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Abstract
COVID-19 is a viral disease that in the form of a pandemic has spread in the entire world,
causing a severe impact on people’s well being. In fighting against this deadly disease, a
pivotal step can prove to be an effective screening and diagnosing step to treat infected
patients. This can be made possible through the use of chest X-ray images. Early detection
using the chest X-ray images can prove to be a key solution in fighting COVID-19. Many
computer-aided diagnostic (CAD) techniques have sprung up to aid radiologists and provide
them a secondary suggestion for the same. In this study, we have proposed the notion of
Pearson Correlation Coefficient (PCC) along with variance thresholding to optimally reduce
the feature space of extracted features from the conventional deep learning architectures,
ResNet152 and GoogLeNet. Further, these features are classified using machine learning
(ML) predictive classifiers for multi-class classification among COVID-19, Pneumonia and
Normal. The proposed model is validated and tested on publicly available COVID-19 and
Pneumonia and Normal dataset containing an extensive set of 768 images of COVID-19
with 5216 training images of Pneumonia and Normal patients. Experimental results reveal
that the proposed model outperforms other previous related works. While the achieved
results are encouraging, further analysis on the COVID-19 images can prove to be more
reliable for effective classification.
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1 Introduction

Coronavirus disease-19 (COVID-19) has surfaced as a fatal Severe Acute Respiratory Syn-
drome (SARS) infection [65] since December 2019. First instance of the disease was
reported in the province of Wuhan, China, which soon after spread to the world like wild
fire. The disease is now declared as ‘pandemic’ by the WHO [15, 34]. The statistics for the
COVID-19 affected population in state of the pandemic is as depicted in Fig. 1. A viral or
respiratory infection with an incubation duration of 2−14 days is a typical symptom of the
disease. However, the afflicted suffers shortness of breath, nausea resulting in pneumonia
and numerous organ defects as this condition progresses [34, 66].

For respiratory or blood specimens, reverse transcription-polymerase chain reaction (RT-
PCR), or gene decoding are declared as the screening methods for suspicious COVID-19
check. However, the RT-PCR test sample’s overall positive rate for throat swab specimens
is estimated to be 30 to 60%, which can deduce a suspicious person with symptoms as
unaffected, which in turn can lead to the spreading of the disease to masses [3]. In the
COVID-19 pandemic, imaging techniques are critical for determining reported cases and
the outbreak’s path. We consider the role of X-ray imaging in the current situation [37] to
be effective for productive analysis of the COVID-19 disease.

The diagnosis and medication of COVID-19 usually linked with both signs of pneumo-
nia and chest X-ray examinations. Chest X-ray became the first screening technique to play
a significant role in the diagnosis of COVID-19 infection. Figure 2 shows sample images
of chest X-ray for COVID-19, Normal and Pneumonia patients. Previously, many classical
machine and deep learning methods have been used for automated detection of chest radio-
graphy X-ray images. One technique commonly used with deep learning is transfer learning
that re-uses the information learned from trained models, such as solving one problem and
applying it to similar problems.

These models are trained on million images to classify objects in multiple classes, as
demonstrated by ImageNet dataset [39]. The ImageNet dataset contained different usual
and unusual classes like animals, buildings, fabrics and geological formations. For image

Fig. 1 Per million COVID-19 cases on world population as reported in the last seven days by countries,
territories and areas, October 2 to November 8, 2020 [64]
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Fig. 2 Some sample chest X-ray images from the acquired datasets containing COVID-19, Pneumonia and
Normal cases

classification processes, transfer learning models involves convolutional neural network
(CNN) which can include, (i) “shallow tuning”, which adopts the ways of only changing
the last layers to cope with the new input set of images, (ii) “deep tuning”, which retains all
the parameters of the model in an end-to-end fashion and (iii) “fine-tuning”, whose goal is
to train the added layers with the re-trained parameters until adequate accuracy is achieved.
However, “Fine-tuning” based models have shown promising results [7, 23, 56, 62] for the
aforementioned processes. Artificial intelligence (AI) is also essential in developing solu-
tions to facilitate diagnosis [42]. Many AI-based solutions have been proposed to build an
end-to-end integrated system for COVID-19 detection [4, 40, 53]. These methods can never
replace the manual processes of diagnosis, but in turn, can provide significant help to the
expert radiologists in precise annotation of the disease.

In recent studies, many deep learning approaches have been investigated for the purpose
of COVID-19 classification from chest X-ray images. Different lung diseases have been
identified by deep learning approaches in the past with many automated and semi-automatic
techniques, that identify anomalies in the patient’s body. Still, the lack of adequate and
accurate methods may lead to variability in the classification task. Continuing the legacy
of the automatic classification method, this work demonstrates the process of three-class
classification among the COVID-19, Normal, and Pneumonia images. The model makes
use of ML predictive classifiers at the end for the classification purpose. The framework
includes CNN-based feature extractors pre-trained on chest X-ray Pneumonia dataset. The
pre-trained model is used as a features extractor, and then PCC and variational thresholding
techniques are used for features selection, which optimally reduces feature space’s size to
make it efficient for image classification. Lastly, the selected features are fed to a list of
ML-based predictive classifiers for final classification.

Major contributions: The major contributions of the paper are as follows:

– We have prepared a large set of COVID-19 chest X-ray image dataset, containing
768 images with their corresponding binary labels. The rich collection of the Chest
X-ray images with a clear sign of the disease are used for further classification.
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– A three-step hybrid model involving deep learning, extensive feature selection and
ML classifiers is designed for detection of COVID-19 using chest X-ray images.

– The deep models pre-trained on the Chest X-ray Pneumonia dataset act as feature
extractors, followed by the feature selection using PCC and variance thresholding.
The selected features are classified using ML-based predictive classifiers which
showed high sensitivity to the optimally selected features.

