samples is also
measured to show the correctness of our implementation.

The communication cost is measured with the tool NetHogs 0.8. Please note that we only
measured the time consumed by each server, and the communication delay is ignored.

Implementation details. Our framework needs a packed additive homomorphic encryp-
tion (PAHE) scheme and a two-party secure computation (2-PC) scheme. Parameters for
both schemes are selected for a 128-bit security level. The PAHE scheme was implemented

31235Multimedia Tools and Applications (2022) 81:31219–31243

Fig. 11 Performance of direct convolution v.s. the number of input channels

by using Gazelle, where the plaintext modulus p is set to 22 bits and the ciphertext modu-
lus q is chosen to be a 60-bit psuedo-Mersenne prime. The 2-PC scheme was implemented
by using Obliv-C. The circuits garbling phase is counted into the offline phase because its
independent of the users’ inputs.

7.1 Micro-benchmarks

Secure de-convolution benchmarks. We first benchmark the impact of the direct con-
volution on the secure de-convolution performance. Because we use the channel packing
technique, the input is packed and encrypted ci/cn ciphertexts and the output contains co/cn

ciphertexts, where cn represents the number of channels that fit in a single ciphertext. Hence,
we need co × ci × kh × kw × ih × iw SIMDAdd and SIMDScMult calls. We measured the
memory cost, time cost and communication cost under different number of input channels
and output channels, which are presented in Figs. 11 and 12, respectively. In our bench-
mark, for each channel, the input size is set to 4× 4, the output size is set to 8× 8, the filter
size is set to 5 × 5 and the stride is set to 2. Thus, we have cn = 32.

Secure matrix-vector product benchmarks. We further benchmark the impact of the
matrix-vector product on the secure de-convolution performance. The de-convolution oper-
ation is transformed into matrix-vector product by deriving the sparse matrix C with the
size of no ×ni = (co ∗ ow ∗ oh)× (ci ∗ iw ∗ ih). Hence, we need ni SIMDScMult and ni − 1
SIMDAdd calls. Obviously, the number of homomorphic operations is dropped compared
with the direct convolution. We used the same input parameters and measured the memory
cost, time cost and communication cost under different number of input channels and out-
put channels, which are presented in Figs. 13 and 14, respectively. Because we divide the
input into blocks to perform homomorphic matrix-vector product separately when the num-
ber of input channels is larger than 128, the communication cost increases. Compared with

Fig. 12 Performance of direct convolution v.s. the number of output channels

31236 Multimedia Tools and Applications (2022) 81:31219–31243

Fig. 13 Performance of matrix-vector product v.s. the number of input channels

the results presented in Figs. 11 and 12, both the time cost and thememory cost are dropped,
which shows that matrix-vector product is 30× faster than the direct convolution. It only
costs about 0.03 seconds when the number of the input channels is 256, while the direct
convolution consumes about 1.1 seconds.

7.2 The SecGan benchmarks

We report runtimes and network bandwidth for the secure evaluation of the generator in the
WGAN network. We compare the two de-convolution methods that are composed into the
evaluation. The results are shown in Table 1.

7.3 The SecMinimizer benchmarks

We benchmark the two methods that are used during the secure SGD computation in the
SecMinimizer. Table 2 shows the time cost and the communication cost of the two methods
for one gradient update. Because the numerical differentiation method needs repeatedly
calling the generator in the WGAN network, the time cost is very heavy. In shark contrast,
the chain rule method is 400× faster. The online time of the one gradient update in the
WGAN network is about 1.6 seconds.

7.4 The overall benchmarks

We compose the SecGan and SecMinimizer from the previous section and evaluate the
complete WGAN network over Mnist dataset. We set L = 1, R = 1. Table 3 compares
the runtimes and bandwidth of our method and that of Samangouei’s [27] in plaintext. Our

Fig. 14 Performance of matrix-vector product v.s. the number of output channels

31237Multimedia Tools and Applications (2022) 81:31219–31243

Table 1 The benchmarks of the SecGan for the WGAN network

Runtime (s) Communication (MB) Memory

offline online total offline online total (MB)

Direct 17.55 3.64 21.19 225.25 1 226.25 1468

convolution

Matrix 18.52 2.50 21.02 448 10 458 1539

vector product

secure solution is 150× slower than that over plaintext, which is about 34.2 seconds. Please
note that the online time is 5.3 seconds, which is about 20× slower than that over plaintext.

