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Abstract
A two stage real-time hand gesture recognition system is presented. It combines a
machine learning trained detection step with a colour processing contour shape validation
step. The detection step is done with either Adaboost Cascades or Support Vector
Machines using HOG features. The system achieves a low false positive rate and a
sufficient true positive rate necessary for robust real-time performance. It performs well
compared to MobileNets a state of the art Neural Network for mobile real-time
applications.

Keywords SVM .Adaboost . HOG . Hand gesture recognition .MobileNets . Neural network .

Shape signature . Contour shape analysis . Adaptive colour segmentation

1 Introduction

Hand Gesture Recognition is an area of research which focuses on recognizing and tracking
human hands in video. The goal is to allow users to use their hands to issue powerful and
intuitive commands in user interfaces and to improve the state of human computer interaction.
People communicate quite a bit with their hands and use their hands to interact with the world.
The question of just how we communicate with our hands is of continued cognitive and
psychological research interest [3, 9, 10, 21, 37]. By solving the challenges that still surround
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hand gesture recognition human new avenues of creativity and human computer functionality
will be opened.

The first step to creating powerful user interfaces is to have robust and reliable hand gesture
recognition. We propose a system in this work that is designed to achieve two goals so that it
can be viable for user interfaces. These goals are:

& Real-time multi scale hand gesture recognition from a video input
& A very low false positive rate for gesture recognition.

Our proposed Gesture Recognition system, called Long Hands, is a 2 step system with each
step being designed to achieve one of these goals.

The first goal is achieved in the first step with machine learning. The system has 2 options
for multi scale detection, Adaboost Cascades with HOG Features, and Support Vector
Machines with HOG Features. A dataset of hand gestures was collected for the task. This
first step detects hand gestures anywhere in an input frame and provides hand position
estimates for the validation functions of step 2 of the system.

The second step achieves the second goal of a low false positive rate. To be a viable option
for a user interfaces the amount of objects that a gesture recognition system rejects becomes
much more important than the amount of gestures that it recognizes. While in the worst case a
delay in reading commands from a user may be acceptable, false positives triggering unwanted
commands is generally unacceptable. The second step uses colour processing to adaptively
segment the user’s hands. These segmentations are processed by shape analysis tests that
confirm the correct gestures and reject incorrect gestures or objects mistaken for gestures.

Our proposed gesture recognition system works using only 2D video input to recognize
hand gestures in real-time. Our work is of interest to biometry applications because it achieves
its high discrimination capabilities using hand models which take advantage of hand geometry.
Biometry has been extensively investigated in the context of facial recognition [13, 16, 81, 91],
and much success has been achieved with a focus on geometry. Hand gesture detection would
be a great complement to face recognition in both security and user interface applications
because identifying and tracking hands is a natural extension of facial recognition in order to
determine what a human subject is doing. Landmarking is a very important element of
biometric facial recognition systems and our gesture recognition and hand tracking system
makes significant efforts to have stable hand landmarks which would be an asset for a
biometric verification system. It is worth noting that computational load is a concern in facial
recognition systems and having computationally lightweight gesture recognition systems
makes using both in a single system much more feasible. In addition it can be seen that facial
recognition, having been a long studied problem, benefits from publically available datasets
that allow for comparative work. There is currently a lack of large publically available datasets
for the 2D video-only gesture recognition problem which makes comparisons between
research approaches very difficult. The work presented in this paper addresses the issues of
computational load and shows that real-time GPU-independent solutions to the 2D video-only
hand gesture recognition problem are possible. It also contributes datasets for the evaluation of
said systems to allow the research community to be able to do comparative work for 2D video
only static hand gesture recognition, and 2D video-only hand tracking.
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2 Related work

Hand Gesture Recognition is a diverse field of research that encompasses both static and
dynamic hand gestures as well as hand tracking. Whatever the goal of a hand gesture
recognition system may be, there are some common elements. Good features are needed to
either detect hands or recognize hand gestures, and some sort of classification is usually used.
Real-time performance is also desired for user interface applications.

2.1 Features

Colour is a prevalent feature in hand gesture recognition and tracking methods [2, 6, 11, 26,
28, 32, 38, 39, 57, 59, 71, 77, 78, 80, 86, 90, 95–97]. Colour features are often used to segment
hands. Skin detectors and colour histograms are both interchangeable terms for defining a
range of colours to use for segmentation which can be pre defined [2, 6, 26, 28, 32, 39, 59, 71,
77, 80, 86, 95–97] or defined adaptively [38, 57, 78, 90, 95] also adapts to the colour of user’s
hand by using k-means clustering and colour to partition input images. [11, 95] use simple
background subtraction to segment user’s hands which can be thought of as a difference of
colour.

Depth is also used because it is particularly useful for segmentation. The availability of cheap
depth sensors have made it a viable option [8, 75, 76, 95] use depth thresholding to segment the
nearest object in their methods. Depth is also used for 3D hand gesture recognition in [5, 8, 35, 54,
55, 70, 87]. [44] uses a pseudo depth image feature achieved with a CNN model.

Building upon the results of segmentation, geometric shape features offer a way to analyze
the contour shapes of hand gestures [6, 8, 11, 17–20, 29, 34, 38, 39, 57, 71–76, 95, 96] all use
geometric shape features. The works in [8, 11, 34, 39, 57, 72–74, 95, 96] all use some sort of
edge or contour based analysis. A variety of geometric tests are used in [8, 11, 57, 72–74, 95,
96], relating to convexity defect and contour curvature analysis, to find the location of the
palms and extended visible fingers of hands. A variety of logic and shape tests are used
directly on the contour boundaries and the convexity defects to determine fingertip and palm
locations in [8, 11, 95, 96], extended visible finger count in [11, 57, 95], gesture pose in [8, 11,
57, 72–74, 95] and [8, 57] are even able to label the extended fingers.

Another way to analyze hand contours is by using shape signatures as was done in [7, 17,
38, 75, 76]. The works in [17, 38, 75, 76] use 1 dimensional shape signatures for classification.
[81] proposes a slightly different shape signature related method for counting fingers. The
authors use binary skeletons of hand contours with a normalized radial function. A trained
mathematical model validates skeletal branches as fingers.