– We also provided the correlation analysis on features, depicting feature pair count
per correlation coefficient and corresponding heat map for selected features.

– Extensive experimental analysis with comparative study using mRMR, Relief-f and
QPFS techniques on the proposed model is performed using five-fold stratified
cross-validation.

Remainder of the paper is organized as follows: Section 2 introduces the related work
for COVID-19 detection, Section 3 representing the dataset and pre-processing. Section 4
describes the detailed methodology for COVID-19 classification among COVID-19, Nor-
mal and Pneumonia images, Section 5 representing the results and discussion. Finally,
Section 6 concludes this study.

2 Related work

Despite being many technological advancements in the domain of medical imaging,
COVID-19 is a highly contagious disease that has undoubtedly marked its place in the
world’s history that a virus has made even the big countries to bow down to knees. For effec-
tive and efficient diagnoses of the disease, several machine and deep learning approaches
have been implemented. These methods have been used to detect and classify the disease
with radiologist medical image dataset. Different types of medical images were used exten-
sively for detection and classification of COVID-19. Randhawa et al. introduced machine
learning with digital signal processing (MLDSP) for genome analyses, with a supervised
learning approach of decision tree and a Spearman’s rank correlation coefficient analysis
for final result validation [54]. Karim et al. investigates deep learning methods for auto-
matically analyzing query chest X-ray images to detect COVID-19 and diagnose confirmed
patients [28] positively. Another work on X-ray images, called Decompose, Transfer, and
Compose (DeTraC), is introduced by Asmaa et al. in [1]. DeTraC used class decomposition
mechanism to deal with class boundaries leading to an accuracy of 93.1% and sensitivity of
100%. Bukhari et al. used the ResNet-50 convolutional neural network concept on chest X-
ray images divided into three groups: normal, pneumonia, and COVID-19 [13]. Yujin et al.
presented a statistical approach for chest X-ray image patches which used the small number
of trainable CNN parameters for COVID-19 diagnosis [49].

Image-based features comprising Grey Level Co-occurrence Matrix (GLCM), Local
Directional Pattern (LDP), Grey Level Run Length Matrix (GLRLM), Grey-Level Size
Zone Matrix (GLSZM), and Discrete Wavelet Transform (DWT) algorithms are used by
Mucahid et al. in their work on COVID-19 detection [8]. Another work of YOLO-based
object classification in the input images using DarkNet for COVID-19 classification among
the chest X-ray images is introduced by Tulin et al. in [50]. Xiaocong et al. performed
contrastive learning with few-shot learning framework to make an accurate prediction
with minimal training [17]. To boost up the performance, building a performance key
and query lookup is performed. They also used the momentum mechanism to mitigate
the noise in keys by updating key encoder and query encoder in different scales. Xin
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Li et al. presented COVID-MobileXpert, a lightweight mobile app based on deep neural
network (DNN) that use chest X-ray for COVID-19 screening and radiological trajec-
tory prediction [44]. Ali et al. diagnosed COVID-19 disease through a different trajectory,
via the common respiratory symptom; cough. They investigated the distinctness of path-
omorphological alterations in the respiratory system induced by COVID-19 infection and
developed AI4COVID-19 [35]. Transfer learning is applied to cope with COVID-19 cough
training data. Also, a multi-pronged mediator centered risk-averse AI architecture is lever-
aged to reduce the misdiagnosis risk in computations. A comparative analysis among the
deep learning architectures, namely VGG16, VGG19, DenseNet201, Inception ResNetV2,
InceptionV3, Resnet50, and MobileNetV2 on chest X-ray & CT image dataset is con-
ducted by Khalid El Asnaoui and Youness Chawki in [22]. Ioannis et al. studies the use
of various deep learning architectures over-collected dataset of 1427 chest X-ray images
which yielded them the performance accuracy, sensitivity, and specificity of 96.78%,
98.66%, and 96.46%, respectively [6]. COVID-CAPS: a capsule network-based architec-
ture for COVID-19 detection from X-ray images is proposed by Pernian et al [2]. The
achieved accuracy of 95.7%, sensitivity of 90%, specificity of 95.8%, and Area Under the
Curve (AUC) of 97% with very less of trainable parameters from the state-of-the-art deep
models.

A neural network based on the combination of Xception and ResNet50V2 architectures
is proposed byMohammad Rahimzadeh and Abolfazl Attar, where they worked upon 11302
chest X-ray images and achieved an overall average accuracy for all classes is 91.4% [52].
Another transfer learning model on limited available COVID-19 dataset was proposed by
Apostolopoulos ID andMpesiana TA [6] where a bigger dataset (with the COVID-19, Pneu-
monia, and Normal cases) is created that geared up to achieve an ACC up to 98.75% for
binary (COVID-19 and Normal) with the three class (with pneumonia being the third) clas-
sification up to 93.48%. Adding up the list, GANs have been used to produce synthetic
COVID-19 images to gear up for high accuracy of 99.9% [46]. Tej Bahadur et al. proposed
a two-phase (normal vs. abnormal and nCOVID-19 vs. pneumonia) classification approach
using the concept of majority voting among the classifier ensemble of five benchmark
supervised classification algorithms [14]. The obtained accuracy and AUC for the phase-1
validation results were 98.06% and 95% with phase-II validation results of accuracy and
AUC were 91.32% and 83%, respectively. Rank-based average pooling and multiple-way
data augmentation approach is used by Shui Hua et al. along with the graph convolu-
tional network (GCN) for image level features [63]. A work eliminating the inadequacy of
COVID-19 datasets introduced domain extension transfer learning (DETL) for multi-class
classification among normal, pneumonia, other disease, and COVID-19 [9]. Multi-model
deep learning approach for COVID-19 diagnosis is introduced by Soumya Ranjan et al. [48].
Another work on using the pre-trained deep learning architectures; ResNet18, ResNet50,
ResNet101, VGG16, and VGG19 was used by Aras M.Ismael and Abdulkadir Sengur in
their work for the chest X-ray image classification among COVID-19 and Normal (healthy)
patient images [36].

