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Abstract
Crowdsourcing learning (Bonald and Combes 2016; Dawid and Skene, J R Stat Soc: Series
C (Appl Stat), 28(1):20–28 1979; Karger et al. 2011; Li et al, IEEE Trans Knowl Data Eng,
28(9):2296–2319 2016; Liu et al. 2012; Schlagwein and Bjorn-Andersen, J Assoc Inform
Syst, 15(11):3 2014; Zhang et al. 2014) plays an increasingly important role in the era of
big data (Liu et al., IEEE Trans Syst Man Cybern: Syst, 48(12): 451–2461, 2017; Zhang et
al. 2014) due to its ability to easily solve large-scale data annotations (Musen et al., J Amer
Med Informs Assoc, 22(6):1148–1152 2015). However, in the process of crowdsourcing
learning, the uneven knowledge level of workers often leads to low accuracy of the label
after marking, which brings difficulties to the subsequent processing (Edwards and Teddy
2013) and analysis of crowdsourcing data. In order to solve this problem, this paper pro-
poses a two-step learning crowdsourced data classification algorithm, which optimizes the
original label data by simultaneously considering the two issues of different worker abili-
ties and the similarity between crowdsourced data (Kasikci et al. 2013) samples, so as to
get more accurate label data. The two-step learning algorithm mainly includes two steps.
Firstly, the worker’s ability to label different samples is obtained by constructing and train-
ing the worker’s ability model, and then the similarity between samples is calculated by
the cosine measurement method (Muflikhah and Baharudin 2009), and finally the original
label data is optimized by combining the above two results. The experimental results also
show that the two-step learning classification algorithm proposed in this article has achieved
better experimental results than the comparison algorithm.
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1 Introduction

The rapid development of artificial intelligence [12, 17, 22, 32, 39] technology has brought
a new source of power to the progress of human society. Artificial intelligence has also
entered every corner of our daily lives. The fast-growing food delivery industry in recent
years has solved work problems for nearly tens of millions people and provided convenience
for hundreds of millions people to eat. At the same time, in the core architecture of the take-
away delivery system [23, 38], how to plan the delivery staff and takeaway orders, how to
plan the optimal delivery route [2] for each delivery staff, and how to dynamically adjust the
entire takeaway delivery system so that it will not be down during peak periods machine,
any of the problems mentioned above cannot be separated from the deep intervention of
artificial intelligence technology. At the beginning of 2020, a sudden epidemic affected the
entire world. Due to its high contagiousness and concealment, the new coronavirus forced
various [16, 29] countries and regions to gradually restrict population movement and block
entry and exit gates. Due to the long incubation period of the new coronavirus, and the
symptoms are very uncertain. Therefore, in the work of controlling the spread of the virus,
how to investigate the epidemiology of the patients and populations that have been found
and trace the source of the contact history has become the top priority of epidemic preven-
tion and control. Technological workers use artificial intelligence technology base on big
data to build a population flow model to scientifically judge the possibility of population
flow as much as possible, and improve the efficiency of epidemic prevention and control.
On the other hand, the development of the epidemic has also brought about changes in tra-
ditional industries. Due to the blockade measures introduced by governments of various
countries, economic activities in many urban areas have fallen into a state of suspension.
In contrast, the short video platform [19] Douyin achieved a 10-fold increase in monthly
revenue during the epidemic, and became the world’s most downloaded mobile program.
The epidemic has caused many traditional industries to expand from offline to online. Sell-
ing goods on Douyin has become a transformation path for most companies. Surprisingly,
a few hours of live broadcast may bring more revenue to merchants than previous months.
The core of Douyin’s successful marketing for businesses is to use artificial intelligence
algorithms to accurately match a large number of users and intelligently allocate advertising
traffic. Through these examples, it can be found that the application of artificial intelligence
technology is inseparable from the support of big data. Big data is the cornerstone of the
development of artificial intelligence technology. For now, the most popular technology in
artificial intelligence should be deep learning technology [9, 27, 35]. The application of
deep learning technology has greatly improved the effect of algorithms in various fields.
The BP model [10] at the core of deep learning algorithms has actually been proposed as
early as 1974. However, the rapid development of deep learning is in recent years. The main
reason is that the amount of data that can be trained and processed at that time is too small,
so it can not achieve better results. In recent years, due to the generation of large-scale data
and the gradual increase in the ability to process large-scale data [37, 49], the development
of deep learning technology has become possible. The classification of deep learning in the
field of machine learning is supervised learning [3, 50], which mean each sample needs to
have a clear label. At the same time, the magnitude of the training data has a great impact on
the performance of the algorithm. Generally, the larger the number of samples with correct
labels, the better the performance of the deep learning model.