7.5 Correctness with adversary samples

Since our work focus on comparing the accuracy differences rather than the accuracy
between our method and Samangouei’s, the selection of NN network is not important. We
refer to the model structure of Samangouei [27] and choose model A {a four-layer convolu-
tional neural network with two Conv layers and two FC layers} as our classifier and model
B {a four-layer convolutional neural network with three Conv layers and one FC layer} as
our substitute network. When the original images are used to train the classifier and defense-
GAN is used, we refer to it as Defense-GAN-Ori. Under the Defense-GAN-Ori, we compare
Sec-Defense-Gan with defense-GAN proposed by Samangouei [27] under FGSM black-
box attacks as well as under no attack. Figure 15 shows the classification accuracy of the
classifiers using Sec-Defense-Gan with various number of iterations L (R = 10, ε = 0.3) on
the Mnist dataset. We use simple parameter discretization method in the experiments, i.e.,
we represent real numbers with a fixed precision of n decimal points by directly scale up
real numbers by 10n times and converting them into 64-bit integers. Obviously, the larger n

will lead to the better accuracy, but may cause result overflow when performing the homo-
morphic addition. Therefore, there is a certain loss of accuracy in the experiments even the
results show that our solution performs consistently well under the FGSM black-box attack.

7.6 Correctness evaluation of CBIR

In our experiment, we use Mnist and Coral dataset. The images of different classes are
divided into training and testing set. For the training of the classifier model, 80% images

Table 2 The benchmarks of SecMinimizer for one gradient update iteration

Runtime(s) Communication(MB) Memory

Offline Online Total Offline Online Total (MB)

Chain 11.369 1.648 13.017 452.155 8.75 460.905 1522

rule

Numerical 4492.8 640 5132.8 225.25 1 226.25 1468

differentiation

31238 Multimedia Tools and Applications (2022) 81:31219–31243

Table 3 the overall performance under Plaintext and Ciphertext

Runtime(s) Communication(MB) Memory(MB)

offline online total offline online total

Ciphertext 28.919 5.288 34.207 452.155 8.75 460.905 1522

Plaintext – – 0.279 – – – 3053.41

are used and 20% images are used as testing set denoted as T est Ori. A total of 800 and
200 images are used for training and testing respectively. In addition, we use FGSM algo-
rithm to generate the variant of testing set, called T est FGSM . We use our framework to
reconstruct T est FGSM , call T est Rec.

In the experiment, the two-layer CNN model is used. For the first layer of the CNN
model, 32 feature maps of 3 · · · 3 are used for convolution with an input image to derive
the features. After the convolution, 2 · · · 2 max pooling is used to reduce the feature size.
For the second layer, 16 feature maps of 3 · · · 3 are used for the convolution with the out-
put of the first layer to derive the features. After the convolution, 2 · · · 2 max pooling is
used to reduce the feature size. After the max pooling, flattening is used to convert fea-
ture maps into a single column vector, which will be passed to the neural network. The
performance of the CBIR can be measured by the precision rate. Precision Rate is defined
as the ratio of the total number of relevant images retrieved to the total number of images
retrieved:

Precision = Number of relevant images retrived

Total number of images retrived
(13)

Table 4 and 5 shows the classification precision of the CBIR onMnist and Coral datasets.

Fig. 15 Classification accuracy comparison of Model A using Defense-GAN with different L (R = 10)

31239Multimedia Tools and Applications (2022) 81:31219–31243

Table 4 Precision of CBIR on different datasets

Mnist

Mnist Test Ori Mnist Test FGSM Mnist Test Rec

Precision 94% 16% 92%

Finally, Fig. 16 shows the content-based image retrieval results on Mnist dataset where
the most relevant images have been successfully retrieved at top ranks. In the figure, the
first column is the provided query image. The remaining columns are the retrieved images
sorted according to their similarity (the Euclidean distance, see [23] for details) to the query
image.

8 Conclusions

In this paper, we design two secure de-convolution algorithms and two secure gradient com-
putation and update protocols to accomplish image reconstruction task. With these build
blocks, we propose and implement Sec-Defense-Gan and apply it to secure CBIR sys-
tem. Sec-Defense-Gan uses a judicious combination of PAHE scheme and garbled circuit
based two-party computation, both of which satisfy IND-CPA security, i.e., ciphertexts of
any two messages are computational indistinguishable. Sec-Defense-Gan guarantees the
input/output image data and GANs model details confidentiality while providing the abil-
ity to defense against adversarial image examples. The application of Sec-Defense-Gan to
CBIR over datasets shows that it can successfully retrieve similar images from the datasets
without leaking input image data, intermediate results and retrieved image data to the
cloud.