3 Dataset and pre-processing

The proposed methodology is validated using two datasets available in public domain:
COVID-19 dataset [19, 20] and Pneumonia chest X-ray images [18], referred to as dataset
D1 and dataset D2, respectively. The Pneumonia datasetD2 is given in the form of training
and test sets with 5216 and 624 images, respectively.
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Table 1 COVID-19 dataset D1
with equivalent amount of
images for each class of
COVID-19, Normal and
Pneumonia cases [19, 20]

Classes # of Images

COVID-19 768

Normal 800

Pneumonia 800

Training images consists of 1341 images for Normal cases and 3875 images for Pneu-
monia. In the test set, 234 images are Normal cases with 390 images for Pneumonia cases.
In the proposed model, the deep architectures; ResNet152 [31] and GoogLeNet [58] are
trained with only the training set of images. For the COVID-19 dataset D1, a substantial
amount of images are extricated from the public medical repositories [19, 20]. The dataset
contains a total of 768 images with clear signs of COVID-19 indications. To make the num-
ber of images equal in every class for unbiased experimentation, a random number of 800
images from both Normal and Pneumonia case are taken. Finally, the proposed method-
ology’s deep feature-based image classification task with ML classifiers uses chest X-ray
image dataset D1. Both the datasets D1 with image label pair 〈XD1 , YD1〉 and D2 with
image label pair 〈XD2 , YD2〉 contain different number of images which are tabulated in
Tables 1 and 2, respectively.

In the acquired dataset, it is observed that the images are of different dimensions, which
presented a difficulty in effective image classification. Since, X-ray are low-resolution
images with a shifting length to breadth ratio, a seamless and efficient image pre-processing
is applied. Pre-processing such as image cropping and resizing are done using Bilinear Inter-
polation [25] to enable training and testing for the proposed deep network architecture. The
standard architectures of ResNet152 and GoogleNet are designed for an input image of size
224× 224. Therefore, to ease the dataset usage, the images are resized to make a the size of
224 × 224.

4 Methodology

The proposed methodology for classification among COVID-19, Normal and Pneumonia
cases consists of the three different steps: (i) feature extraction with the training of the
deep architectures; ResNet152 and GoogLeNet, (ii) Correlation-based feature selection with
thresholding and (iii) ML-based classification to detect the presence of COVID-19 among
Pneumonia and Normal cases from the acquired dataset. To further enhance the understand-
ing of the proposed framework, the schematic illustration of model workflow is shown in
Fig. 3 with the pseudo-code as Algorithm 1.

Table 2 Training and testing set
of Pneumonia and Normal
images from the Pneumonia chest
X-ray image dataset D2 [18]

Dataset/Classes Normal Pneumonia Total

# of Images in Training set 1341 3875 5216

# of Images in Test set 234 390 624

Total 1575 4265 5840
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Fig. 3 Illustration of the flow of information and data in the proposed framework for the accurate prediction
of the COVID-19 v/s Pneumonia v/s Normal patients. Bold black arrows (→) represent the flow of data in
the network. Red dashed arrow (− →) represent the input entity to the module being pointed to with blue
dashed arrow (− →) representing the iterations on the module on the left side of the dashed arrow by the
module on the right side of the dashed arrow

4.1 CNN-based deep feature extraction

The proposed methodology uses two deep feature extraction models: ResNet152 and
GoogLeNet, for producing representation vectors for the input images. GoogLeNet, a deep
learning network that considers how readily accessible dense segments can approximate
and enforce an appropriate optimal sparse structure of a CNN. The model consists of an ini-
tial module of 4 parallel paths. Initially, convolution of 1 × 1 is followed by convolutions
of 3 × 3 and 5 × 5 which in turn is progressed by 3 × 3 max-pooling process and 1 × 1
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convolutions. To obtain the input for the subsequent layer, the data from all the previous fil-
ters is concatenated. The last convolution layer linked to two FC layers is built to contain a
total of 1024 hidden neurons followed by non-linear rectified linear activation unit (ReLU).
Softmax function in the last layer convert the extracted features into the classes’ predictions.

ResNet152, the other considered network is also optimized to make the proposed model
more robust and achieve better accuracy. The network’s last layers are tweaked similarly to
GoogLeNet for effective feature extraction. The aforementioned modified models use Ima-
geNet as pre-trained weights and are trained using dataset D2, making them ResNet152FE

and GoogLeNetFE , to acquaint them with the features of Pneumonia and Normal class
images. The main benefit of getting the trained model with the dataset D2 is that they
will be able to identify basic image features like shapes and edges. Learning these repre-
sentations will help the model to behave robustly in further analysis. The trained models,
ResNet152FE and GoogLeNetFE , are then fed with the images of dataset D1, to extract
the representation vectors from images XD1 with their corresponding labels YD1 . The indi-
vidual representation vectors are concatenated to form a combined feature space, FC . The
corresponding algorithm for feature extraction process is as depicted in Algorithm 2.

The trained models, ResNet152FE and GoogLeNetFE , are then fed with the images of
dataset D1, to generate features FGoogleNet and FResNet152. These features are used as
representation vectors for images XD1 with their corresponding labels YD1 . The individual
representation vectors are concatenated to form a combined feature space, FC consisting of
2048 features. The Algorithm 2 shows the complete feature extraction process with Dataset
D1 and D2 as inputs and FC, YD2 i.e., extracted features and there respective labels as
output.