Another major category of features used in hand gesture recognition is vectorizable features
generated by mathematical transforms. Vectorizable features are needed in order to use many
powerful machine learning methods. HOG features are used in [28, 30, 47, 80, 82, 89, 98].
Research continues in improving HOG with [47] proposing a skin colour modification called
SCHOG for hand detection. Haar features have been used in the work of [26, 30, 48, 72–74].
The authors of [26, 48] have also proposed improvements to Haar features specific for their
applications. FREAK features are used for hand detection in [84]. [92] and [14] use SURF
features, and [14] also uses SIFT. Several methods use descriptors to vectorize segmented
contour shapes. Contour Sequences are used in [18–20, 29] and Hu moments are used in [29,
71, 90]. The work in [6] uses Fourier Descriptors, and [17] uses wavelet transform. These
descriptors take contours of variable length and encode the shape information into a vector of
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fixed length. The works presented in [75, 76] both use near convex decomposition to threshold
finger shapes in the contour shape signatures and these shapes are then indexed by size and
location to make fixed length shape signature vectors. Haralick features are used in [90] which
describe texture information.

Some other types of features have been proposed in various works for hand gesture recognition
and related applications. These can generally categorized into motion and statistics features. Motion
features are used in [2, 38, 71, 97] combine motion information with skin or skin and depth
segmentation [41] reduces the complexity of its motion path features by calculating the Log Path
Signature. The authors of [59, 84] use statistical features to find the areas of interest based on
saliency and entropy. Hough features are used in [51] for ASL recognition.

2.2 Classification methods

Classification methods are a common ground for Hand Gesture recognition systems. Whether
the application is static or dynamic gestures, or a related field, many works make use of similar
classification approaches.

The Adaboost Cascade of Weak Classifiers and Adaboost inspired methods have continued
to be used for detection and recognition tasks [15, 22, 30, 40, 48, 53, 72–74, 87, 89, 98].
Adaboost was used for hand detection in [75], with classification being handled by PCA.
Rautaray and Agrawal use Haar feature cascades in several works [72–74], for hand detection.
Nguyen et al. [53] also use a Haar Cascade as part of their gesture recognition system. [40] and
[89] both do complete gesture recognition using Adaboost [89] even proposes a multiclass
structure for Adaboost. Messom and Barczak [48] propose diagonal Haar features to make
Adaboost more robust to rotation. A number of other classifiers have been used with the
multistage idea. Cascades of Support Vector Machines have been used in [22, 98] and
Cascades of weak regressors have been used in [15, 87]. Both of the regressor works have
similar training methods as Adaboost, designed to minimize the error in each stage.

SVMs have become a popular classification method for Hand Gesture Recognition and
related fields. SVMs have been used for hand detection [22, 47, 56, 60, 98], and hand gesture
recognition [5, 6, 14, 19, 26, 42, 52, 59, 60, 71, 79, 80, 82, 92]. This list of works is not
exhaustive and many more examples exist in the literature. SVMs are simple to train and with
linearly separable data, or a good choice of a non-linear kernel, and they generally perform
well. The major drawback is that the more samples are used to train an SVM classifier the
larger the model tends to become. This is because the training is done by finding the optimal
margin of separation between the difficult to classify samples, which are referred to as Support
Vectors. Larger sample sizes produce more of these support vectors which increase the
computational cost of the model. Therefore keeping an SVM model small enough to run in
real-time can be a challenge. SVMs are highly adaptive to classification problems. Many
works use SVMs to recognize static hand gestures [6, 14, 19, 26, 42, 52, 53, 60, 79, 80, 82,
92], which means recognizes the shape features of a hand gesture in one instance or frame.
SVMs have likewise been adapted for dynamic hand gesture recognition [5, 71], which
requires the classification of motion features as well as shape features from a series of frames.
SVMs are also very versatile, in [79] an SVM is combined with a CNN feature extractor in
order to classify static hand gestures.

Neural Networks are a competing classification method which can automatically select
features to use for classification. This reduces the repeated trial and error associated with
feature selection. Neural networks require more data for training compared to other methods

40314 Multimedia Tools and Applications (2022) 81:40311–40342



but they have the advantage of keeping the model the same size even if the dataset increases.
Once a Neural Network has been trained with a large enough dataset such as ImageNet, it can
be reused and adapted for a different problems with a process called retraining. Neural
Networks have been used to solve hand gesture recognition problems [1, 4, 17, 18, 20,
23–25, 29, 31, 32, 36, 41, 44, 46, 49, 51, 54, 55, 86, 90, 93, 94, 96, 99]. Methods have been
proposed for both static [1, 17, 18, 20, 23, 29, 31, 32, 36, 44, 46, 51, 86, 90, 94, 96] and
dynamic hand gestures [4, 41, 49, 93, 99]. Neural Networks have also been used to fit 3D hand
models for hand pose estimation [54, 55] which can be used for either static or dynamic
gestures. Hand Detection is performed in [77] which achieves very good skin segmentation
with a neural network. [65] uses neural networks to both temporally segment and classify
dynamic hand gestures. Hwang and Lee [29] propose a system specifically for a user interface.
[94] classifies ego centric hand gestures and finds the locations of visible fingertips for UI
motivations. User interfaces are also a motivation for the work done in [1, 4, 17, 23, 31, 32, 36,
49, 54, 99]. [23] also uses ego centric data for their work. Koller et al. in [36] present how to
use weakly labeled data to train neural networks on larger datasets. This work achieves success
in static gesture recognition that is independent of large changes in orientation of the hand
poses, and it also uses a large set of hand pose classes. [99] and [4] analyze motion paths to
allow users to draw numbers and letters. Swipe gestures are recognized by the system of
Molchanov et al. [49]. [54, 55] actively fit 3D models to the user’s displayed hand. MobileNets
[25] is a very interesting and powerful recent neural network classifier capable of running in
real-time on mobile devices. It has been used for comparisons in a range of applications.
Computational savings compared to other networks are achieved with separable convolutions.
Mobilenets has been built to reduce computation load with real-time applications in mind,
making it an excellent candidate for comparisons with our work.

2.3 Relevance to proposed hand gesture recognition system

The Hand Gesture Recognition system presented in this work makes significant use of
Adaboost Cascades with HOG features and Support Vector Machines with HOG features to
achieve multiscale gesture detection. HOG Features are used because they are invariant to light
and scale transformations. A MobileNets Neural Network model is used for a comparison
system to evaluate the performance of the Gesture Recognition system to state of the art neural
network solutions for mobile vision applications.

The validations functions of the system use adaptive colour processing with 2D colour
histograms to segment the user’s skin from the background. Geometric shape features of
contours and their shape signatures are used to validate and invalidate gesture detections
generated by machine learning trained multiscale detectors.

Depth data is not used by our system. The system presented here is designed strictly for 2d
video. Depth could be an interesting direction for further research.