However, in actual situations, the large-scale data we obtain are often unlabeled or incor-
rectly labeled. Therefore, how to correctly label these large-scale data has become a very
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important research topic in the field of machine learning [40]. In order to label the results
accurately, we can ask experts in specific fields to label the small-scale data. However, due
to timeliness, economy and other factors, it is not practical to ask experts in large-scale data
labeling tasks. To solve this problem, the crowdsourcing method [31, 47] distributes the
labeling task to people from all walks of life all over the world through the network. Obtain
large-scale data annotation results with lower economic cost and shorter time. While crowd-
sourcing methods bring the possibility of rapid labeling of large-scale data, there are also
very obvious problems. The labelers are not professionals, and they may have very limited
understanding of the characteristics of the labeled data. At the same time, the compensation
provided by the crowdsourcing method is not high. Many labelers may not be serious about
the labeling work, or they may be lazy to mark or simply not mark. These various reasons
are very likely to cause the accuracy of the final sample label to be low.

In order to solve this problem, researchers have proposed some targeted algorithms [8,
33]. The majority voting algorithm is the most classic one. The main idea of the majority
voting algorithm is very simple. Following the principle of minority obeys the majority, the
category with the highest number of markings is selected as the predicted category of the
sample from the marking results of all labelers. The principle of majority voting algorithm
is clear, interpretable, and relatively easy to implement, so it has become a benchmark algo-
rithm for solving crowdsourced data problems. However, the majority voting algorithm has
some flaws. Because crowdsourced data is artificial data produced in a short time by dif-
ferent people from all walks of life around the world, these people have different identities,
backgrounds, education levels, and different ideas. Therefore, the marking accuracy of each
marker must be different, but in the majority voting algorithm idea, it is simply considered
that the abilities of each marker are the same, so the final results often have certain defects.

This paper proposes a new two-step learning crowdsourced data classification algorithm
for the problems of majority voting algorithm. In the first step, a worker ability model is
proposed for the different labeling abilities of different labeled workers. The model first
adds the initial ability weights to all workers, and obtains the labeled ability weights of
different workers through fitting samples and self-expression reconstruction samples after
adding worker ability weights. At the same time, the L12 norm [11] of the worker ability
weight matrix is added to the objective function. The L12 norm is an optimized version of
the lasso method [30, 48], which considers the similarity between attributes based on the
sparseness of the variables in the Lasso method. The specific implementation is to set one
of the weights of two workers with similar marking abilities to 0 to reduce redundancy, so
that the difference in the abilities of different markers is further reflected, and then a more
accurate weight of worker abilities can be obtained. The second step considers the similarity
between different samples through the cosine measurement method [36, 41], specifically
by calculating the sample similarity between the two, find the most similar sample for each
sample. Finally, the specific category of the sample is calculated by combining the worker
ability weight obtained in the first step and the similar sample weight obtained in the second
step. The main contributions of the algorithm proposed in this paper are as follows:

– The traditional MV algorithm simply assumes that all marking workers have the same
ability, but in actual scenarios, this assumption is often unscientific, which leads to
poorer final algorithm results. For this problem, the algorithm proposed in this paper
assigns different ability weights to all workers based on the MV algorithm, making
the majority voting process more reasonable, and the voting results are naturally more
accurate.
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– The algorithm proposed in this paper adds an l12 regularization term to the model
for training worker ability weights. l12 regularization is a group sparse method, which
groups similar samples in attributes and makes the group sparse through restriction
methods , The groups become non-sparse. The l12 regularization term is applied to the
weight of the worker’s ability in this paper so that multiple workers with similar abilities
only retain the weight of one of them, which sparses the weight of the entire worker’s
ability, so that the redundant influence of workers with similar abilities on the entire
weight is reduced. It distinguishes the different weights corresponding to workers with
different abilities, and finally gets better results.