4.2 Feature selection

Feature selection involves selecting a subset of relevant features with shorter dimen-
sions, training times and reduced overfitting. To accomplish this, the previously extracted
features FC from ResNet152 [31] and GoogleNet [58], represent the same image XD1 fea-
tures extracted from two parallel paths of the deep models. The features extracted from
ResNet152 and GoogLeNet contain some different sets of information in the input images
due to the structural difference between the two networks. After that, the features extracted
correlate with each other spatially with some semantic discrepancies among them. Simple
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concatenation could lead to overfitting. Therefore, an extensive feature selection is per-
formed using variance thresholding and correlation-based feature removal [27].

4.2.1 Variance thresholding

The notion of threshold lies in removing the power of some non-active neurons in the pro-
cess which does not vary much within itself [27]. Variance threshold works in a similar
way which removes features with the variation below a specific cutoff. In the proposed
methodology, the extracted features FC contain some dead neurons (neurons whose value
becomes zero on applying activation) with zero variance. These features have no advantage
in a classification task; instead, they increase the models’ computational expense. Hence, a
threshold variance of zero is applied to remove these unwanted features. Pseudo-code for
the process of variance thresholding is as depicted in Algorithm 3. The extracted features
FC and default threshold T goes as an input to function. The default value of threshold T

is set to zero. Finally, the function returns the updated features FN , after variance filtering.

4.2.2 Correlation-based feature selection

LetF1 andF2 be two zero-mean real-valued features, among which the Pearson correlation
coefficient (PCC) is defined as [10, 41]:

correlation(F1,F2) = E(F1F2)

σF1σF2

(1)

where E(F1F2) represents the cross correlation between the feature space F1 and F2, and
σF1 and σF2 represents the standard deviation of the features F1 and F2, respectively. The
correlation(F1,F2) of the two features lies between a range of −1 to 1. If the two features
F1 and F2 are independent of each other than correlation(F1,F2) = 0. On the other
hand, if value closes to −1 or 1 then the features are related to each other.

Alternatively, we can define the correlation between two features as:

correlation(F1,F2) = �(F1i − F̄1)(F2i − F̄2)√
�(F1i − F̄1)2�(F2i − F̄2)2

(2)

where F̄1 and F̄2 represents the mean of specific features.
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Algorithm 4 shows a complete flow of the process of feature selection using correlation.
Features FN and correlation limit Cr are used as the input for computing the correlation
between individual pair of features. A positive value of correlation signifies that an increase
in the value of a given feature, the corresponding feature also increases. Similarly, a negative
correlation coefficient indicates an increase in a given feature’s value; the corresponding
feature decreases. Keeping this in mind, we take the absolute value of these correlation
coefficients to bring values in range 0 to 1 to compare it with the positive threshold of Cr . If
the correlation is above a certain given threshold, Cr , the corresponding feature is removed;
otherwise, the useful features are saved in FX . This was performed because the features
with high correlation can harm the model’s accuracy, as features with high correlation are
more linearly dependent and hence have almost the same effect on the dependent variable.
So, when two features have high correlation, we can drop one of the two features. The
use of highly correlated features can make it difficult for our machine learning model to
optimize and, in turn, impact its accuracy. This approach of selecting features makes our
model computationally efficient in testing stages. We performed extensive experiments on a
range of correlation thresholds with a comparison based on accuracy achieved on Machine
Learning classifiers.

4.2.3 Additional feature selection techniques

Apart from the above feature selection techniques, we have also used some additional fea-
ture selection techniques in the experiment to check the classification task. The experiments
were performed using the state-of-the-art feature selection techniques as follows:

Maximun Relevance Minimum Redundancy (mRMR): mRMR-based feature selection tech-
nique, is used to select a subset of features having the most correlation with a class
(relevance) and the least correlation between themselves (redundancy). It is used in the
proposed approach to select more informative feature set. The detailed description of the
feature selection technique mRMR can be found in [29].

Relief-based Feature Selection: Relief-based feature selection technique is used as it ranks
each feature based on the score and helps the model to select best features based on score
for classification. The detailed description of the Relief-based feature selection technique
can be found in [59].
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Quadratic Programming Feature Selection (QPFS): QPFS is based on optimizing a quad-
ratic function that is redesigned in a lower-dimensional space using the Nystrom approxi-
mation. It either uses PCC or mutual information as the underlying measure of similarity.
It is computationally more efficient. The detailed description of the QPFS-based feature
selection technique can be found in [55].

4.3 Machine learning classifier

The proposed methodology’s performance for each classifier is evaluated on the metrics
defined in Section 5.2. After Feature extraction and selection, the final features FX are
then utilized for training various machine learning classifiers. The classifiers used in the
experiments include: Support Vector Machines (SVM) [21], Logistic Regression (LR) [32],
k-Nearest Neighbor (kNN) [5], Decision Trees (DT) [51], Random Forest (RF) [12] and
XGBoost (XGB) [16]. All these algorithms are evaluated by employing five-fold stratified
cross-validation using evaluation metrics: accuracy (Ac), sensitivity (Sen), specificity (Spe),
F1-Score, matthews correlation coefficient (MCC) and area under the curve for ROC curve.

5 Result analysis and discussion

5.1 Implementation details and hyper-parameter settings

The experimentation of the proposed methodology is implemented using Python 3.8 pro-
gramming language with a processor of Intel® Core i5-8300H CPU @ 2.30GHz with 8GB
RAM on Windows 10 with NVIDIA GeForce GTX 1050 with 4GB Graphics. The model
on the above configuration is fine-tuned for 60 epochs with a batch size of 32. For opti-
mization, Adam optimizer [38] is used to optimize the loss function. For the ML classifiers,
the parameters and hyper-parameters used for different classifiers are listed in Table 3 [11].
As every pre-trained model accepts input in a pre-defined input size, the input image are
resized to 224 × 224.