Some works which achieve good results use methods that only work for uniform back-
grounds [18, 27, 30, 42, 44, 51, 54, 57, 72–74, 78, 80, 82, 86]. Other methods work in
cluttered and complex backgrounds [1, 2, 4–6, 14, 19, 20, 22, 23, 26, 28, 29, 32, 36, 38–41,
43, 47, 53, 55, 56, 59, 70, 71, 75–77, 83–85, 89, 90, 92–95, 97, 98] which dramatically
increases their usability for user interfaces. The system presented in this paper was designed to
perform hand gesture recognition in complex backgrounds.

Consulting recent literature on hand gesture recognition and hand tracking reveals some
very interesting needs in the research community. Progress continues in 3D and depth
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depended methods such as [58] however these cannot be used in a strictly 2D video only
context. Datasets continue to be small as is the case for [1, 27, 31, 79, 90] or publically
unavailable [58] or the method is only designed for uniform backgrounds [31, 58]. [31] use
two datasets one that is small at only 960 samples per class, which the authors boost by data
augmentation, and the other is bigger with 2000 samples per class, however it is comprised of
near infrared images and is not applicable to a 2D video only context. The authors of [90] also
use data augmentation to enlarge a small dataset. The datasets of [31, 90] are significantly
smaller than the dataset presented in this paper for video only static hand gesture recognition
which has 8000–10,000 images per class. Furthermore if the authors of [4, 90] can make use of
data augmentation to boost their dataset size, similar benefits can also be gained from
augmenting the much larger dataset presented in this paper. Another interesting observation
is that known methods still continue to be used such as ELM [90], which is a simple type of
neural network, and SVM [79]. This demonstrates that there is still interest in using more well
known methods for solving hand gesture recognition problems likely due to simpler imple-
mentation and lighter computational load. Additionally the focus on CNN based methods
indicates that many newer works will be GPU dependent, which means that GPU independent
solutions that have lower computational load can make significant contributions to the research
field, and are also more attractive from a practical implementation perspective.

With regard to hand tracking similar research needs are demonstrated. [58, 88] are depth
dependent and thus not applicable in a 2D video only context. However [58] correct for motion
blur in their depth based tracking method with a gyroscope, which echoes the idea that
multiple collaborating tracking strategies achieve better results, an idea present in the tracking
extension of the Gesture Recognition system presented in this paper. [12, 45] present 2d hand
tracking approaches. [45] presents a Kernelized Correlation Filter and [12] uses a Lucas-
Kanade optical flow with YCrCb colourspace skin segmentation. Both however do not
provide datasets, with [12] preferring to use user test cases for evaluation. Mueller et al. [50]
present an interesting well performing method which fits a 3D hand model to 2D video. This
method has significant drawbacks because it requires 3D data to train and improve. Thus it is
fundamentally a 3D method that cannot work in a 2D vision only context because it relies on
3D data. Furthermore it is GPU dependent which will means increased hardware cost for
implementation compared to computationally lighter CPU only methods. Lastly Kapidis et al.
[33] is an interesting work for the different but related context of ego centric gesture
recognition. In the context of our system the user faces a camera and makes gestures. In
egocentric gesture recognition the user wears a camera and gestures are recognized from a user
point of view perspective. This work uses a large dataset which is publically available,
however the dataset is designed for a different use case context. Nevertheless this system
presents a great direction for future work. However the main thing of interest in this article is
that they use a combination of Kalman Filter and Hungarian algorithm for their tracker to
achieve performance comparable to neural networks by using only a fraction of the input for
model training. This demonstrates the research interest in computationally lighter solutions to
hand tracking problems. The tracking is done using detections produced by a CNN which
ultimately makes their system GPU dependent and thus computationally heavy. In light of the
need for datasets and computationally lighter solutions the gesture recognition system pre-
sented in this work with its hand tracking capabilities, and its datasets, represent important
contributions to the research field.
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3 Gesture recognition algorithm overview

The Gesture Recognition Algorithm detects hand gestures in real-time from a video, anywhere
in the video frame. There are two main steps. The first is a detection step, which uses machine
learning trained detectors to locate potential hand gestures. The second is the validation step,
which uses shape information to either validate or reject gesture detections (Fig. 1).

The detection step is done with either HOG Adaboost Cascades, or HOG SVMs. The
validation step is performed using both geometric contour shape analysis, and contour shape
signature analysis. A hand gesture that has been detected, and then validated, is said to have
been recognized by the system.

Fig. 1 Gesture Recognition System Flowchart
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3.1 Multiscale hand gesture detection with machine learning

Machine learning is used to provide an estimate of a hand gesture location (Fig. 2). These
detections are processed by the validation functions to filter out false positives and to keep true
positives. 2 types of multiscale detectors were considered: Adaboost cascades with HOG
features, and Support Vector Machines with HOG features.

3.2 Gestures used

There are 3 hand gestures used for the hand gesture recognition system. The gestures are
indicated in Fig. 3.

3.3 HOG feature

Two different configurations of the system were implemented, one using Adaboost detectors
and the second using SVM detectors. Both types of detectors used Histogram of Oriented
Gradient (HOG) features. The features catalogue the gradient changes and their orientation
within neighbourhoods of pixels. This creates different signatures from different areas in
images which can then be used for classification. HOG features were used because they are

Fig. 2 Example of Multiscale Detection using Machine Learning

Fig. 3 Gestures recognized by the system. Hand 5 (Left) Hand L (Center) Hand I (Right)
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light and scale transformation invariant when used with multiscale processing, which means
they are very useful for detections in complex backgrounds.

3.4 HOG Cascade configuration

One Adaboost HOG Cascade detector was trained for each of the 3 gestures (Fig. 4). The
detectors were trained with raw large backgrounds as negative images, and cropped
gestures images as positives. Each detector was trained on positive images of its gesture
vs. the negative images. The training dataset was 7813 images for hand 5, 6401 for hand
L, 6958 for hand I, and 35,483 negative backgrounds. This corresponded to 80% of the
overall dataset.

3.5 HOG SVM configuration

The training of the HOG SVMs was done with positive hand gesture samples vs. negative
patches. The negative frames were not used whole, and were instead broken down into 160 ×
160 non overlapping patches. The 35,483 negative backgrounds generated 247,148 negative
background patches. Because the goal was to create a real-time detector, linear kernels were
used. The entire training dataset was randomly sampled to train a 1500 hand 5 positive versus
4000 background patch negative SVM configuration. This configuration performed well in
online testing. This is henceforth referred to as the small sample 1.5:4 ratio configuration.
Using the entire training dataset resulted in larger and slower models that did not perform well.

Using multiple SVM stages was investigated as an option to increase the performance of
the system. The idea is to use several SVM detectors in sequence to refine the detections. 4
configurations were investigated, a 1 stage configuration, a 1 stage run twice, a 2 stage
configuration, and a 3 stage configuration.

