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Abstract
We propose a novel video sampling scheme for human action recognition in videos, using
Gaussian Weighing Function. Traditionally in deep learning-based human activity recogni-
tion approaches, either a few random frames or every kth frame of the video is considered
for training the 3D CNN, where k is a small positive integer, like 4, 5, or 6. This kind of sam-
pling reduces the volume of the input data, which speeds-up the training network and also
avoids overfitting to some extent, thus enhancing the performance of the 3D CNNmodel. In
the proposed video sampling technique, consecutive k frames of a video are aggregated into
a single frame by computing a Gaussian-weighted summation of the k frames. The resulting
frame preserves the information in a better way than the conventional approaches and exper-
imentally shown to perform better. In this paper, a 3-Dimensional deep CNN is proposed to
extract the spatio-temporal features and follows Long Short-Term Memory (LSTM) to rec-
ognize human actions. The proposed 3D CNN architecture is capable of handling the videos
where the camera is placed at a distance from the performer. Experiments are performed
with KTH, WEIZMANN, and CASIA-B Human Activity and Gait datasets, whereby it is
shown to outperform state-of-the-art deep learning based techniques. We achieve 95.78%,
95.27%, and 95.27% over the KTH, WEIZMANN, and CASIA-B human action and gait
recognition datasets, respectively.
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1 Introduction and related works

Human action recognition in videos has been an active area of research, gaining the atten-
tion of Computer Vision and Machine Learning researchers during the last decade due
to its potential applications in various domains, including intelligent video surveillance
systems, viz., Human-Computer Interaction (HCI), robotics, elderly and child monitoring
systems and several other real-world applications. However, recognizing human actions in
the real world remains a challenging task due to several challenges involved in real-life
videos, including cluttered backgrounds, viewpoint variations, occlusions, varying lighting
conditions and many more.

This paper proposes a technique for human activity recognition in videos, where the
videos are captured by a camera placed at a distance from the performer.

The approaches for recognizing human actions from videos, found in the literature, can
be broadly classified into two categories [61]. The first, make use of motion-related features
(low, mid, and high level) for human action recognition [11, 29]. The other set of approaches
experiment to learn a proper representation of the spatio-temporal features during action
using deep neural networks [3, 48, 52, 56].

1.1 Human Action Recognition using hand-crafted features

Handcrafted features played a key role in various approaches for activity recognition [39].
Very recently, Ramya et al. [43] proposed a human action recognition method using dis-
tance transform and entropy features. Semantic features ease to identify similar activities
that vary visually but have common semantics. Semantic features during an action contain
human body parts (posture and poselet), background, motion and other features incorpo-
rating human perceptual knowledge about the activities. A study by Ziaeefard et al. [61]
examined human action recognition approaches using semantic features. Malgireddy et
al. [34] proposed a hierarchical Bayesian model which interconnects low-level features in
videos with postures, motion patterns, and categories of activities.

Very recently, Nazir et al. [39] proposed a Bag of Expression (BOE) framework for
activity recognition. The most common handcrafted feature, used for action recognition,
is optical flow [6, 36, 38, 55]. Chaudhry et al. [6] introduced the concept of Histogram
of Oriented Optical Flow (HOOF) for action recognition, where the optical flow direction
is divided into octants. Mukherjee et al. [38] proposed Gradient-Weighted Optical Flow
(GWOF) to limit the effect of camera shaking, where the optical flow of every frame is
multiplied by the image gradient. Wang et al. [55] introduced another approach to reduce
the camera shaking effect, called Warped Optical Flow (WOF), where gradient is computed
on the optical flow matrix. In [36], the effect of background clutter is reduced by multiply-
ing Weighted Optical Flow (WOF) features with the image gradients. Optical flow based
approaches help in dissecting the motion, but gives too much unnecessary information such
as, motion information at all the background pixels, which reduces the efficacy of the action
recognition system in many cases.