There are several ways in which Sec-Defense-Gan can be improved. First, PAHE scheme
supports SIMD operations over ciphertext domain, however, the time-consuming is still very
heavy because Deconv or FC layer has homomorphic operations quadratic in the input
size. It is a straightforward way to consider the sparsity of the weight matrix in the Deconv

or FC layer. The weight matrix can be ’compressed’ before it is packed and encrypted.
Another important direction is to focus more on specific adversarial image type rather than
general examples, which may reduce L iterations of gradient descent (GD) to find the opti-
mal vector set Z∗. More importantly, our work did not investigate theoretical bounds on the
information leakage of each function in our framework, which would remain as a topic of

Table 5 Precision of CBIR retrieved results on Coral dataset

Coral

Coral Test Ori Coral Test FGSM Coral Test Rec

Precision 94.5% 15% 91%

31240 Multimedia Tools and Applications (2022) 81:31219–31243

Fig. 16 Samples of retrieved similar images

future research. The last but not the least, it is necessary to design the secure training algo-
rithms of GANs model over ciphertext domain because of the confidentiality requirement
of image dataset.

Funding This work is supported by the National Key Research and Development Program of China (Grant
No. 2018YFB0804702).

Declarations

Conflict of Interests The authors declare no competing interests.

31241Multimedia Tools and Applications (2022) 81:31219–31243

References

1. Agrawal S, Freeman DM, Vaikuntanathan V (2011) Functional encryption for inner product predicates
from learning with errors. In: Lee DH, Wang X (eds) Advances in cryptology – ASIACRYPT 2011.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp 21–40

2. Bansal M, Kumar M, Kumar M (2021) 2d object recognition: a comparative analysis of sift, surf and orb
feature descriptors. Multimedia Tools and Applications 80(12):18839–18857

3. Bansal M, Kumar M, Kumar M, Kumar K (2021) An efficient technique for object recognition using
shi-tomasi corner detection algorithm. Soft Computing 25:4423–4432

4. Bansal M, Kumar M, Sachdeva M, Mittal A (2021) Transfer learning for image classification using
vgg19: Caltech-101 image data set. Journal of Ambient Intelligence and Humanized Computing

5. Brakerski Z, Vaikuntanathan V (Oct 2011) Efficient Fully Homomorphic Encryption from (Standard)
LWE. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp 97-106

6. Brakerski Z, Vaikuntanathan V (2011) Fully homomorphic encryption from ring-lwe and security for
key dependent messages. In: Proceedings of the 31st annual conference on advances in cryptology, ser.
CRYPTO’11. Springer-Verlag, Berlin, Heidelberg, pp 505–524

7. Chillotti I, Gama N, Georgieva M (2020) TFHE: Fast Fully Homomorphic Encryption Over the Torus. J
Cryptol 33:34–91

8. Chillotti I, Gama N, Georgieva M (2016) Faster fully homomorphic encryption: Bootstrapping in less
than 0.1 seconds. In: Cheon JH, Takagi T (eds) Advances in cryptology – ASIACRYPT 2016. Springer,
Berlin, Heidelberg, pp 3–33

9. Dowlin N, Gilad-Bachrach R, Laine K, Lauter K, Naehrig M, Wernsing J (Feb 2016) CryptoNets: apply-
ing neural networks to encrypted data with high throughput and accuracy. Microsoft Research, Tech.
Rep. MSR-TR-2016-3

10. Elgamal T (July 1985) A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory 31(4):469–

11. Ferreira B, Rodrigues J, Leit?o J, Domingos H (Sept 2015) Privacy-Preserving Content-Based Image
Retrieval in the Cloud. In: 2015 IEEE 34th Symposium on Reliable Distributed Systems (SRDS), pp 11–
20

12. Goldreich O (2004) Foundations of cryptography. Basic Applications, vol 2. Cambridge University
Press, New York

13. Goldwasser S, Micali S, Rackoff C (1989) The knowledge complexity of interactive proof systems.
SIAM J Comput 18(1):186–208

14. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y
(2014) Generative adversarial networks

15. Goodfellow I, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples.
arXiv:1412.6572

16. Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A (2017) Improved training of wasserstein
gans

17. Hastings M, Hemenway B, Noble D, Zdancewic S (May 2019) SoK: General Purpose Compilers for
Secure Multi-Party Computation. In: 2019 IEEE Symposium on Security and Privacy (SP), pp 1220–
1237