5.2 Performancemetrics

To evaluate the efficiency of the proposed framework, the confusion matrix 〈T P, T N,FP,

FN〉 are exploited [26] along with the area under curve (AUC) [30, 67] property. AUC for
ROC curve helps to check how well a classifier is able to distinguish in between various
classes.

Performance metrics given below with five-fold stratified cross validation are used to test
the model’s usefulness and productivity. Accuracy (Ac), as measured using (3) is the mea-
sure of correctly classified samples from the total samples. Sensitivity (Sen) as measured
using (4) is the rate of correctly identifying the actual positives from the samples. Speci-
ficity (Spe), in (5) measures the rate of correctly identifying the actual negatives from the
samples.

Accuracy (Ac) = T P + T N

T P + FP + FN + T N
(3)

Sensitivity (Sen) = T P

T P + FN
(4)
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Table 3 Selected hyper-parameters for various ML classifiers

Classifier Hyper-parameter(s) Value

SVM Regularization Constant (C) 1.0

Decision function shape One versus rest

Gamma Scale

Kernel Radial basis function

Tolerance 0.001

LogisticRegression regularization constant (C) 1.0

Penalty l2

Tolerance 0.0001

KNeighborsClassifier Metric Minkowski Distance

# of Neighbors 3

Weights Uniform

DecisionTreeClassifier Criterion Gini

Max Depth 5

Min Samples Leaf 1

Min Samples Split 2

Splitter Best

RandomForestClassifier Bootstrap True

Criterion Gini

Max Depth 20

Max Features 10

N Estimators 1000

XGBClassifier Base Score 0.97

Booster Gradient Boosting Tree

Max Depth 3

N Estimators 1000

Objective Logistic Regression

Specif icity (Spe) = T N

T N + FP
(5)

where TP, TN, FP and FN are true positive, true negative, false positive and false negative,
respectively.

F1-score as given in (6) is a measure that reports the balance between precision and
recall.

F1 − score = 2 ∗ T P

2 ∗ T P + FP + FN
(6)

MCC: MCC as given in (5) stands for Matthews Correlation Coefficient which takes into
account TP, TN, FP and FN to form a balanced measure which can even be used for classes
of different sizes [47].

MCC = T P ∗ T N − FP ∗ FN√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

(7)
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ROC-AUC: Receiver operating characteristics (ROC) curve is the curve between True
Positive Rate (TPR) and False Positive Rate (FPR) for a classifier. Area under the curve
for ROC [30, 67] is an effective measure to check ML classifier.

5.3 Performance evaluation of the proposedmethodology

As per the previous works, the number of publically available COVID-19 images are very
scarce and, therefore, for evaluating the robustness of any approach, extensive experimen-
tation must be performed.

5.3.1 Correlation-based feature classification

The proposed methodology for the prediction of COVID-19, inputs the chest X-ray image
dataset as explained in Section 3. The entire dataset contains two different datasets D1
and D2, wherein D1 contains three different classes, namely, COVID-19, Pneumonia and
Normal while dataset D2 consists of two classes, namely, Pneumonia and Normal which
are further be used to train the aforementioned CNNs for feature extraction process.

Correlation-based selected features are input to the ML classifiers which accurately pre-
dict the feature vectors and produce accurate multi-class classification results. Extensive
experimentation among the correlation thresholds (from 0.75 to 0.95) are carried out in
order to identify the best results. From the experiments it is observed that the threshold cor-
responding to the value of 0.85 yields better results than other thresholds. Thereafter, ML
approaches, namely 〈SVM, LR, kNN, DT, RF and XGB〉 are used with the performance
metrics 〈Ac, Sen, Spe, F1-score, MCC and AUC〉. Among them the most concerned perfor-
mance metric is Ac, Sen and Spe for performance comparison with previous related works.
The obtained results are the average of five-fold stratified cross validation results. It can
be observed that the best overall Ac achieved is 97.87% by XGB classifier with a Sen, Spe
and F1-score value of 97.87%, 98.83% and 97.87%, respectively. The second best perfor-
mance is achieved by LR classifier with a marginal difference in performance with the XGB
classifier. The comparison among different classifiers over the datasetD1 for the classifica-
tion is depicted in Table 4. After XGB, SVM classifier with an Ac 96.7%, Sen 96.70%, Spe
98.35% and F1-score 96.60% occupies the third place in the performance graph of ML
classifiers. Further in the row, RF with Ac 94.70%, Sen 94.70%, Spe 97.35% and F1-score
94.68%, kNN with Ac 94.62%, Sen 94.62%, Spe 97.31% and F1-score 94.59% and DT
with Ac 89.83%, Sen 89.83%, Spe 94.91% and F1-score 89.84% performed in descend-
ing order of metrics evaluation. The visual representation of the results are illustrated using
confusion matrix in Fig. 4 by each of the ML classifiers for COVID-19 classification.

Table 4 Performance metrics using proposed methodology based on PCC feature selection with ML
classifiers using five-fold stratified cross-validation

ML Classifier Ac (in %) Sen (in %) Spe (in %) F1-score (in %) MCC (in %) AUC (in %)

SVM 96.70 96.70 98.35 96.70 95.09 99.71

LR 97.83 97.83 98.91 97.83 96.75 99.84

kNN 94.62 94.62 97.31 94.59 92.00 98.30

DT 89.83 89.83 94.91 89.84 84.77 95.28

RF 94.70 94.70 97.35 94.68 92.08 99.38

XGB 97.87 97.87 98.93 97.87 96.82 99.89
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Fig. 4 Confusion matrices for the features obtained by correlation phenomenon over respective classifiers
for the validation dataset: (a) SVM (b) LR (c) kNN (d) DT (e) RF and (f) XGB with reference to COVID-19,
Normal and Pneumonia patient‘s chest X-ray images

5.3.2 Auxiliary feature selection-based results

The results for the additional feature selection techniques are thus tabulated in Tables 5, 6
and 7.