Spatio Temporal Interest Points (STIP) introduced in [28], identifies spatio-temporal
interest points based on the extension of Harris Corner Detection approach [17] towards
the temporal domain. Several researchers have shown interest to recognize human actions
with the help of some other variants of spatio-temporal features like Motion- Scale Invariant
Feature Transform (MoSIFT) [7] and sparse features [11]. A study on STIP based human
activity recognition methods is published by Dawn et al. [9]. However, such spatio-temporal
features are unable to handle the videos taken in real-world which suffers from background
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clutter and camera shake. Buddubariki et al. [5] combined the benefits of GWOF and STIP
features by calculating GWOF on the STIP points. In [1], combination of 3-dimensional
SIFT and HOOF features are used along with support vector machine (SVM) for classifying
human actions.

1.2 Human action recognition using deep neural networks

Recently, deep learning based models are gaining the interest of researchers for recognizing
human actions [3, 13, 19, 23, 48, 54]. Jaouedi et al. [19] developed a hybrid deep learn-
ing framework for human action recognition. Initially, they have extracted and detected
the motion information using Gaussian Mixture Model [51] and Kalman filter. Later,
Gated Recurrent Neural Networks (GRNN) [8] utilize these features to perform human
action recognition. Han et al. [10] developed human action recognition framework called
RegFrame for classifying the simple human actions. Taylor et al. [53] proposed a multi-stage
network, where in a Convolutional Restricted Boltzmann Machine (ConvRBM) retrieves
motion-related information from each pair of successive frames at the initial layer. In [48],
a two-stream convolutional network is proposed that comprises spatial-stream ConvNet
and temporal-stream ConvNet. Ji et al. [21] introduced a 3-dimensional CNN architecture
for action recognition, where a 3 dimensional convolutions are used to extract the spatio-
temporal features. Tran et al. [54] enhanced 3D CNN model by applying Fisher vector
encoding scheme on the learned features. Karpathy et al. [23] proposed a deep neural net-
work for spatio-temporal resolutions: high and low resolutions, then merged them to train
the CNN.

Kar et al. [22] proposed a technique for temporal frame pooling in a video for human
activity recognition. The Action Matching Network (AMN) is proposed to solve more chal-
lenging open-set action recognition problem [58]. A survey by Herath et al. [18] discusses
both engineered and deep learning based human action recognition techniques.

Deep neural networks have been employed to solve another similar problem called
Person re-identification [40–42]. To mention a few, Ning et al. [42] proposed a feature
selection model that combines both global and local fine-grained features to perform person
re-identification. A 3D face alignment algorithm is developed in [40] using Encoder-
Decoder Network (EDNet) which uses feature enhancement and feature fusion to enable
the information transfer between encoder and decoder.

In the literature of human action recognition, researchers have used either the fully
observed video or a portion of the video to train the deep neural networks. Training the mod-
els using a portion of the video will take less amount of training time compared to training
the model using entire video. However, considering a portion of the video (considering 9
frames from the entire video as in [3] and 7 frames as in [21]) results in information loss.
Srivastava et al. [50] used multi layer LSTM network to learn the representations of video
sequences. Video object segmentation is performed through Episodic Graph Memory Net-
works (EGMN) [32] in which an episodic memory network is used to represent frames as
nodes and the cross-frame correlation as edges. Lu et al. [33] proposed a network termed
CO-attention Siamese Network (COSNet), to solve the zero-shot video object segmenta-
tion. Recently, Bilen et al. [4] introduced dynamic image, a very compact representation of
video used for analyzing the video with CNNs. However, dynamic images eventually dilute
the importance of spatial information during action. The proposed sampling technique for
video frames preserves both spatial and temporal information together.

”How many video frames are required to perform human action recognition ?” is well
explored research problem in the literature [45]. For example, in [45], authors have claimed
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that 1-7 frames are sufficient for basic human action recognition. Recently, Sarfraz et al.
[44] proposed a temporally-weighted hierarchical clustering algorithm to group the frames
that are semantically consistent for action segmentation task. Other methods such as [3] uti-
lizes every kth frame as input to the 3D CNN model to perfrom human activity recognition.
However, utilizing small amount of frames for action action recognition ignore the motion
information present in the video. To better utilize the motion information of a video, we
propose a sampling technique using Gaussian Weighting Function (GWF) that aggregates
multiple frames into a single frame. The proposed video sampling method better represents
the motion information compared to aggregating the frames by averaging the consecutive
frames, which can be observed in Fig. 4. Along with introducing a video sampling tech-
nique, we develop a two-stage human activity recognition framework motivated by the
method proposed in [3].