18. Hsu CY, Lu CS, Pei SC (2012) Image feature extraction in encrypted domain with privacy-preserving
sift. IEEE Transactions on Image Processing 21(11):4593–4607

19. Hu S, Wang Q, Wang J, Qin Z, Ren K (2016) Securing sift: privacy-preserving outsourcing computation
of feature extractions over encrypted image data. IEEE Transactions on Image Processing 25(7):3411-
3425

20. Juvekar C, Vaikuntanathan V, Chandrakasan A (2018) GAZELLE: A low latency framework for secure
neural network inference. In: 27th USENIX security symposium (USENIX security 18). Baltimore, MD:
USENIX Association, pp 1651-1669

21. Kumar A, Kumar M, Kaur A (2021) Face detection in still images under occlusion and non-uniform
illumination. Multimedia Tools and Applications, vol. 80

22. Li P, Li T, Yao Z-A, Tang C-M, Li J (Aug 2017) Privacy-preserving outsourcing of image feature
extraction in cloud computing. Soft Computing 21(15):4349–4359

23. Liu F, Wang Y, Wang F, Zhang Y, Lin J (2019) Intelligent and secure content-based image retrieval for
mobile users. IEEE Access 7:119209–119222

24. Mao Q, Wang L, Tsang IW (May 2017) A unified probabilistic framework for robust manifold learning
and embedding. Mach Learn 106(5):627–650

31242 Multimedia Tools and Applications (2022) 81:31219–31243

http://arxiv.org/abs/1412.6572

25. Nasr M, Shokri R, Houmansadr A (May 2019) Comprehensive Privacy Analysis of Deep Learning:
Passive and Active White-box Inference Attacks against Centralized and Federated Learning. In: 2019
IEEE Symposium on Security and Privacy (SP), pp 739–753

26. Paillier P (1999) Public-key cryptosystems based on composite degree residuosity classes. In: IN
ADVANCES IN CRYPTOLOGY - EUROCRYPT 1999. Springer-Verlag, pp 223–238

27. Samangouei P, Kabkab M, Chellappa R (2018) Defense-GAN: Protecting Classifiers Against Adversar-
ial Attacks Using Generative Models. ArXiv, 1805.06605. access date 2018.05.18

28. Singh S, Ahuja U, Kumar M, Kumar K, Sachdeva M (2021) Face mask detection using yolov3 and faster
r-cnn models: Covid-19 environment. Multimedia Tools and Applications, vol. 80

29. Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2013) Intriguing
properties of neural networks

30. Wang X, He K, Song C, Wang L, Hopcroft JE (2019) At-gan: An adversarial generator model for non-
constrained adversarial examples

31. Wang Z, Song M, Zhang Z, Song Y, Wang Q, Qi H (2019) Beyond inferring class representatives: User-
level privacy leakage from federated learning. In: IEEE INFOCOM 2019 - IEEE conference on computer
communications, pp 2512–2520

32. Zahur S, Evans D (2015) Obliv-C: A language for extensible data-oblivious computation. Cryptology
ePrint Archive, Report 2015/1153. https://eprint.iacr.org/2015/1153

33. Zheng P, Huang J (2013) An efficient image homomorphic encryption scheme with small ciphertext
expansion. In: Proceedings of the 21st ACM International conference on multimedia, ser. MM ’13. New
York, NY, USA: ACM, pp 803–812

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

31243Multimedia Tools and Applications (2022) 81:31219–31243

http://arxiv.org/abs/1805.06605
https://eprint.iacr.org/2015/1153

	Securing content-based image retrieval on the cloud using generative models
	Abstract
	Introduction
	Related work
	Preliminaries
	Generative adversarial networks (GANS)
	Defense-GAN algorithm
	Packed additively homomorphic encryption (PAHE)
	Secure 2-PC computation

	The secure GAN reconstruction framework
	Framework overview
	The functionalities of sec-defense-Gan

	The implementation of SecGAN
	The implementation of SecMinimizer
	Secure gradient computation: approximation
	Secure gradient computation: chain rule

	Experimental evaluation
	Dataset Mnist.
	Dataset coral.
	The attacking model.
	Evaluation metrics.
	Implementation details.

	Micro-benchmarks
	Secure de-convolution benchmarks.
	Secure matrix-vector product benchmarks.

	The SecGan benchmarks
	The SecMinimizer benchmarks
	The overall benchmarks
	Correctness with adversary samples
	Correctness evaluation of CBIR

	Conclusions
	References