– The algorithm proposed in this paper considers the uneven abilities of marking workers,
but also gives weight to the samples. The real data collected in various industries is not
randomly generated, but usually has certain industry characteristics. These sample data
are not messy, but have some similar or contradictory characteristics. Therefore, this
paper uses the cosine measurement method to calculate the similarity between samples,
and combines the worker ability weights obtained from the worker ability model train-
ing to establish the final classification model and test the data. Therefore, this paper
considers the two key factors of worker ability weight and data sample similarity at the
same time, so that the algorithm proposed in this paper has better performance.

2 Related work

In this section, we first introduce some methods of similarity measurement in first part, and
then introduce the random forest algorithm in the second part.

2.1 Similarity measure

The basic processing of data by machine learning algorithms is generally classification or
clustering, i.e., to separate different data or aggregate the same data together [44]. How
to judge whether two data are the same or different is very important. Therefore, data
similarity measurement is a very important link in machine learning algorithms. How to
measure the difference between samples scientifically and how to choose the correct mea-
surement method for data characteristics are the key factors to improve the performance
of the algorithm. Commonly used distance measurement methods include Euclidean dis-
tance [5], Manhattan distance, Minkowski distance, Hamming distance, cosine distance,
etc. Euclidean distance refers to the actual distance between two points. Because of its
more obvious difference in high-dimensional data, it is suitable for measuring the similar-
ity of samples in high-dimensional data. The meaning of Manhattan distance [4] is very
intuitive, that is, the distance between Manhattan blocks. Since there are often many inter-
sections in the block, the actual driving distance in the block is the Manhattan distance.
Minkowski distance [24] is a distance formula containing variables. When the variable is 1,
it is Manhattan distance. When the variable value is 2. It is Euclidean distance. Hamming
distance [28] mainly operates on character strings. The number of characters that need to be
changed to convert character string 1 to character string 2 is used as the distance between
the two character strings, which is the Hamming distance. Therefore, the Hamming distance
is very suitable for the fields of password and information compression. The law of cosines
in geometry can use the cosine of the angle to measure the difference between two vec-
tor directions, and the cosine measurement method of machine learning uses this method
to measure the difference between samples. The cosine measurement method first needs to
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normalize the sample, so the cosine measurement is not sensitive to the length of the sam-
ple, but only sensitive to the direction of the sample. Therefore, the cosine measurement
method is usually suitable for the similarity discrimination of high-dimensional samples,
but not for specific distance calculations.

2.2 Random forest

Obviously, the random forest algorithm [18] mainly includes two parts, one is random and
the other is forest. The forest in the random forest algorithm is composed of decision trees
[42, 43, 45], and the way of composition is random. Decision tree is a supervised machine
learning algorithm. It starts to split from the root node containing all samples, and splits
into split nodes one by one until the last layer is all leaf nodes. Each split node represents a
split condition. The samples in the previous node are classified into two or more categories
through this condition. After the split is completed, each leaf node represents a specific
category. To a certain extent, the decision tree algorithm solves the shortcoming that some
algorithms can only perform linear segmentation of data. The sample data is classified more
accurately through the tree structure of the algorithm. At the same time, it has strong inter-
pretability and the algorithm process is intuitive. Easy to understand. The random forest
algorithm first randomly samples samples and attributes, then completely splits the obtained
data to obtain a decision tree, and then repeats these steps to finally obtain a random forest.
Among them, the sample sampling method is random sampling with replacement. There-
fore, the samples collected during the establishment of each tree are not necessarily the
same, so that the model of each decision tree is not easy to overfit and can obtain the inter-
model Some deviation information. Random forest is widely used in forecasting systems,
big data modeling, etc. due to its strong robustness, suitable for processing high-dimensional
data, simple implementation and excellent performance.

3 Methodology

In this Section, we first introduce some character definitions used in this article in
Section 3.1, then introduce the MV algorithm and explain the specific mathematical rep-
resentation of the MV algorithm in Section 3.2, and then introduce the Knv algorithm
and its Specific process in Section 3.3. In Section 3.4, we introduce the two-step learning
crowdsourcing data classification algorithm in detail. Finally, the objective function of the
algorithm is optimized in Section 3.5.