Table 5 infers that LR gave the best results out of all the classifiers with an Ac, Sen,
Spe, and F1-Score of 97.50%, 97.50%, 98.75%, and 97.49%, respectively. When compared
with the performance of the correlation-based results, it outputs lower accuracy content (as
shown in Table 4). Table 6 shows the results of the Relief-based extracted feature classifi-
cation by the ML classifiers. XGBoost, among all the used classifiers, gave the best results
with an Ac, Sen, Spe, and F1-Score, 93.79%, 93.79%, 96.89%, and 93.77%, respectively.
It can be inferred that the obtained results from the relief-based features are less when
compared to the results obtained from correlation-based feature selection as shown in
Table 4. Similarly, Table 7 shows the additional results for the QPFS-based extracted fea-
ture classification through ML classifiers. XGBoost Classifier (XGB) gave the best results
with an Ac, Sen, Spe, and F1-Score, 95.75%, 95.75%, 97.87%, and 95.74%, respectively.
The results obtained from using QPFS-based feature selection are quite less than the results
obtained from correlation-based feature selection as shown in Table 4.

Table 5 Performance metrics based on mRMR feature selection technique with ML classifiers using five-
fold stratified cross-validation

ML Classifier Ac (in %) Sen (in %) Spe (in %) F1-score (in %) MCC (in %) AUC (in %)

SVM 94.95 94.95 97.47 94.94 92.45 99.44

LR 97.50 97.50 98.75 97.49 96.26 99.81

kNN 91.20 91.20 95.60 91.18 86.83 96.96

DT 86.33 86.33 93.16 86.33 79.61 94.27

RF 89.20 89.20 94.60 89.15 83.82 97.79

XGB 96.66 96.66 98.33 96.65 95.01 99.79
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Table 6 Performance metrics based on Relief-f feature selection technique with ML classifiers using five-
fold stratified cross-validation

ML Classifier Ac (in %) Sen (in %) Spe (in %) F1-score (in %) MCC (in %) AUC (in %)

SVM 91.83 91.83 95.91 91.80 87.76 98.63

LR 92.20 92.20 96.10 92.19 88.32 98.63

kNN 87.83 87.83 93.91 87.79 81.76 95.27

DT 87.16 87.16 93.58 87.14 80.80 94.43

RF 88.25 88.25 94.12 88.18 82.46 97.17

XGB 93.79 93.79 96.89 93.77 90.71 99.05

5.3.3 Deep feature-based classification

To validate the efficacy of the classification on the dataset D1 and D2, an additional set of
experiments utilizing the deep architectures, ResNet152 and GoogLeNet for deep feature
extraction with ML classification are performed. Each network model generates represen-
tation vectors from images XD1 using the dataset D1. These vectors are then fed as input
to the ML classifiers which infer if the image is COVID-19 or not. Predictions on the per-
formance metrics as explained in Section 5.2 are obtained by each model. Corresponding
results for each model’s prediction are summarized in Tables 8 and 9, respectively, confirm-
ing the robustness and effectiveness of the extracted features when used with pre-trained
ImageNet CNN models. In total, 5216 images are used for training the deep models and
the performance metrics in form of Ac, Sen, Spe, F1-score andMCC are presented for each
class.

It is inferred that the model ResNet152 behaved much better than its GoogLeNet coun-
terpart. The higher values for the performance is achieved by LR classifier with Ac of
96.87%, Sen 96.87%, Spe 98.43% and F1-score 96.87% with second best performance of
XGB with Ac of 96.83%, Sen 96.83%, Spe 98.41% and F1-score 96.83%. The third best
performance of Ac of 96.62%, Sen 96.62%, Spe 98.31% and F1-score 96.61% are obtained
by SVM. It can clearly be analysed that the model has produced consistent results with dif-
ferent ML predictive classifiers. Similar behaviour is seen in the results produced by the
GoogLeNet architecture wherein the LR architecture performed with best results yielding
an Ac of 96.87%, Sen 96.87%, Spe 98.43% and F1-score 96.87% with second best perfor-
mance of SVM with Ac of 96.62%, Sen 96.62%, Spe 98.31% and F1-score 96.61%. The

Table 7 Performance metrics based on QPFS feature selection technique with ML classifiers using five-fold
stratified cross-validation

ML Classifier Ac (in %) Sen (in %) Spe (in %) F1-score (in %) MCC (in %) AUC (in %)

SVM 95.37 95.37 97.68 95.34 93.10 99.54

LR 94.91 94.91 97.45 94.90 92.39 99.47

kNN 92.87 92.87 96.43 92.79 89.46 97.61

DT 86.12 86.12 93.06 86.05 79.40 93.67

RF 93.62 93.62 96.81 93.60 90.46 99.06

XGB 95.75 95.75 97.87 95.74 93.63 99.56
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third best performance by XGB has Ac, Sen, Spe and F1-score of 87.83%, 87.83%, 98.41%
and 96.83%, respectively.

In order to get further insight about the features of ResNet152 and GoogLeNet, fea-
ture visualization is employed using Grad-CAM technique. Grad-CAM plots the gradient
weighted class activation mapping for providing the explainable view of deep learning mod-
els used. Figure 5 shows the concerned class activation mappings of the regions of potential
features identified by ResNet152 and GoogLeNet on COVID-19, Normal and Pneumonia
images.