The SVMs are run in sequence for each gesture (with the exception of the 1 stage
configuration) in the following manner (Fig. 5):

The initial detections of the 1st (lowest) stage are progressively filtered out by the higher
stages, and only the best detections are kept for the validation step.

The idea behind using multiple SVMs was that if the negative patch samples were partition
by the magnitude of their HOG, a better partitioning of the vector space can be achieved with
multiple linear SVMs as opposed to one. Multiple linear decision boundaries can be combined
to make better decision surfaces in the vector space. The dimensionality of the problem, and
thus the SVM model, can be reduced according to [22]. The other benefit is that more of the
dataset of negative patches can be used for the training, thus creating a more robust detector.

Fig. 4 HOG Adaboost Gesture Detection Architecture
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Reducing the dimension increases the speed of the system because reduced dimension means
fewer support vectors.

Experimentally it was determined that even a 1 stage SVM produces better detection results
with a 2nd pass from its 1 stage SVM. This second pass serves to eliminate some or sometimes
all of the false detections, and leaves fewer and better detections to be processed by the
validation step (Fig. 6).

In order to make multiple stages the negative patches were partitioned according to
magnitude of the HOG gradient. All the trained SVMs used the same 1500 randomly selected
hand 5 patches and 4000 randomly selected negative patches from each gradient partition
used. A performance comparison was done with the test dataset of all 3 Multistage SVM
configurations being evaluated and the 1 stage SVM configuration (Fig. 7 and Table 1).

As stages are added there is a trade off. The false positive rate decreases as you add a
second stage, and so does the true positive rate. It was decided that the 2 stage configuration
would be used because it had the lowest false positive rate. Qualitatively, it also had better

Fig. 5 HOG SVM Gesture Detection Architecture

Fig. 6 The left image shows the detections after 1 pass with a 1 stage HOG SVM. The right image shows the
detections that remain after a 2nd pass with the same 1 stage HOG SVM
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localized bounding boxes than the other configurations. These boxes crop the visible hand
gestures more closely. The results of the 3 stage configuration indicate that using more than 2
stages means a significant drop in performance. The 2 stage SVM configuration was selected
as the best multistage configuration, and it was used to build the 3 gesture SVM Gesture
Recognition system.

3.6 Detected gesture sampling

Each type of gesture detection has its own specific sampling pattern. The validation functions
are run using each sampling point. This validates true gesture detections and rejects false
detections (Fig. 8).

Fig. 7 Multistage SVM result graphs

Table 1 Multistage SVM results

Configuration Number Number of Stages True Positive Rate % False Positive Rate %

1 1 Stage System 31.47233202 0.145619286
2 1 Stage run 2x 29.0513834 0.129439366
3 2 Stage 26.33399209 0.072809643
4 3 Stage 17.93478261 0.080899604

Fig. 8 Example of Detection Boxes Sampling Patterns used for the Cascade(Left) and SVM(Right)
configuration
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3.7 Gesture validation

The gesture validation procedure is applied on each detection box. The procedure takes as
input sample points provided by a given detection box, and the video frame. The procedure
then segments out the user’s hands and the corresponding contours are evaluated to determine
if the shapes are correct for the detected hand gestures. The validation procedure uses the Open
Hand Model to validate hand 5 gesture. For the hand L and hand I gestures the extended
fingers are counted with the General Hand Model, and shape signature analysis. Hand L, and
Hand I gestures, must have 2, and 1 fingers, respectively.

4 Affects of using the validation functions

The affects of the validation functions have been tested using the test dataset. Here is a side by
side comparison of the Cascade and SVM configurations (Table 2).

The validation functions significantly reduce the false positive rate for all gestures. While
they also reduce the true positive rate, the low false positive rate is required for user interface
applications. The true positive rates are none the less high enough to make the systems
responsive in real-time online operation.

4.1 Shape extraction with CrCb histogram: Unimodal histogram filtering and back
projection

The validation procedure is run at every sample point provided by a detection box using the
input frame (Fig. 9).

At a given sample point the 30 × 30 area around it is used to calculate its colour signature.
The YCrCb colour space is used because it is very good at isolating light intensity from colour
information. The CrCb 2 dimensional histogram, otherwise known as the colour signature of
the area is found. This colour signature will be later used to segment the frame. The CrCb 2d
histogram or colour signature is a 2d binary map that records whether or not a given Cr and Cb
colour value pair is present in the sampling area defined by the ROI.

The 1d histograms of the Cr and Cb channels are also found, and from this the
Cummulative Distribution Functions (CDFs) are calculated. The CDFs of the Cr and Cb

Table 2 Affects of using the validation functions (TP = True Positive, FP = False Positive)

Without
Validation
Functions

With Validation
Functions Best
Configuration

With Validation Functions
without Unimodal Filtering

With Validation
Functions with Unimodal
Filtering

Cascade System Cascade System Cascade System Cascade System
Gesture % TP % FP % TP % FP % TP % FP % TP % FP
hand 5 84.68 2.217 31.67 0.0485 22.18 0.04045 31.67 0.04854
hand L 92.49 49.41 25.58 0.8943 26.43 1.718 25.58 0.8943
hand I 98.88 46.4 16.19 1.008 15.91 0.9846 10.5 0.6988

SVM System SVM System SVM System SVM System
Gesture % TP % FP % TP % FP % TP % FP % TP % FP
hand 5 97.13 81.89 26.33 0.07281 18.083 0.0809 26.33 0.07281
hand L 91.82 81.13 20.51 1.828 19.6 3.946 20.51 1.828
hand I 100 96.26 10.11 2.898 12.62 3.954 10.11 2.898
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channels are evaluated to determine if the colour distribution that their histograms represent is
unimodal. If both 1d Cr and Cb histograms are unimodal then the 2d colour signature is
augmented with unimodal histogram filtering (Fig. 10).

Unimodal histogram filtering is done by taking the limits of the positive regions of increase
in the CDFs and using these limits to draw a box on the 2d colour signature. This adds colour
pairs to the colour signature which are highly similar to the ones already registered, which will
improve segmentation. If unimodality is not detected for both Cr and Cb histograms then the
original 2d colour signature is used instead.

Then the back projection is performed. The CrCb colour signature is used as a look up table
in order to segment the input image.

Figure 11 demonstrates back projection. The CrCb signature that is generated from the
colour information in the ROI, indicated in green on the left image, is used as a look-up table to
segment that same image. Every pixel is evaluated of the input image, and if its Cr and Cb
values correspond to a CrCb value pair present in the colour signature that pixel is labeled as 1
in the output back projection, and as 0 otherwise.