3.1 Notations

In this paper, we use uppercase and lowercase letters to represent matrices and vectors,
respectively. X = {xi}ni=1 ∈ R

n×d represents the sample set, where n and d represent
the number of samples and the dimension of each sample, respectively.Xi represents the
i-th row of the matrix X, which is the i-th sample of the sample set.Xj represents the j -
th column of matrix X , which is the j -th attribute of all samples in the sample set. Xi,j

represent the j -th attribute of the i-th sample in the sample set. The Frobenius norm of X is

denoted as ||X||F =
√∑

ij |xij |2. Furthermore, The trace, inverse, and transpose of matrix

X are represented as:tr(X),X−1 and XT , respectively.We also summarize these notations
in Table 1 .
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Table 1 The detail of the notations used in this paper

X a matrix

x a vector of X

xi the i-th row of X

xj the j-th column of X

xi,j the element in the i-th row and the j-th column of X

||X||F the Frobenius norm of X, i.e., ||X||F =
√∑

i,j x
2
i,j

XT the transpose of X

tr(X) the trace of X

X−1 the inverse of X

3.2 Majority voting

Table 2 is a crowdsourcing data set. The abscissa represents the sample, while the ordinate
represents the worker. The coordinateL(x, y) represents the marking of the y-th worker to
the x-th sample. In practice, due to the ability of a single marker worker to understand some
problems is relatively limited, the accuracy of labels is not high if only one worker’s tagging
results are used. In order to solve this problem, the MV method proposes to analyze the
labeled tags by the principle of the minority obeying the majority, and uses the result with
the highest frequency as the final classification label of the sample. The specific expression
is as follows:

v(x) = arg max
b∈�

v(b|x) (1)

where v(b|x) = 1
|Sx |

∑
w∈Sx

1(w = b), |Sx | represents the number of workers, Sx represents
all the labeling conditions of the x-th sample, and � represents the tag collection. The 1�
function analyzes the comparison between all the tag results of the sample and the real tag.
If the tag result is correct, return 1. Otherwise it is 0. Therefore, we can find the case of
two class label data set , where v > 0.5 , it shows that MV algorithm gets the real label.
Compared with the traditional single label method, the majority voting method can get a
more accurate labeling result. In the calculation process of MV algorithm, we give each
worker the same weight, but in the actual situation, each worker’s ability to understand
different problems is often very different. Therefore, it is not optimal to assign the same
weight to each worker, which means that there are still some defects in the MV algorithm.

Table 2 Crowdsourcing data set

Samples x1 x2 x3 x4 x5 ..., xn

y1 L11 L21 L31 L41 L51 ..., Ln1

y2 L12 L22 L32 L42 L52 ..., Ln2

y3 L13 L23 L33 L43 L53 ..., Ln3

..., ..., ..., ..., ..., ..., ..., ...,

ym L1m L2m L3m L4m L5m ..., Lnm
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3.3 K nearest voting

In order to solve some defects of MV algorithm, this chapter introduces an improved algo-
rithm Knv method based on MV. Knv method refers to k-nearest neighbor voting algorithm,
and its specific mathematical expression is as follows:

vk(x) = arg max
b∈�

vk(b|x) (2)

where vk(b|x) = 1

|Sx |+−
α

[|Sx | v(b|x) + αx
b

]
, αx

b = 1
k

k∑
i=1

αiv(b|xi) , xi ∈ NK(x) The vector

α represents the weight of k nearest neighbors of the sample. In order to reflect the discrim-

ination degree of k samples, initialization α = [k, k − 1, k − 2, ..., k],
−
α is used to represent

the mean value of the elements in the vector. The MV algorithm just votes the labeled
results of all the workers to get the final algorithm result without considering the relation-
ship between adjacent samples. In practice, the samples with similar distance tend to have
similar characteristics. These samples with similar characteristics often have the same cate-
gory, so it is very necessary and scientific to consider the labeling of adjacent samples when
judging the real label of a single sample. In order to solve this problem, Knv algorithm con-
siders the labeling of k nearest neighbors of samples base on the original MV algorithm, so
as to judge the real label of the sample more scientifically and accurately. At the same time,
the experiment also proves that the Knv algorithm achieves better performance. Although
the Knv algorithm improves the performance of MV algorithm to a certain extent by consid-
ering the influence of k nearest neighbor sample labeling. However, the Knv algorithm still
does not consider the factors of different tagging workers’ ability to label different samples,
so the Knv algorithm still can be improved by considering the factors of marker workers’
understanding of the samples.