We propose a 3D CNN to learn spatio-temporal features and then apply LSTM to classify
human actions. The proposed method uses small sized filters throughout the 3D CNN archi-
tecture, which helps to learn minute information present in the videos, which can help in
recognizing the action of performers appearing very small in the video, due to the distance
of the camera.

Our contributions in this paper are three-folds.

1. A novel sampling technique is introduced to aggregate the entire video into a fewer
number of frames.

2. A 3-dimensional (3D) CNN architecture is proposed for better classification of human
actions in videos where the performer looks significantly small. The choice of smaller
filter size enables the proposed model to work well in such scenarios where the
performer looks small due to distance from the camera.

3. We conduct experiments over KTH, WEIZMANN, and CASIA-B human activity and
gait recognition datasets. We also experiment with the proposed deep learning model
using transfer learning technique, by transferring the knowledge learned from KTH
dataset to fine-tune over WEIZMANN dataset and vice versa.

The proposed pre-processing method is presented in Section 2. Section 3 illustrates the
proposed 3D CNN architecture. The experiments and results are described in Section 4.
Finally, Section 5 concludes and provides scope for future research.

2 Pre-processing using an information sampling approach

The primary objective of this pre-processing step is to reduce the amount of training time
and at the same time motion information should be given utmost importance. We propose a
novel sampling technique to aggregate a large number of frames into a fewer set of frames
using Gaussian Weighing Function (GWF), which minimizes the information loss. The
proposed video pre-processing scheme is shown in Fig. 1.

Considering the frames that are more informative (as a pre-processing step) and ignoring
the less important frames for human action recognition may be an effective way. However,
this step requires a method to decide whether the given frame is informative or not (which
may take considerable amount of time). A key-frame selection technique might help. How-
ever, key frame selection techniques are aimed to find out frames with more relevance.
The relevance of the frames are measured based on video content as a whole. This con-
tent based relevance measure generally does not work for action recognition tasks in which
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Fig. 1 The proposed pre-processing procedure using Gaussian Weighing Function. An entire video (col-
lection of all frames) is represented as an exhaustive non-overlapping sequence In, which further has
sub-sequences {I1, I2, · · · }. A single pre-processed frame (for example F1) is obtained by perform-
ing weighted summation of consecutive five frames (for instance f 1, f 2, f 3, f 4, and f 5 belongs to
sub-sequence I1) as shown in (2)

the performer covers a small portion of the entire frame [37]. In this paper, we introduce a
mechanism to aggregate the consecutive k frames into a single frame.

Gaussian Weighing Function (GWF) is used to aggregate the entire video into a fewer
number of frames. Let us consider {In}n∈N , an exhaustive non-overlapping sequence
(collection of all frames of a video), which is given by

{In} = {I1, I2, . . . , Ik, . . . }, (1)

where {Ik} is the kth sub-sequence of {In} and k < n. Mathematically, Gaussian Weighing
Function G, for a sub-sequence {Ik}, is given as follows:

G(Ik,W) =
M∑

j=1

Ikj
∗ Wj∑M

j=1 Wj

(2)

The function G takes a sub-sequence {Ik}, and Gaussian weight vector W as input, and
aggregates the information into a single frame. Here Wj represents the j th element of Gaus-
sian weight vector W , M denotes size of Gaussian weight vector. For example, if the size of
the Gaussian weight vector M is 5 and the sub-sequence is {Ik}, which has five frames of
the video. The vector W is given by W = [0.13, 0.6, 1, 0.6, 0.13]. A single frame is obtained
by performing weighted summation of the five frames belonging to the sub-sequence {Ik}
as shown in (2). In other words, five frames are aggregated into a single frame using Gaus-
sian weighing function. Similarly, the same process is repeated for subsequent five frames
belonging to the next sub-sequence and so on. This sampling approach reduces the volume
of data for training the deep learning model and also preserves the motion information in
better way which helps to obtain better results in human activity recognition.