Fig. 9 Sampling zone example. Zone outlined in green

Fig. 10 Left: Original 2d CrCb histogram. Right: With box filling in missing colour information for the colour
mode
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Unimodal filtering fixes problem areas in the segmentation. The colour sampling often
under represents the range of colours of a user’s hand. This results in missing areas of the
user’s hand contour such as fingers or pieces of the palm. This is due to colour pairs being
missing in the CrCb colour signature (Fig. 12).

The problem areas are highlighted in red in the above back projection. The areas which
likely contain useful colour information in the histogram are also highlighted. Unimodal
filtering fills in this missing colour information, and it only triggers when the colours sampled
form a unimodal distribution. Using the filtering produces results like this (Fig. 13):

The first back projection is the original, and the second back projection is done after
unimodal histogram filtering is applied.

4.2 Affects of unimodal histogram filtering

The system was tested to determine how unimodal histogram filtering affects the performance
of the validation functions. The affects of Unimodal filtering are summarized in Table 2.

Unimodal filtering has an overall positive effect on both systems, particularly the hand 5
gesture. It also has positive effects on the hand L gesture, with only a negligible drop in true
positive rate for the Cascade configuration being the only trade off for an improved false
positive rate. The hand I gesture performance is improved for the SVM configuration, but only
negligibly improved for the Cascade configuration. The negligible improvement in false
positive rate comes at over a 5% drop in true positive rate. Because the false positive rate
was already quite low for the hand I gesture the unimodal filtering wasn’t used for the hand I
validation function of the Cascade system. It was only used for the hand 5 and hand L gestures

Fig. 11 Performing Backprojection

Fig. 12 CrCb histogram (left) and corresponding back projection (right)
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for the HOG Cascade Gesture Recognition system. It was used for all 3 gestures in the SVM
configuration.

4.3 The open hand model

The Open Hand model is a series of geometric tests that are applied to a given contour shape to
determine if it is a hand 5 gesture. It takes a sample point and a back projection as input and
outputs whether a contour was found that has a valid hand 5 gesture shape. The hand 5 gesture
is an open hand with 5 visible extend fingers. Due to space constraints the details of the model
equations will be omitted here. However the full equations of the model are available at [67].

In order to be valid a given contour must contain the sample point. The first step is to find
the contour’s palm. The biggest convexity defect is found and then the model discards all other
convexity defects whose depth is less than 6.6% of the biggest defect depth. A potential hand 5
shape must have between 3 and 8 kept convexity defects. The inner points of these defects are
used to find a minimum enclosing circle which is declared to be the palm (Fig. 14).

Fig. 13 Improved backprojection with unimodal filtering

Fig. 14 Open Hand Model Palm Location
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The tip points are found by averaging the start and end points of adjacent convexity defects.
The angles of each tip point to its corresponding inner points are also measured (Fig. 15).

The model then goes through each pair of adjacent convexity defects and their correspond-
ing tip points to determine if the contour protrusion that they represent corresponds to an
extended finger (Fig. 16).

The finger basepoint is halfway between two adjacent inner points. The shifted finger base
point is the point on the palm circle which has the same angle to the palm center as the finger
base point. The knuckle point is halfway between the tip point and the shifted finger base
point.

All of the relationships that are presented are evaluated with the model equations to
determine if a given tip point represents a valid extended visible finger. This enforces the
angle and proportion limits of the model.

Once the valid finger points of a contour have been found the number of consecutive finger
points are found. Consecutive finger points are adjacent valid finger points that form an angle
between themselves and their intermediate inner point of 45 degrees of less. A contour shape is
declared to be a hand 5 shape if it has either 4 or 5 valid finger points or at least 3 consecutive
finger points. These conditions are designed to ensure quick recognition in the presence of
noise. If a contour shape is found to be a hand 5 shape then the open hand model returns true.

4.4 The general hand model

The general hand contour model is a series of geometric tests that is used for validating the
hand L and hand I gestures. The model takes a sample point and a back projection as input and
outputs the visible extended finger count of a valid hand contour if one is found. Due to space
constraints the details of the model equations will be omitted here. The full models equations
are available at [67].

Fig. 15 Open Hand Model Finger Processing (1)
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A valid hand contour must contain the sample point. A valid contour must also be at least
120 points in size. (Our system runs on 640 × 480 frames). If no valid contour is found then
the model terminates evaluation. The convexity defects of the contour are filtered in the same
way as in the open hand model but defects with defect depths of less than 10.0% of the biggest
defect depth are discarded. Any number of kept convexity defects is valid.

In the general hand model the palm is determined more precisely. The initial inner points
are filtered to find a better localized palm. This overcomes the effects of forearms and biceps
on the hand contours. The inner points of the kept convexity defects are used to find a minimal
enclosing circle. The radius of this circle is referred to as the current radius. The center is
referred to as the minimal enclosing circle center. The average of all the inner points is
calculated. Each inner point has a distance to the average of all inner points and a distance
to the center of the minimal enclosing circle (test distance). The general idea is that an inner
point is declared to be a palm point if it is closer to the average of all the inner points than the
center of the minimal enclosing circle (Fig. 17).

Palm points must also form a general circular shape. The angle between 3 consecutive palm
points must greater than 30° otherwise the palm point located at the angle is discarded. If there
are at least 5 palm points remaining than these palm points and their minimum enclosing circle
are the contour’s palm. Otherwise the original inner points of the kept convexity defects are
used as the palm instead.

Next the generalized hand contour model determines if there are any visible extended
fingers. The model counts the number of extended fingers in a similar manner to the open hand
model. Further details of this will be omitted for brevity.

If the generalized hand model is successful in finding a valid contour, it will output the visible
extended finger count. It can also give the contour itself, as well as palm and fingertip locations.

Fig. 16 Open Hand Model Finger Processing (2)
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4.5 Shape signature analysis

Shape signature analysis is a secondary finger counting method used to count the extend
number of visible fingers. It verifies the number found with the general hand model. This
method takes as input the hand contour found by the general hand model, and outputs a finger
count.

The center of mass of the hand contour is found by using the distance transform. Then PCA is
used to find the principle axis. Then the maximum inscribed circle from the center of mass to the
hand contour is found (Fig. 18). Using the center of mass and the principle axis, the contour’s
shape signature is plotted. Distance from the center of mass is normalized by the radius.

A threshold of 1.5 is applied. Cuts are made when large vertically oriented convexity defects
are found in the thresholded finger contours. For a defect to be considered large it needs to have

Fig. 17 General Hand Model Palm Location (1)

Fig. 18 Separating finger contours
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a y-value difference that is equal or greater than 70% of the largest y-value difference of the
corresponding contour from which it was extracted. A cut is then made from the convexity
defect’s inner depth point to separate the contour. This allows finger contours that are still
connected to be separated. The resulting finger contours are counted, and this result is compared
to the number of fingers a given hand gesturemust have, and the number of fingers found by the
general hand model. If all three values match, the hand gesture is declared valid, otherwise it is
invalid. Further details regarding shape signature analysis can be found at [67].