3.4 Proposedmethod

In view of the shortcomings of MV and Knv algorithms introduced above, this paper
proposes a two-step learning crowdsourcing data classification algorithm based on the tradi-
tional MV algorithm. The first step is to build a worker’s tagging ability model . Specifically,
firstly assign a labeling ability weight matrix β to all workers, and reconstruct the sample
by fitting the original sample and adding the self-expression of the worker labeling ability
weight matrix β to obtain the optimal worker labeling ability weight matrix β. The specific
expression is as follows:

min
β

∥∥∥XT − XT YT β
∥∥∥

2

F
(3)

Where X ∈ R
n×d represents the original crowdsourcing dataset contains n d-

dimensional samples, Y ∈ R
m×n represents all the labeling results of m workers on n

samples in the data set,and the matrix β ∈ R
m×n represents the labeling ability weight of

m workers for n samples in the crowdsourcing data set. In view of the fact that there are
some workers with similar marking ability, there is a certain degree of redundancy in the
marking ability weight matrix β. In order to solve this defect, our method creatively adds
the l12 norm as the regularization term of the objective function base on (3), and sparses the
ability weight matrix β , so that the redundancy of workers with similar abilities is reduced,
and workers with different marking abilities are further distinguished. So the performance
of the algorithm is better. The l12 norm is a group Lasso method. The core idea of the l12
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norm is to group all samples so that the samples in the same group become sparse and the
groups become as close as possible. The specific expression is as follows:

∀ W ∈ R
d×1, �G

g (W) =
∑
g∈G

∥∥WGg

∥∥2
1 (4)

Among them, W represents the 1 − d attributes, G represents the set of all groups, G

represents one of the groups, l1−norm is used to make the attributes within the group more
sparse, and the l2− norm makes the groups not sparse. Because we know that samples in
the same group often have great similarities, making them sparse can remove redundant
samples in some groups, and samples in different groups are often different, so we need to
keep these useful samples. Therefore, after adding the l12 norm, we get the final objective
function of the worker ability model, the expression is as follows:

min
β

∥∥∥XT − XT YT β
∥∥∥

2

F
+ λ

∥∥∥βg

∥∥∥
2

1
(5)

The parameters λ are used to adjust the l12 regularization term. The main idea of the
worker ability model is to reconstruct the original sample, and obtain the optimal ability
weight matrix β by fitting and reconstructing the sample. At the same time, the group Lasso
regularization term is added. We perform sparse and non-sparse operations on the worker
ability weight matrix at the same time, so that while removing redundant workers, it retains
useful worker information as much as possible.

Unlike the first step, which considers the weight of the worker’s marking ability, the
second part of the algorithm considers the similarity between samples. In crowdsourced
data, in addition to the similar or opposite relationship between different labeled workers,
there is also a certain similar relationship between samples. Similar samples usually have
similar labels, so the labels of similar samples also have certain reference significance for
the current sample. Therefore, we use this idea to calculate the label for a single sample
while considering the labeling of similar samples, which can reduce the adverse effects of
random errors by a small number of labeling workers to a certain extent. This paper uses the
cosine measurement method to measure the similarity between samples. The mathematical
expression is as follows:

α = similarity = cos(θ) = AB
‖A‖ ‖B‖ =

n∑
i=1

Ai × Bi

√
n∑

i=1
(Ai )

2 ×
√

n∑
i=1

(Bi )
2

(6)

WhereA and B represent the two samples in the dataset, Ai and Bi represent the i-th
attribute value of the samples respectively. Specifically, the above cosine similarity formula
is used to calculate all samples, all n samples are traversed, and the nearest neighbor sam-
ple that is most similar to each sample is calculated (when n is an odd number, the last
sample is kept without calculation). Then we get n/2 pairs and n/2 similarity values α