From Fig. 5, it is observed that ResNet152 is able to focus on more specific areas than
GoogLeNet in a way that it has better understanding of the feature region. The class activa-
tion maps by ResNet152 signifies better quantitative results as tabulated in Table 8. Though
GoogLeNet has also identified the features effectively, but has performed quantitatively
less than ResNet152 as tabulated in Table 9. Similarly, visualization graph in the form of
t-SNE [60] graphs are plotted for the extracted features from ResNet152, GoogLeNet and
their combined features using PCC as shown in Fig. 6. Figure 6c shows that the Normal
class features are accurately segregated from the other two classes. On the other hand, Pneu-
monia and COVID-19 classes have visibly distinct regions. However, GoogLeNet has also
a similar pattern of features, they have a more intermix of the features among Pneumonia
and COVID-19 classes than PCC based features. On the other hand, ResNet152 has a rather
complex intermix of features from Pneumonia and COVID-19.

Further, to analyze the possibility of using a light-weight feature extractor, we vali-
dated the proposed model with MobileNet [33] model architecture. Table 10 shows the
additional results of the MobileNet-based extracted feature for classification with ML clas-
sifiers. Of all, LR gave the best results with an Ac, Sen and Spe and F1-Score of 96.41%,
96.41%, 98.20%, and 96.41%, respectively. The MobileNet has under-performed with
respect to GoogLeNet and ResNet152 in classification tasks as were shown in Tables 9 and
8, respectively.

Fig. 5 Grad-CAM images from the deep learning models identifying COVID-19, Normal and Pneumonia
region
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Table 8 Performance metrics using the deep extracted feature with ResNet152 architecture for classification
by ML classifiers with five-fold stratified cross validation

ML Classifier Ac (in %) Sen (in %) Spe (in %) F1-Score (in %) MCC (in %) AUC (in %)

SVM 96.62 96.62 98.31 96.61 94.96 99.69

LR 96.87 96.87 98.43 96.87 95.32 99.61

kNN 94.41 94.41 97.20 94.37 91.71 98.22

DT 88.37 88.37 94.18 88.38 82.57 93.77

RF 84.62 84.62 97.31 94.60 91.95 99.22

XGB 96.83 96.83 98.41 96.83 95.27 99.73

Table 9 Performance metrics using the deep extracted feature with GoogLeNet architecture for classification
by ML classifiers with five-fold stratified cross-validation

ML Classifier Ac (in %) Sen (in %) Spe (in %) F1-Score (in %) MCC (in %) AUC (in %)

SVM 96.62 96.62 98.31 96.61 94.96 99.69

LR 96.87 96.87 98.43 96.87 95.32 99.61

kNN 77.12 77.12 88.56 76.89 65.81 88.85

DT 80.79 80.79 90.39 80.71 71.32 91.61

RF 84.00 84.00 92.00 87.97 76.07 95.42

XGB 87.83 87.83 93.91 87.80 81.79 96.98

Fig. 6 t-SNE Plot for features extracted from (a) ResNet152, (b) GoogLeNet and (c) Combined features of
ResNet152 and GoogLeNet with PCC

Table 10 Performance metrics using the deep extracted feature with MobileNet architecture for classification
by ML classifiers with five-fold stratified cross-validation

ML Classifier Ac (in %) Sen (in %) Spe (in %) F1-Score (in %) MCC (in %) AUC (in %)

SVM 95.62 95.62 97.81 95.60 93.49 99.34

LR 96.41 96.41 98.20 96.41 94.64 99.63

kNN 93.75 93.75 96.87 93.74 90.67 97.48

DT 87.20 87.20 93.60 87.14 80.95 91.45

RF 94.41 94.41 97.20 94.40 91.66 98.87

XGB 96.00 96.00 98.00 95.99 94.02 99.40
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Fig. 7 Confusion matrices for the features obtained by ResNet152 architecture over respective classifiers for
the validation dataset: (a) SVM (b) LR and (c) XGB with reference to COVID-19, Normal and Pneumonia
patient’s chest X-ray images

The visual representation of the results are illustrated using confusion matrix in Figs. 7
and 8 by each of the ML classifiers for COVID-19 classification. They explicitly show the
output of a classification model on a collection of test data on which the true values are
known. Figure 7 presents the confusion matrix for the pre-trained ResNet152 model. As can
be seen from Fig. 7, most of the COVID-19 image samples are correctly classified with the
minimal of COVID-19 samples as mis-classified. The rate of correct classification make
this model appropriate for multi-class image classification among COVID-19, Normal and
Pneumonia.

Similar is the case with the GoogLeNet architecture whose corresponding confusion
matrix-based performance by each of the predictive classifiers are shown in Fig. 8.

A statistical indicator that measures the linear association between variables is the Pear-
son correlation coefficient (PCC) [45]. It can take values from −1 to +1. A value of +1 is
the total positive linear correlation with 0 not being a linear correlation, and the total nega-
tive linear correlation is −1. In this study, in order to minimise the size of the feature space
to an optimum number of features, we used PCC for the feature analysis scheme. For each
pairwise function combination, the PCC results in a matrix (Fig. 9). Analysis of the his-
togram of the feature pool of the correlated features depicted in Fig. 10 show that more than
7000 features have zero correlation coefficient with the features are decreasing as the per
the increasing correlation coefficient. It indicates that comprehensive feature pool is created
in this study which contain relatively less redundancy.