3 Spatio-temporal features extraction using deep learningmodels

In this section, initially we describe 2-D CNNs, and then we present a detailed discussion
about the proposed 3-D CNN architecture, which learns the spatio-temporal features.
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3.1 Convolutional neural networks

There are two major problems with Artificial Neural Networks (ANN) while dealing with
real world data like images, videos, and any other high-dimensional data.

– ANNs do not maintain the local relationship among the neighboring pixels in an image.
– Since full connectivity is maintained throughout the network, the number of parameters

are proportional to the input size.

To address these problems, Lecun et al. [30] introduced Convolutional Neural Networks
(CNN), which are also called ConvNets.

Extensive amount of research is being carried out on images using CNN architectures to
solve many problems in computer vision and machine learning. However, their application
in video stream classification is comparatively a less explored area of research. In this paper,
we performed 3D convolutions in the convolutional layers of proposed 3D CNN architecture
to extract the spatial and temporal features. Net, we discuss the computational complexity
analysis of 3D CNNs with respect to 2D CNNs.

3.2 Notations and computational complexity of 3D CNNs

In 2-D CNNs, features are computed by applying the convolutions spatially over images.
Whereas in case of videos, we have to consider the temporal information along with spatial
features. So, it is required to extract the motion information encoded in contiguous frames
using 3D convolutions. The proposed 3-dimensional CNN architecture, shown in Fig. 2,
uses 3D convolutions.

3.2.1 Notations

Let us consider an input feature map (or image) having Ih, Iw , and Ic as feature-map height,
width, and number of channels, respectively. The 2D covolution operation is performed
using a receptive field of dimension Fh × Fw by convolving the filter (receptive field)
in both spatial and depth dimension. Whereas, 3D convolution operation is widely used
while working with videos to capture the spatial and temporal features. A 3D convolution
operation considers Ih, Iw , Ic, and Id where Id denotes the number of frames in the case of
video input. The receptive field also has an additional dimension called filter depth Fd to

Fig. 2 Proposed 3-dimensional CNN for spatio-temporal feature construction (KTH dataset). The first two
convolution layersConv1 and Conv2, both have 16 feature maps of dimension 32×52×18 and 12×22×16,
respectively. The Pool1 and Pool2 layers are followed byConv1 andConv2, to reduce the spatial dimension
by half. Conv3 and Conv4 layers have 32 feature maps of dimension 4 × 9 × 14 and 2 × 7 × 12. Finally, a
fully connected layer FC1 has 256 neurons

40436 Multimedia Tools and Applications (2022) 81:40431–40449



capture the motion information in temporal dimension. A typical 2D convolution operation
accepts 3D volume of input data i.e., Ih × Iw × Ic and generates a three dimensional output
feature map of dimension Hout × Wout × N . Here, N indicates the number of filters used
in this convolution layer. The height (Hout ) and width (Wout ) of the output feature map is
computed as follows,

Hout = (Ih − Fh + 2P)/S + 1 (3)

Wout = (Iw − Fw + 2P)/S + 1 (4)

Next, we discuss the computational complexity of 2D, 3D convolutions in terms of Floating
Point Operations (FLOPs).

3.2.2 Floating point operations

Normally, in the deep learning community Floating Point Operations (FLOPs) are used as
a metric to measure efficiency of various models. The number of FLOPs correspond to 2D
convolution layer Li with filter dimension Fh × Fw , number of filters to be N is given by,

FLOP2Dconv(Li) = Fh ∗ Fw ∗ Ic ∗ Hout ∗ Wout ∗ N (5)

While working with videos using 3D CNNs, we need to consider the number of frames
(temporal) Id as another dimension and the convolutional kernel also has an additional
dimension to convolve in temporal (depth) Fd dimension. So the resultant FLOPs will
become,

FLOP3Dconv(Li) = Fh ∗ Fw ∗ Ic ∗ Fd ∗ Id ∗ Hout ∗ Wout ∗ N (6)

the depth of the input image Ic is 1 for gray-scale image, 3 for RGB image.