(α = similarity).
Finally, the worker’s labeling ability weight matrix β obtained in the first step is com-

bined with the n/2 similarity values α obtained in the second step to calculate the final
predicted label . Specifically for each sample, the ability weight matrix β is first applied to
different markers, and on this basis, the sample weight is assigned 1-0.5 * α , and the simi-
lar sample weight of the sample is assigned 0.5 * α for calculation, and finally the predicted
label of the sample is obtained . Since this algorithm also considers two key factors, the
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similarity between the crowdsourced data samples and the difference in the marking ability
of different workers, the predicted label obtained by this algorithm is greatly improved in
accuracy compared with the original label.

3.5 Optimization

Because the objective function of the first part of the algorithm can not be solved directly,
this paper optimizes the objective function in this section, and the specific steps are as
follows. And we also list the pseudo code in Algorithm 1.

min
β

∥∥∥XT − XT YT β
∥∥∥

2

F
+ λ

∥∥∥βg

∥∥∥
2

1
(7)

Where X ∈ R
n×d ,Y ∈ R

m×n , β ∈ R
m×n . First of all, the above formula is expanded

and the results are as follows:

min
β

∥∥∥XT − XT YT β
∥∥∥

2

F
+ λtr(βT Fβ) (8)

Then, the derivation of the above formula can be obtained as follows:

− 2YXXT + 2YXXT XT β + 2λFβ (9)

We make the above formula equal to 0, the final weight matrix β of worker’s ability can
be obtained:

β = (YXXT YT + λF)−1YXXT (10)

Where F of above formula is a diagonal matrix . Its diagonal elements are:

Fii =
∑
g

(IGg)i

∥∥∥βg

∥∥∥
1∥∥∥βi

∥∥∥
1

(i = 1, · · · , m) (11)
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Table 3 The summarization of the used data sets

Data Sets #(Samples) #(Dimensions) #(Classes)

Clean 476 167 2

German 1000 20 2

Parkinsons 195 22 2

Sonar 208 60 2

Contro 600 60 6

Drift 1244 129 6

Ecoli 336 343 8

CCUDS 1994 101 10

Movements 360 90 15

Soybean 307 35 19

4 Experiments

In this Section, the algorithm proposed in this paper and comparison method will be tested
on 10 data to compare their data classification ability. Specifically, the crowdsourcing
dataset used in this paper and how to set the parameters needed in the experiment are intro-
duced in Section 4.1. In Section 4.2, the sensitivity of the parameters to the experimental
effect is analyzed, so that we can find the appropriate parameters. Finally, the specific
experimental results are analyzed also in the last Section 4.2.

4.1 Data set and parameter settings

In this experiment, 10 data sets of UCI data set are used. They are Clean,German, Parkin-
sons,Sonar,Contro,Drift,Ecoli,CCUDS,Movements and Soybean.The detail of these data
sets is listed in Table 3 . In the experiment process of this article, we set three parameters.
The first is the average number of of markers

∣∣Sx

∣∣. The setting of the average number of
markers takes into account the different number of markers in each sample, and simulates
the real by setting the average number of markers. The second is the parameter con of the
beta distribution. In this paper, a simulated crowdsourced data set is constructed on the basis
of the original data through the principle of beta distribution. Since the number of tags for
each sample is not necessarily the same, it simulates the real crowdsourced data well. The
third is the reliability parameter rel. This parameter represents the average labeling ability
of all workers, which represents the label accuracy of the original data.In the specific exper-
iment, this paper fixed the average number of markers

∣∣Sx

∣∣ = 25 and the beta distribution
parameter con =1 , and set the reliability parameters as 0.6, 0.7 and 0.8.