Fig. 8 Confusion matrices for the features obtained by GoogLeNet architecture over respective classifiers for
the validation dataset: (a) SVM (b) LR and (c) XGB with reference to COVID-19, Normal and Pneumonia
patient‘s chest X-ray images
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Fig. 9 Heatmap of the selected features derived using PCC

5.3.4 The ROC and the bar graphs

To further examine the efficacy of the proposed approach, we evaluated the overall com-
parison between the models for all the threshold values. For this, receiver operating
characteristics (ROC) curves are used to demonstrate the diagnostic potential of a classifier
system when the threshold for discrimination is varied. They provide the true positive rate
as a function of false positive rate and plot a graph between the two. The ROC curves for the
feature extraction followed by ML-based classification using the deep models: ResNet152
and GoogLeNet, are as shown in Fig. 11a and b.

Striking performance of the ML classifiers in accurately understanding the ResNet152
architecture-based features is seen. Figure 12 shows the comparison between the achie-
ved Ac, Sen and Spe for the ResNet152 and GoogLeNet based deep features with ML-based
classification.

Every classifier in Fig. 12a classifying the deep model ResNet152 based features, have
a higher AUC (near to 1) which is better when compared to Fig. 12b, which has the

Fig. 10 Distribution of selected feature pairs over PCC
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Fig. 11 ROC curves using (a) ResNet152 and (b) GoogleNet with various machine learning classifiers

classification based on the GoogLeNet based extracted features. Classifier DT for the
ResNet152 based feature classification performed lowest among all the classifiers while
every classifier in the case of GoogLeNet based feature classification case performed
equally but less when compared to ResNet152.

Similarly, the performance for correlation-based feature selection with the ML based
classification approach is shown in the Fig. 13. The best performance in terms of the AUC
for ROC curves is depicted by XGB classifier with a value of 1 while all the other classifiers
achieving values close to 1. Figure 14 shows the comparison among the achieved Ac, Sen
and Spe for the combined features (ResNet152+GoogLeNet) based deep features with ML
based classification.

A detailed comparison of the proposed approach with the state-of-the-art methodologies
is presented in Table 11 which infers successful and better results for the proposed frame-
work. Wang et al. [61] introduced COVID-Net architecture for the diagnosis of COVID-19
over X-ray dataset using tailored CNN and reported an accuracy of 92.6% for the disease
classification. Similarly, Afshar et al. [2] suggested a deep learning method focused on a

Fig. 12 Bar plots using (a) ResNet152 and (b) GoogleNet with various machine learning classifiers
comparing accuracy, senstivity and specificity
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Fig. 13 ROC curves using correlation-based feature selection with various ML classifiers

capsule network, to detect the COVID-19 using chest X-ray images and achieved classifi-
cation accuracy 95.17%, which is less than our proposed methods for COVID-19 and other
classes. In another study, Ghoshal et al. [24] introduced a deep model based on Bayesian
Convolutionary Neural Networks to classify COVID-19 over chest X-ray images. In their
findings, they reported an accuracy of 88.39% to classify the disease accurately. For the
detection of COVID-19, Li et al. [43] suggested a discriminative cost-sensitive learning
based model and reported an accuracy of 97.01% over chest X-ray images. Sethy et al. [57]
presented a deep CNNs architecture using the ResNet50 model with SVM for the detection
of COVID-19 and reported an accuracy of 95.38% to classifier infected patients with X-ray
images. In order to quantify the effects of five separate deep architectures, Apostolopou-
los et al. [6] suggested a transfer learning method for the detection of COVID-19 infected
patients and reported an overall accuracy of 93.48% over X-ray images.

Fig. 14 Bar plots using correlation-based feature selection with various ML classifiers comparing Ac, Sen
and Spe
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Table 11 Comparison of different models against the same dataset using three metrics

Study Methodology Ac (in %) Sen (in %) Spe (in %)

Wang et al. [61] Tailored CNN 92.60 – –

Afsharet al. [2] CNN-based Capsule Networks 95.70 80.0 98.6

Ghoshal et al. [24] Bayesian CNN (ResNet50) 88.39 – –

Li et al. [43] Discriminative cost-sensitive learning 97.01 97.21 –

Sethy et al. [57] ResNet50+SVM 95.38 97.29 93.47

Apostolopoulos et al. [6] VGG19 93.48 92.85 98.75

Proposed methodology CNN+PCC+ML-classifier 97.87 97.87 98.93

6 Conclusion

We presented a framework combining ML and DL techniques for COVID-19 detection
using chest X-ray images, by correlating deep features from pre-trained ResNet152 and
GoogLeNet with the ML-based classifiers. We extracted the rich set of COVID-19 images
from the public logging domain and used as a source of extracting features. A detailed
analysis on the feature correlation has been performed in terms of Ac, Sen, Spe, F1-score,
MCCand ROC. ML-based classifiers have accurately identified the extracted features and
performed better than the previous related works for COVID-19 feature detection. XGBoost
(XGB) has outperformed among all the classifiers with an Ac, Sen, Spe and F1-score of
97.87%, 97.87%, 98.93% and 97.87%, respectively. It is highly encouraging that the pro-
posed model assured that the X-ray images can effectively be used for COVID-19 diagnosis.
The dataset contains 768 COVID-19 images with 800 Normal and 800 Pneumonia images.
Combining many COVID-19images with less Pneumonia and Normal images have encour-
aged us in analysing the efficacy of the approach used. The work presented here, has been
a structured attempt in classifying the dataset in time-bound manner. However, many more
experiments can be performed on account of more COVID-19 images for reliable estima-
tion of the deep learning architectures used. The major limitation of the proposed work is
the unavailability of a large number of images for COVID-19 which could have helped the
authors for scratch training of the pre-trained network architectures used. For the future
works, the radiological expertise can also be incorporated for removing the irregularities in
annotated dataset. For the protection of health line workers in the front-end of the process,
we are aimed to develop contact-less diagnostic methods for image capture.
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