3.3 Proposed 3D CNNmodel: extracting Spatio-temporal features

Initially, the GaussianWeighing function is used to aggregate the entire video into 20 frames
(considered 100 frames from each video throughout our experiments). To reduce the mem-
ory overhead, person centered bounding boxes are retrieved as in [20, 21], which results in
frames of spatial dimension 34 × 54 and 64 × 48 in case of KTH [46] and WEIZMANN
[16] datasets, respectively.

In this paper, a 3D CNN model is proposed to extract spatio-temporal features, which
is shown in Fig. 2. The proposed model considers the input of dimension 34 × 54 × 20,
corresponding to 20 frames (encoded using GWF) of 34×54 pixels each. The proposed 3D
CNN architecture has 5 learnable layers, viz., Conv1, Conv2, Conv3, Conv4, and FC1.
Pool1 and Pool2 max pooling layers are applied after Conv1 and Conv2 to reduce the
spatial dimension of the feature maps by half.

The abstract view of 3D convolutional operation is presented in Fig. 3. This illustration
is for gray-scale video which has frame height, frame width, and number of frames and note
that for RGB video there is another dimension, i.e,. frame depth. The Conv1 layer generates
16 feature maps of size 32×52×18 by convolving 16 3-D kernels of size 3×3×3. Pool1
layer down samples the feature maps by half, after applying sub-sampling operation with a
receptive field of 2× 2× 1, which results in a 16× 26× 18 dimensional feature vector. The
Conv2 layer results in a 12 × 22 × 16 dimensional feature map by convolving 16 filters of
size 5 × 5 × 3 × 18. The Pool2 layer produces a 6 × 11 × 16 dimensional feature vector,
by applying sub-sampling operation with a receptive field of 2×2×1. The 3rd convolution
layer (Conv3) produces 32 feature maps of dimension 4 × 9 × 14, which is obtained by
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Fig. 3 Illustration of 3D convolution operation. A four dimensional filter (including image/frame depth) is
convolved over a four dimensional input image/feature map. Here, we consider a gray-scale video as input
(which has frame weight and frame width, and number of frames) to illustrate 3D convolution operation. A
3-D convolutional filter of dimension 5× 5× 5 is convolved over 54× 34× 20 that generates 50× 30× 16
dimensional feature map

convolving 32 kernels of dimension 3 × 3 × 3 × 16. The Conv4 layer generates 32 feature
maps of dimension 2 × 7 × 12, which is obtained by convolving 32 filters of dimension
3 × 3 × 3 × 32. The feature maps produced by Conv4 layer are flattened into a single
feature vector of dimension 5376 × 1, which is given as input to the 1st fully connected
layer (FC1). Finally, the FC1 layer produces 256 dimensional feature vector. The 3D CNN
architecture proposed for spatio-temporal feature extraction, consists a total of 1,437,712
trainable parameters. The number of trainable parameters involved in the proposed 3D CNN
are less comparable to the 3D CNNs proposed in [3, 21] for action recognition task (Fig. 4).

Fig. 4 The aggregated video frames obtained using a) the proposed Gaussian Weighting Function (GWF)
and b) Average video sampling. GWF better represents the motion information compared with taking the
average of 5 consecutive video frames
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Fig. 5 The proposed two-steps deep neural network approach. Encoded frames are given as input to the
3D CNN model to extract spatio-temporal features as discussed in Secton 3.3 . The proposed 3D CNN
model generates 256 × 1 dimensional feature vector, which is given as input the LSTM model to classify
human actions. The LSTM has one hidden layer with 50 cells, that accumulates the individual decisions
corresponding to small temporal neighborhood (4 frames ) of the video