5 Results

5.1 Gesture recognition demonstration

The Gesture Recognition system was implemented with both a HOG Cascade detection step,
and a HOG SVM detection step. Here are some recognition result images of the Cascade
configuration system (Fig. 19).

Here are some gesture recognition results of the Gesture Recognition system with SVM
detectors (Fig. 20). The images show the filtering of the bounding boxes in the two stage system.

Fig. 19 Examples of Gesture Recognition results achieved with HOG Cascade System
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A video demonstration of the HOG Cascade GR system can be found here [64] and a
demonstration of the SVM system can be found here [65]. The systems are responsive enough
and discriminative enough for UI applications.

5.2 Gesture recognition testing

The HOG Cascade GR system and the HOG SVM GR system were tested using the test
dataset (Table 3). This dataset is comprised of 2024 hand 5 samples, 1638 hand L samples,
1791 hand I samples, and 8824 full frames of backgrounds. The gesture samples were cropped
images. Testing was done by randomly placing them over top of a background image. The true
positive and false positive results for HOG Cascade and HOG SVM Gesture Recognition
systems are presented in Table 4.

A rough estimate of the execution time of the experiment with the Cascade system was 1 h
44 min. The SVM system testing took approximately 4 h 50 min. It can be seen that the SVM
system is indeed more computationally costly, but its speed can be improved with
optimization.

Both of the configurations can run at real-time or close to real time. The Cascade
configuration can run at real-time, and the SVM configuration can be used as a real-time
system because it only has a minor delay in terms of responsiveness when it runs online with a
web camera. The runtime of the SVM system’s experiment on the testing dataset is roughly 3
times longer than the Cascade based system. Both of these systems can be used as real-time
systems, even though the SVM configuration has a delay in responsiveness. This has been
achieved on a Intel Core i7 laptop computer without a dedicated effort for optimization.

Fig. 20 Examples of Gesture Recognition results achieved with HOG SVM System
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Therefore it is a safe assumption that if optimized the SVM system would run in real-time as
well.

During testing on a few occasions a gesture would be validated using a contour of an
incorrect object, but because the gesture class would correspond to the correct gesture class of
the sample image, it would register as a true positive. All systems were tested using the same
testing method so the performance comparisons made are still valid, and this event did not
occur often. This is however something that can be improved in future work.

The criteria for success in this project is that a hand gesture should be detected after being
visibly presented in front of a camera for a couple of seconds, and the false positive rate should
be very low. These two criteria need to be achieved for a robust system. Narrowing recognition
time to approximately 1 s means that in a real-time system running at 30 frames per second, at
least 1 frame with a hand gesture out of 30 should be detected to meet this requirement. Which
corresponds to a true positive rate of 3.3%. This true positive rate has been achieved for each
gesture in each configuration. A low false positive rate is also important for a robust system.
While the Cascade system outperforms the SVM system, both systems achieve very low false
positive rates.

Table 3 Design-of-Experiment chart for Gesture Recognition system testing

Controlled Variables Uncontrolled Variables Process Measured Variables

- Class of images. 3 gesture
classes and 1 background
class are used.

- Which gesture class or
background class gets
displayed

- Conditions under which a
gesture image gets
displayed: Generic office
type background. No
faces or users present,
just the background and
the gesture.

- Where a gesture image is
placed onto the generic
background. This is done
with deterministic
random number
generation, and thus
replicable.

- When faces or people
appear in the background
class images. There are
many samples of the
background class which
contain faces or people,
this is not known or
controlled during
runtime.

1. Generate the sample. For
the gesture class samples
this means taking the
image and placing it
randomly onto the
generic office
background image. For
background class
samples no further
processing is needed.

2. Process the sample with
the evaluated gesture
recognition system.

3. Record the result and
compare to the known
label.

- What kind of detection is
produced, which gesture
class is detected if a
gesture is detected,
otherwise a given sample
is classified as a
background class sample.

Table 4 Confidence Threshold vs. Performance for MobileNets. The best false positive rate with a true positive
rate of 3.3% or greater is shown in bold

Confidence Threshold vs. Gesture Recognition Performance for MobileNets Comparison system

Threshold hand 5 TP % hand 5 FP % hand L TP % hand L FP % hand I TP % hand I FP %

0.95 95.50395 6.285899 62.02686 13.58751 94.8074 14.95156
0.96 94.66403 4.400938 57.57021 10.57504 93.8024 11.75163
0.97 93.92292 2.742497 52.1978 7.374284 92.9648 9.012228
0.98 92.53953 1.577542 43.58974 4.157841 90.3964 6.106082
0.99 89.08103 0.776636 29.9145 1.4984 85.0363 3.144354
0.999 71.39328 0.121349 2.197802 0.007845 47.2362 0.317612
0.9995 62.3024 0.0485 0.671551 0 34.618 0.1588
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5.3 Comparison to MobileNets

The performance of the system was compared to a popular neural network for mobile real-time
applications proposed by Google called MobileNets [25].

The a comparison system was made that used a MobileNets V2 model with 128 × 128
window size for multiclass gesture classification along with a simple sliding window approach.
Because the HOG SVM and the HOG Cascade detectors both use this approach this allows for
a very good comparison to be made. Testing of the MobileNets system was done using the
same test dataset in the same manner as the Cascade and SVM systems (Table 4).

The MobileNets model was trained with all of the hand 5, hand L, and hand I samples of
the training dataset which is 7813, 6401, and 6958, respectively. It was also trained with
10,896 randomly selected negative patches of the approximately 250,000 negative background
patches generated from the negative backgrounds of the training dataset. This was done in
order to achieve approximately a 1.5:2 ratio with the hand 5 samples. This way some class
balance can be achieved, while still benefiting from the large quantity of negative background
images in the dataset.

The results of the MobileNets system are presented in Table 4 under MobileNets 0.99 Best
Global Threshold System. The execution time of the MobileNets system on the test dataset was
roughly 90 h. The experiment was run on the same Intel Core i7 laptop computer as the other
systems. The machine has a Nvidia GTX950M graphics card which has a 5.0 CUDA compute
compatibility. The MobileNets model outputs a confidence threshold that a certain evaluated
image sample is of a given class. The confidence threshold is an important parameter that
affects the performance of the system. A comparison was made of the performance using
different confidence thresholds (Fig. 21).