The first step of the experiment is to create the crowdsourced data set required for this
article on the basis of the original data set. The specific steps are as follows: The first step

Table 4 Average Classification accuracy(rel=0.8)

Datasets Clean German Parkinsons Sonar Contro Drift Ecoli CCUDS Movements Soybean

MV 97.27 98.31 97.95 96.63 87.67 93.65 86.33 82.32 81.22 71.78

Proposed 99.27 99.50 99.49 98.56 95.33 93.99 98.51 99.60 89.44 89.58
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Table 5 Average Classification accuracy(rel=0.7)

Datasets Clean German Parkinsons Sonar Contro Drift Ecoli CCUDS Movements Soybean

MV 94.54 96.70 96.49 96.15 83.17 90.51 83.33 83.14 75.56 69.06

Proposed 98.95 99.50 98.46 98.08 96.50 91.72 96.13 99.61 88.06 86.32

is to classify the data through the random forest algorithm in related work, and then use the
labels obtained by the classification. And the true label generation matrix M of the data.
The second step is to construct the R matrix after the M matrix is generated. Then build the
marking of crowdsourced data based on the R matrix.

4.2 Experimental result

In this section, we choose the average number of markers
∣∣Sx

∣∣=25, and set the reliabil-
ity parameters rel = 0.6, 0.7, 0.8, respectively. Simulate the performance of the algorithm
in this paper under the environment of different raw data quality, and compare it with the
traditional MV algorithm. The experiment selected 4 two-classification data sets and 6
multi-classification data sets, which can test the performance of this algorithm on simple
two-classification problems and complex multi-classification problems at the same time.
From Tables 4, 5, and 6, we can find that this algorithm has achieved very good results
on 10 data sets, and the accuracy of the algorithm is higher than that of MV. Respectively,
when the reliability parameterrel =0.8, the algorithm is 7.01% higher than the MV algo-
rithm, when the reliability parameter rel=0.7, the algorithm is 8.47% higher than the MV
algorithm, and when the reliability parameter rel =0.6, the algorithm It is 12.36% higher
than the MV algorithm. The traditional MV algorithm only does a large number of statistics
for all the labeling results of all workers, and selects the category with the highest occur-
rence probability as the final prediction label of the MV method. The method I put forward
first considers the differences in marking abilities of different workers, and assigns differ-
ent weights to different marked workers. At the same time, the data samples are analyzed,
considering that similar samples may have similar labels, combining the above two key
points, so the algorithm in this paper has achieved better performance than the traditional
MV algorithm.

By analyzing the three tables at the same time, it can also be found that as the accuracy
of the original crowdsourced data decreases, the accuracy of the proposed algorithm in this
paper decreases more slowly than the accuracy of the traditional MV algorithm, indicating
that the quality of the original data of the algorithm in this paper is not good. At the same
time, it can still achieve better results and has strong robustness. Finally, in Table 7 we find
that the classification accuracy of the algorithm is usually better than the traditional MV
algorithm in terms of stability.

Table 6 Average Classification accuracy(rel=0.6)

Datasets Clean German Parkinsons Sonar Contro Drift Ecoli CCUDS Movements Soybean

MV 79.20 94.20 92.31 94.71 80.50 84.24 80.36 81.44 71.11 62.87

Proposed 97.48 99.50 97.95 97.60 95.83 92.12 94.35 98.81 87.50 83.39
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Table 7 Standard deviation of Classification accuracy(rel=0.6)

Datasets Clean German Parkinsons Sonar Contro Drift Ecoli CCUDS Movements Soybean

MV 6.10 0.64 1.54 0.97 3.74 2.98 1.90 0.92 2.87 2.93

Proposed 6.10 0.16 0.65 0.90 2.02 3.54 0.94 0.13 2.38 3.35

5 Conclusion

This paper proposes a new two-step learning crowdsourced data classification algorithm.
First of all, by assigning different labeling weights to each worker, the negative impact of
different workers’ abilities in the process of crowdsourced data labeling is reduced to a
certain extent. At the same time, the similarity between samples in the crowdsourced data
is analyzed by the cosine measurement method, and the most similar samples are found
and weighted. Therefore, the algorithm proposed in this paper takes into account the two
key factors of the difference in the ability of workers and the similarity between the data
samples, and reclassifies the original crowdsourced data. It has achieved higher accuracy
rate than the traditional MV algorithm on 10 data sets. On this basis, we added three sets of
comparative experiments on raw data with different quality.It was found that the proposed
algorithm achieved good performance in the stability of experimental results, and it was
less affected by the quality of the original data, indicating that the proposed algorithm has
highly accurate and good robustness at the same time.

In the future work, we will further consider how to use the similarity between samples to
improve the performance of classification algorithm.
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