For WEIZMANN dataset, we used same architecture with necessary modifications.
However, throughout the architecture same hyper-parameters (number of filters, filter size)
are maintained as in the case of KTH dataset. The 3D CNN model proposed for WEIZ-
MANN dataset takes input of dimension 64 × 48 × 20. This model has four Conv layers
(Conv1, Conv2, Conv3, and Conv4) and two max-Pooling layers (Pool1, Pool2) layers,
and towards the end one fully connected layer (FC1). The Conv1 layer results in 16 fea-
ture maps of dimension 62 × 46 × 18, which is obtained by convolving 16 kernels of size
3 × 3 × 3. The Pool1 layer generates reduce the spatial dimension by half, after applying
sub-sampling with a receptive field of 2×2×1, which generates 31×23×18 dimensional
feature vector. The Conv2 layer generates 16 feature maps of dimension 27 × 19 × 16,
this is obtained by applying 16 filters of size 5 × 5 × 3 × 16. The Pool2 layer generates a
13× 9× 16 dimensional feature vector by sub-sampling with a receptive field of 2× 2× 1.
The Pool2 layer does not consider the right and bottom border feature values to avoid the
dimension mismatch between input and filter size. The Conv3 layer results in a 11×7×14
dimensional feature vector, which is obtained by convolving 32 filters of size 3×3×3×16.
The Conv4 layer results in 32 feature maps of dimension 9 × 5 × 12, which is obtained by
convolving 32 filters of dimension 3× 3× 3× 32. The output of Conv4 layer is rolled into
a single column vector of dimension 17280 × 1. At the end of the architecture, FC1 layer
has 256 neurons, which results in a 256 dimensional feature vector. The proposed 3D CNN
architecture for WEIZMANN human action dataset consists of 4,485,136 number of learn-
able parameters. The learned spatio-temporal features are given as input to LSTM model
to learn the label of the entire sequence. We resize the spatial dimension of the frames of
CASIA-B dataset [59] from 352 × 240 to 64 × 48 so that the same 3D CNN which is used
for WEIZMANN can be used for CASIA-B Human Gait Recognition (HGR).

3.4 Classification using long short-termmemory (LSTM)

Once the 3D-CNN architecture is trained, it learns the spatio-temporal features automat-
ically. The learned features are provided as input to an LSTM architecture (a Recurrent
Neural Networks (RNN)) for classification. RNNs are widely used deep learning models to
accumulate the individual decisions related to small temporal neighborhood of the video.
RNNs make use of recurrent connections to analyze the temporal data. However, RNNs
able to learn the information which are about short duration. To learn the class label of
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the entire sequence, Long Short-Term Memory (LSTM) [14] is employed, which accumu-
lates the individual decisions corresponds to each small temporal neighborhood. To obtain
a sequence, we have considered every 4 frames as a temporal neighborhood. To classify
human actions, we employ an RNN model having a hidden layer of LSTM cells. Figure 5
shows the overview of the proposed two-steps learning process. The input to this RNN
architecture is 256 FC1 features per time step. These 256 dimensional input features are
fully connected with LSTM cells. The number of LSTM cells considered are 50 as in [3].
The training details of the proposed 3D CNN architecture is presented in Section 4.4.1.

4 Experiments, results and discussions

As the proposed method aims to classify human actions in a video, where the videos
are captured at a distance from the performer, we trained and evaluated the proposed 3D
CNN model on KTH, WEIZMANN, CASIA-B datasets. Also we experimented with trans-
fer learning techniques, where proposed method is trained with KTH and then tested on
WEIZMANN dataset, and vice versa. Throughout our experiments, we consider validation
accuracy as the evaluation metric.

4.1 KTH dataset

KTH dataset [46] is one among the popular datasets in human action recognition. This
dataset consists of six actions, viz., walking, jogging, running, boxing, hand-waving, and
hand-clapping which were carried out by 25 persons and the videos were recorded in four
different scenarios (outdoor, variations in scale, variations in cloths, and indoor). A few
samples from KTH dataset [46] are presented in Fig. 6. The spatial dimension of each frame
is 160 × 120 pixels and the rate of frames per second (fps) is 25. This dataset has 600
videos. All the videos were captured from a distance from the performer. As a result, the

Fig. 6 A few sample of actions from KTH dataset [46]. Six different actions are shown column-wise. The
videos were recorded in four scenarios, outdoors s1, outdoor with scale-variation s2, outdoors with different
cloths s3, and indoors s4, which is shown row-wise in the figure
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Fig. 7 An illustration of actions from WEIZMANN dataset [16]. Action labels are specified above the
corresponding frames.

area covered by the person is less than 10% of the whole frame. We split the entire dataset
randomly into training (8+8 people) and validation (9 people) as in [3, 46].