0.99 was deemed to be the best confidence threshold. It achieved a low false positive rate
while maintaining high recognition performance. Increasing the threshold beyond 0.99 saw a
dramatic decrease in true positive rate particularly for the hand L gesture.

The results of all three systems can be seen in the following comparison table. MobileNets
is compared to both systems using the same false positive rate as each gesture of the Cascade
and SVM systems. A corresponding confidence threshold necessary for MobileNets to achieve
this performance is shown as well (Table 5).

The Cascade and SVM Gesture recognition systems both achieve a generally better
performance for false positive rate than the best global confidence threshold MobileNets
system. Both systems outperform the global threshold MobileNets system with lower false

Fig. 21 MobileNets Comparison System True Positive and False Positive result graphs. The MobileNets
Comparison system has an mAP of 0.748
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positive rates for hand 5 and hand I gestures. The HOG Cascade system even beats
MobileNets for the hand L gesture, while the SVM system trails by 0.3%. In addition in order
to achieve the same false positive rate as the Cascade system the MobileNets system must use
a confidence threshold of 0.9995 which reduces the true positive rate of the hand L gesture
bellow the required 3.3% for a real-time system. If different confidence thresholds were used
for each gesture, the MobileNets system beats the Cascade system in terms of Hand 5 and
Hand I performance, but it is not be able to best the Hand L gesture performance. Linear
Interpolation reveals that in order to match the false positive rate of the hand L gesture the
MobileNets system must have a confidence threshold of 0.993647 which achieves a lower true
positive rate of 18.68% than the 25.58% achieved by the HOG Cascade Gesture Recognition
system.

A major aspect to note is that the run time of the MobileNets system is significantly greater
than that of the HOG Cascade and HOG SVM systems while using the same simple sliding
window detection strategy. This highlights the importance of using a proposal generator in
order to make a viable real-time system with a MobileNets neural network.

Low false positive rates were achieved with both systems for all 3 gestures. These rates can
be achieved with high performing CNNs only when using very high confidence thresholds.
Furthermore true positive rates were achieved with both systems that are significantly higher
than the 3.3% required in order to have responsiveness in real-time contexts. The Cascade

Table 5 Comparison table for Cascade and SVM systems to MobileNets

Cascade
System

MobileNets Best Individual Thresholds
System

MobileNets 0.99 Best Global
Threshold System

Gesture % TP % FP % TP % FP Confidence Threshold
Necessary

% TP % FP

hand 5 31.67 0.04854 62.3 0.04854 0.9995 89.08 0.7766
hand L 25.58 0.8943 18.68 0.8943 0.9936 29.91 1.498
hand I 16.19 1.008 56.47 1.008 0.9968 85.04 3.144
mean

Precision
82.41 87.08 82.09

mean Recall 24.48 45.82 68.01
mean

Accuracy
89.92 92.77 94.62

SVM System MobileNets Best Individual Thresholds
System

MobileNets 0.99 Best Global
Threshold System

Gesture % TP % FP % TP % FP Confidence Threshold
Necessary

% TP % FP

hand 5 26.33 0.07281 65.33 0.07281 0.9993 89.08 0.7766
hand L 20.51 1.828 31.61 1.828 0.9888 29.91 1.498
hand I 10.11 2.898 81.74 2.898 0.9908 85.04 3.144
mean

Precision
63.51 82.78 82.09

mean Recall 21.69 59.56 68.01
mean

Accuracy
89.73 93.61 94.62

Cascade System SVM System MobileNets
System

Approximate total runtime on test dataset 1 h 44 min 4 h 50 min 94 h 4 min
Approximate average runtime per frame 434 ms 1210 ms 23,541 ms
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system is able to beat MobileNets outright in some cases. A well performing system is achieved
for the real-time context at a fraction of the computational cost of MobileNets. Both Cascade
and SVM configurations require much less computation time to processes the test dataset.

To summarize, the SVM gesture recognition system is a very close contender to .99
threshold MobileNets in terms of performance as a real-time system because of its low false
positive rates. The Adaboost Cascade system beats the .99 threshold MobileNets system
outright. Using separate confidence thresholds would allow MobileNets to outperform the
Cascade system for Hand 5 and Hand I gesture recognition but not for Hand L. In addition
using MobileNets requires a proposal generation architecture in order to run as a real-time
system, which would also perform well so long as the necessary architecture is in place.
However both Cascade and SVM systems are computationally much lighter than MobileNets
which means that there is trade-off between speed and classification performance.

5.4 Usability as a UI using hand tracking

The Gesture Recognition system in the Cascade configuration has been successfully combined
with hand tracking (Fig. 22). The system is used to initialize a hand tracking algorithm that is
based on the general hand model [66]. The hand tracking algorithm can also operate on its own
from fixed location initialization [61].

Hand tracking is initiated using the hand 5 gesture and proceeds to track the hand in
subsequent frames until it can no longer locate the hand. Segmentation of the input frame is
done with the same back projection technique as for the gesture recognition using the retained
colour signature. The tracking algorithm uses two collaborative tracking strategies. Tracking of
the hand is done by analyzing the contours with the General Hand Model and performing a
model sensitive nearest neighbour search between successive frames. Tracking of the finger-
tips is done using template matching. The fingertip template trackers are guided by the contour
based tracking which delimits smaller search regions for the trackers which allows the 2-
strategy tracking algorithm to run in real-time. The template tracking in turn provides stable
fingertip tracking, more stable that what the contour tracking can provide. The stable fingertip
tracking allows the algorithm to be used to make responsive UI. Demonstrations of how the
hand tracking algorithm can be used for UI applications can be found at [62], which is a Paint
application for Android, and at [63], which is a controller for an FPS video game called Halo:
Combat Evolved.

5.5 Hand tracking testing

The Gesture Recognition system with Hand Tracking was tested using a challenging dataset of
2D videos where users presented a hand 5 gesture for 20–30 s before displaying a sequence of
extended visible fingers (Table 6). The users were free to move anywhere they wished
provided that they did not occlude their faces with their hands, and the hand remained in the
frame while presenting the sequence. They were also free to present the specified finger counts
in any manner that they wished. The videos were taken in indoor laboratory settings with
complex backgrounds. The dataset was annotated frame by frame with the user’s hand
location, if present, being outlined with a bounding box, and the number of visible extended
fingers was recorded.

Performance was measured by the algorithm’s abilities to track the hand within the
bounding box and by the ability of the contour tracking and the template tracking to count
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the correct number of extended fingers. The system is not given any initial location on which
to commence tracking, and must rely on its recognition capabilities to find the initial hand
location. This evaluates unconstrained tracking performance (Table 7).