4.2 WEIZMANN dataset

The WEIZMANN human activity recognition dataset [16] consists of 90 videos that cor-
respond to ten actions, which were performed by nine different people. The ten actions
are gallop sideways (Side), jumping-back (jack), bending, one-hand-waving (Wave1), two-
hands-waving (Wave2), walking, skipping, jumping in place (Pjump), jumping-forward
(jump), and running. The spatial dimension of each frame is 180× 144, and is at 25 frames
per second (fps). A few sample of frames and corresponding action labels of WEIZMANN
dataset are depicted in Fig. 7. The area covered by the person is less than 12% of the entire
frame, due to the reason that videos were captured from a distance from the performer.
We consider 50% of videos for training and remaining 50% videos are used for testing the
performance of the proposed model as in [24].

4.3 CASIA-B Human Gait Recognition (HGR) dataset

CASIA-B [59] is a widely used dataset for HGR. The videos are recorded in indoor environ-
ment and recorded with many variations like different view-angles, wearing different cloths,
and carrying things. The FPS rate is 25. The frame resolution is 352 × 240. We utilize the
video frames in the ratio of 70:30 such that 70% of video frames are used for training and
30% of the video frames are used to validate the performance of the proposed model.

4.4 Experimental Results

To validate the performance of the proposed 3D CNN model, throughout our experiments,
we have considered videos up to 4 seconds length (100 frames) and aggregated them into 20
frames using Gaussian Weighing Function as discussed in Section 2. To reduce the memory
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consumption, we have used the person-centered bounding boxes as in [20, 21]. Apart from
these simple preprocessing steps we have not performed any other complex preprocessing
like optical flow, gradients, etc.

4.4.1 Training Setup

To train the proposed 3-D CNN architectures, ReLU [27] is used as the activation function
after every Conv and FC layers (except output FC layer). We have experimented with
the 3D CNNs in which all layers have filters of dimension 3x3, 5x5, and 7x7. From these
experiments, we choose the better performing filter dimension which is 3x3 in our case.
Later, we try to find the better performing layer-specific filter dimension. More concretely,
our initial set of experiments are aimed at finding the optimal filter dimension at architecture
level, later, it is constrained to layer-level. Through these experiments, we have considered
the best performing network hyperparameters. Initially learning rate is considered as 1 ×
10−4. The value of the learning rate reduced with a factor of 2

√
0.1 after every 100 epochs.

The developed models are trained for 300 epochs using Adam optimizer [25] with β1 = 0.9,
β2 = 0.99, and decay = 1 × 10−6. The 80% of entire data is used to train the 3D CNN
model and remaining data is utilized to test the performance of the model. After employing
Gaussian Weighting function, we obtained 20 frames corresponding to an entire video. To
reduce the amount of over-fitting, we generated 1800 and 270 videos (of length 20 frames)
for KTH and WEIZMANN datasets, respectively, using data-augmentation techniques like
vertical flip, horizontal flip, rotation by 30◦. We also employed dropout [49] (after each
Conv, FC layers except final FC layer with a rate of 0.4, after ReLU is applied) along
with data augmentation to reduce the amount of over-fitting.

4.4.2 Results and Discussions

The obtained results are compared with the state-of-the-art methods as shown in Tables 1,
2, and 3 on KTH, WEIZMANN, and CASIA-B datasets, respectively. Baccouche et al.
[3] reported 94.39% accuracy over KTH dataset using a 3D CNN architecture having five
trainable layers. However, they have not evaluated their model on WEIZMANN dataset,
we obtained 94.58% accuracy through our experiment (input dimension is 64x48x9) using
the same architecture (same w.r.t number of features, filter size, number of neurons in FC

layers) as in [3]. After employing the proposed scheme of generating aggregated video to
the 3D CNN model proposed in [3], we observed that the model outperforming the origi-
nal model. However, the Dynamic Image Network proposed by [4] results in high amount
of over-fitting due to which it produces only 85.2%, 86.8% accuracies for KTH, WEIZ-
MANN datasets. We achieve 95.04%, 95.01%, 94.22%, 98.017%, 96.34%, and 96.05%
accuracies on walking, jogging, running, boxing, hand-waving, and hand-clapping human
actions, respectively.

The proposed 3D CNNmodel produces 95.78%, 95.27% accuracies on KTH and WEIZ-
MANN datasets, respectively, when the size of Gaussian weight vector is 5. From Tables 1
and 2, we can observe that the proposed 3D CNN model outperforming other deep learn-
ing based models on both the datasets. However, the HGR results reported over CASIA-B
are obtained using the finetuning the pre-trained CNNs mentioned in the Table 3. It is evi-
dent from Table 3 that, employing the proposed video sampling method as a pre-processing
step increases the HGR performance. For example, fine-tuning the pre-trained DenseNet-
121 using CASIA-B results in 94.7% validation accuracy, whereas, this performance is
increased by 0.87 after employing Gaussian Weighing Function (GWF) as a pre-processing
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Fig. 8 A performance comparison of proposed 3D CNNmodel by varying the size of Gaussian weight vector.
The size of the Gaussian weight vector is considered as 3, 4, 5, 6, 7, and 8 in our experiments

step. Please note that we have not employed any additional pre-processing such as removing
carried objects other than aggregating the multiple frames into a single frame.

When compared with human action recognition methods involving hand-crafted features,
our method produces competitive results with state-of-the-art on both KTH and WEIZ-
MANN datasets. We also experimented the performance of our model by varying the size of
Gaussian weight vector W in the range from 3 to 8. The performance variation of proposed
model is shown in Fig. 8 by varying the size of Gaussian weight vector W ′. We observe that
the proposed 3D CNN architecture is showing the best accuracy, when the size of Gaussian
weight vector W = 5. Based on the results depicted in Tables 1 and 2, we can conclude that,
our 3D CNN architecture outperforms the state-of-the-art deep learning architectures.

However, due to the small size of the available dataset of such kind, the proposed
deep learning based method could not outperform the hand-crafted feature based methods
(although showing a comparable result).

Basha et al. [47] shown the necessity of the fully connected layers based on the depth
of the CNN. Motivated by their work, experiments are conducted by varying the number of
trainable layers in the proposed 3D CNN architecture. The amount of over-fitting increases
in the context of both the datasets after inclusion of more FC layers.

The performance of the proposed 3D CNN architecture with varying number of trainable
layers is depicted in Fig. 9.

4.4.3 Fine-tuning the pre-trained 3D CNNs

A common practice in deep learning community (especially to deal with small datasets)
is that, using the pre-trained models to reduce the training time and obtaining competitive
results by training the models for a fewer number of epochs. Generally, these pre-trained

Fig. 9 Comparing the Training and Testing accuracies of both the datasets by varying the number of trainable
layers (5, 6, 7, and 8) in the proposed 3D CNN architecture
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models work as feature extractors. With this motivation, we utilized the pre-trained model
of KTH dataset to fine-tune over WEIZMANN dataset and vice-versa. Note that the dimen-
sions of the input are resized to fit the frames as input to the 3D CNN. The last two layers
(Conv4, FC1) of the proposed 3D CNN model are fine-tuned in both the cases. Results
of the above experiments are reported in the last rows of the Tables 1 and 2, respectively.
We can observe a little increase in the classification accuracy for both the datasets, after
applying the above scheme.

5 Conclusion

We introduced an information-rich sampling technique using Gaussian weighing function as
a pre-processing step before giving it as input to any deep learning model, for better classifi-
cation of human actions from videos. The proposed scheme aggregates consecutive k frames
into a single frame by applying a Gaussian weighted summation of the k frames. We further
proposed a 3D CNN model that learns and extracts spatio-temporal features by perform-
ing 3D convolutions. The classification of the human actions are performed using LSTM.
Experimental results on both KTH and WEIZMANN datasets show that proposed model
produces comparable results, among the state-of-the art. Whereas, the proposed 3D CNN
model outperforms the state-of-the-art deep CNN models. In future, we aim at employing
the proposed video sampling method for applications such as human driver behavior recog-
nition for autonomous driving, social distancing detection for helping prevent COVID-19,
and many more.
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