The Gesture Recognition with Hand Tracking system achieved good tracking results in a
challenging unconstrained setting achieving an 89% success rate. Instances where tracking
was not successful could be due to tracking failing during a given video and it taking some
time to re-locate the hand and continue tracking, or due to the response to the initial hand
registration and tracking being delayed due to difficulty of recognition in a complex environ-
ment, or due to the algorithm tracking the wrong object and the tracking target was outside the

Fig. 22 Example of operation of GR with Hand Tracking system

Multimedia Tools and Applications (2022) 81:40311–40342 40335



area of the known target as per the frame by frame annotation. 89% percent is never the less a
very good result for unconstrained tracking in a complex environment. The finger counting
success rate of the two tracking strategies may seem low, however it must be remembered that

Table 6 Design-of-Experiment chart for Gesture Recognition and Hand Tracking testing

Controlled/Known Variables Uncontrolled Variables Process Measured Variables

- Whether or not a hand is
present in a given frame.

- How many fingers are
displayed if a hand is
present in a frame.

- Where a hand is if it is present
in a frame.

- The general script of the
videos: 30 s of the hand-5
gesture displayed anywhere
on the screen, followed by a
sequence of displayed ex-
tended fingers for each user.
The user can move their
hand freely provided that
the motion is smooth and
the hand doesn’t occlude
with the user’s face.

- Whether the user shows their
face in a given frame.

- Whether or not there are other
people in the background.
Other people are present in
the background in some
instances in the dataset.

1. Load a given video
from the dataset.

2. Load a given frame
from the video

3. Process the frame
with the Hand
Gesture Recognition
and Hand Tracking
system.

4. Record if a tracked
hand was found
within the known
location bounding
box.

5. Record how many
extended fingers
were found.

6. Repeat steps 2–5 for
all frames of the
video in consecutive
order.

7. Repeat the process
for all videos of the
dataset.

- If a hand is
successfully
tracked in the
correct location
within a frame.

- If the correct
number of
extended fingers
were detected.

Table 7 Performance of the Gesture Recognition and Hand Tracking System

Video
Number

Successful Hand
Tracking

Successful Finger Counting with
Contour Tracking

Successful Finger Counting with
Template Tracking

1 0.9663 0.7243 0.6753
2 0.7527 0.6081 0.5194
3 0.9880 0.7954 0.5797
4 0.9777 0.7984 0.6706
5 0.9835 0.7102 0.5741
6 0.9753 0.8571 0.8519
7 0.9819 0.7418 0.6698
8 0.9795 0.7855 0.6188
9 0.9949 0.7237 0.6822
10 0.7417 0.4466 0.3883
11 0.4583 0.3031 0.3360
12 0.8824 0.7093 0.5824
13 0.9020 0.6544 0.7389
14 0.8874 0.6941 0.6558
15 0.9531 0.7685 0.6960
16 0.9500 0.4406 0.3828
17 0.7718 0.6328 0.6025
18 0.8003 0.3494 0.4138
19 0.9777 0.6610 0.6918
Average 0.8908 0.6529 0.5963
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noise in the contour boundary can add false fingers or eliminate fingers from the count which
in turn leads to a false result for a given frame. The remaining fingertips can still be useful for
issuing UI commands. Although noise reduction is an excellent area for future work, this
tracking system still achieves excellent results which enable UI applications.

The affect of motion blur in the user’s hand on the initial registration of the hand was also
investigated. The experiment was run a second time with the system only becoming active
after 15 frames of the hand 5 gesture had been present, with the assumption that the user’s
hand would be relatively stationary at this point and blur would be minimal. As it can be seen
in the following table this had the affect of minor improvement across all three testing criteria
which demonstrates that motion blur is an important consideration in the constrained context
of 2D video only Gesture Recognition and Hand Tracking (Table 8).

The resulting video [66] shows how the Gesture Recognition system can initiate and
recover the hand tracking and how this tracking is robust and real-time. The system runs in
real-time on a CPU without a dedicated optimization effort. The hand tracking algorithm has
also been used in a variety of applications including [62, 63]. The combined Hand Gesture
Recognition and Tracking system demonstrates the usability of the algorithm for UI, bringing
robust hand gesture recognition and tracking in a 2D video only real-time setting.

5.6 Datasets

The complete dataset used for training and testing the Gesture Recognition component of the
system is available at [68]. It contains 5 gesture classes with 8000–10,000 samples per class.
This allows for comparison between methods requiring large datasets and those which only
require small datasets. Because there are currently no large publicly available datasets for 2d
vision only hand gesture recognition this will be an excellent opportunity for comparison
work. Existing datasets of gestures for 2d vision are often too small [19, 20, 32, 36, 60, 92],
publically unavailable [6, 22, 23, 26, 47, 56, 89, 95, 98], or are only designed for hand
detection and not gesture recognition [77]. The datasets in [77] lack pose annotations for
different classes and cannot be used without further annotation.

The dataset used for testing the hand tracking component of the extended system is
available at [69]. This dataset has 19 annotated videos from 5 different users. The dataset
corresponds to roughly 20,000 sequentially annotated frames indicating the general location of
a user’s hand and the amount of visible extended fingertips. This dataset will be a welcome
addition to the research community for comparative work, especially since there are very few
such datasets available for the context of hand tracking in 2D video.

Table 8 Performance of the Gesture Recognition and Hand Tracking System

Experiment Description Successful
Hand
Tracking

Successful Finger
Counting with Contour
Tracking

Successful Finger
Counting with
Template Tracking

1 GR with Hand Tracking System 0.8908 0.6529 0.5963
2 GR with Hand Tracking System

after 15 frames of hand-5
gesture

0.9001 0.6637 0.6144
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6 Conclusion

A real-time static hand gesture recognition systemwas presented for user interface applications.
The system achieves great low positive results comparable to high performing CNNs, with true
positive results that are more than sufficient for use in live real-time applications. The system
achieves these results at a fraction of the computational cost of high performing CNNs in a CPU
only 2D video context without depending on GPU-acceleration. The system was extended to
include robust hand tracking and a variety of prototype user interface applications are presented
to prove the usability of the system as a UI. We believe this system is an important milestone in
2D video only static hand gesture recognition and tracking for low cost hardware. The proven
UI applications demonstrate its practicality for user control input, especially with low cost
hardware, which can be investigated in future work. Furthermore the two datasets that were
produced represent a major contribution to the state of the art in an area that has thus far had a
lack of publically available datasets and comparative testing methods. The publically available
datasets will allow for comparative work to be done for 2D video only static hand gesture
recognition and hand tracking thus enabling further progress and innovation in the research
area. Future work can involve improving the true positive rate for even more responsiveness,
adding more gestures to the system, and exploring new applications with hand tracking.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s11042-022-12870-8.
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