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Abstract
Nowadays, heart diseases are significantly contributing to deaths all over the world. Thus,
heart-disease prediction has garnered considerable attention in the medical domain globally.
Accordingly, machine-learning algorithms for the early prediction of heart diseases were
developed in several studies to help physicians design medical procedures. In this study, a
hybrid genetic algorithm (GA) and particle swarm optimization (PSO) optimized approach
based on random forest (RF), called GAPSO-RF, is developed and used to select the optimal
features that can increase the accuracy of heart-disease prediction. The proposed GAPSO-RF
implements multivariate statistical analysis in the first step to select the most significant
features used in the initial population. After that, a discriminate mutation strategy is imple-
mented in GA. GAPSO-RF combines a modified GA for global search and a PSO for local
search.Moreover, PSO achieved the concept of rehabbing individuals that had been refused in
the selection process. The performance of the proposed GAPSO-RF approach is validated via
evaluation metrics, namely, accuracy, specificity, sensitivity, and area under the receiver
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operating characteristic (ROC) curve by using two datasets from the University of California,
namely, Cleveland and Statlog. The experimental results confirm that the GAPSO-RF
approach attained the high heart-disease-prediction accuracies of 95.6% and 91.4% on the
Cleveland and Statlog datasets, respectively. Furthermore, the proposed approach
outperformed other state-of-the-art prediction methods.

Keywords Cleveland dataset . Feature selection (FS) . Genetic algorithm (GA) . Particle swarm
optimization (PSO) . Heart-disease prediction . Random forest (RF) . Statlog dataset

1 Introduction

The heart pumps blood to the entire human body. Coronary arteries are the blood-vessels that
transport oxygenated blood to the heart [36]. The shrinking of coronary arteries is the primary
cause of heart failure (HF). Heart diseases are one of the major reasons of human mortality, as
reported by the World Health Organization. In 2013, heart diseases caused the highest number
of deaths globally, at approximately 17.3 million. Similarly, in 2016, approximately 17.6
million deaths were attributed to heart diseases, amounting to a rise of 14.5% from 2006 [10].
Moreover, patients with HF suffer from other symptoms as well, including difficulty in
breathing, weakness, and swollen feet [14]. Heart diseases may be managed or controlled if
trained medical professionals detect them at their early stages, thereby enabling them to make
the correct decision. Therefore, early detection of heart diseases is critical to improving HF
symptoms and extending the lives of patients [8]. The medical history of a patient includes a
substantial number of features. However, not all these features may be equally significant, and
some may even be redundant. Additionally, using all the features at once deteriorates the
performance of diagnosis. Most research-based on heart-disease prediction focused on two
factors: selecting the best features while dismissing the irrelevant ones and choosing an
appropriate classifier. Therefore, the prediction methods are aimed at selecting the optimal
features and an appropriate classifier. Recently, machine-learning-based methods have im-
proved the quality of our lives, especially in the medical domain [2, 5, 7, 20, 46, 48, 49, 53].

Many research papers have used machine learning to diagnose heart disease and predict
whether a patient has heart disease [1, 25, 28–30, 51]. Recently, Amin et al. [5] presented a
hybrid technique that comprised Naïve Bayes (NB), logistic regression, and feature selection
(FS). Revett et al. [44] deployed the use of rough sets to determine the information content of
each subset of the feature space. Furthermore, support vector machines (SVMs) were applied
in some researches including [48, 49]. Saqlain et al. [46] implemented Fisher score for FS and
SVM for classification. Saifudin et al. [45] applied bagging based on random forest (RF) to
improve classification accuracy of heart disease. Subsequently, Gupta et al. [19] used Yule-
Walker (YW) and Principal Component Analysis (PCA) for R-peak Detection in Electrocar-
diogram (ECG) signal, during the detection process regular and abnormal signals were
considered. The results obtained using PCA with YW carried out the results using PCA
without YW. Besides, FS was also implemented in other domains [27] to increase the
classification accuracy by presenting a multi-layer hybrid technique to detect peer to peer
botnets. A decision tree algorithm is applied for feature selection to extract the most relevant
features and ignore the irrelevant features. They achieved high accuracy by using a decision
tree algorithm and their experiments prove the benefits of using multi-layer instead of single
layer. In addition, Reddy et al. [41] proposed an approach for diabetes diagnosis, the authors
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used Locality Preserving Projection (LPP) algorithm for feature reduction and Firefly-BAT
(FFBAT) optimization algorithm with artificial neural network (ANN) for diabetes disease
classification. The results have proved that the proposed classification framework outperforms
the existing method by achieving better accuracy. In conclusion, FS is the most crucial step in
increasing the accuracy of heart-disease diagnosis. For example, a doctor might decide
regarding a patient who suffers from HF based on classification implemented using the
selected features. The previous researches gave more attention to improving and developing
classification methods than selecting the best features. In addition, it needs to improve the
accuracy rate.

The objectives of this work are: 1) Select the best features, 2) Improve the heard disease
prediction accuracy, and 3) Improve the complexity time. Therefore, we introduce an efficient,
hybrid genetic algorithm (GA) and particle swarm optimization (PSO) approach based on
random forest (RF) for optimizing the FS process to select the crucial features that increase the
accuracy of heart-disease diagnosis. The main contribution of this paper is to develop a hybrid
approach, called GAPSO-RF, for heart-disease prediction. First, a discriminate mutation
strategy based statistical analysis is applied to be used in the adaptive mutation operator for
GA. Second, a modified genetic algorithm with PSO supported by the RF algorithm is used to
select the best features. PSO is used to target the rejected individuals of each generation to
fulfill the concept of rehabbing the rejected individuals, maximizing the utilization of all
individuals in each generation. Finally, the proposed GAPSO-RF is validated via evaluation
metrics, namely, accuracy, specificity, and area under the receiver operating characteristic
(ROC) curve by using two heart-disease datasets from the University of California (UCI),
Irvine, machine learning repository [13], namely, Cleveland and Statlog. Experimental find-
ings suggest that the proposed GAPSO-RF achieves high prediction accuracies.

The rest of this paper is structured as follows. Section 2 illustrates the related work. The
materials and proposed approach are discussed in Section 3, including the description of both
the datasets, background concepts related to FS, and classification process. The experimental
results are provided in Section 4, including a comparative analysis of our method with those in
the literature. Finally, the conclusions are drawn in Section 5.

2 Related works

Recent researches have been focused on FS, prediction, and increasing the heart-disease-
prediction accuracy. This section overviews the recently published related researches. Lately,
Mohammad S. Amin et al. [5] developed a heart-disease-prediction model by using the
identified best features and data-mining algorithms on the Cleveland dataset. Subsequently,
Saqlain et al. [46] employed Fisher score and the Matthews correlation coefficient as an FS
algorithm and SVM for binary classification to diagnose heart diseases on several datasets.
Purnomo et al. [39] applied FS in the form of backward elimination on NB to increase
classification accuracy on heart-disease from 84.29% to 89.45%. Besides, a fuzzy algorithm
was used as another solution by Vivekanandan and lyengar [51]. Priyatharshini and Chitrakala
[38] developed a self-learning fuzzy rule-based system to predict heart disease, the authors
achieved an overall accuracy 90.7%. Subsequently, Halder er al. [21] implemented comput-
erized diagnosis system using Rough set classifier from multi-lead ECG signal for the
classification of myocardial infarction (MI) disease. Dwivedi [15] applied different algorithms,
namely, ANN, SVM, logistic regression, k-nearest neighbors (KNN), classification tree, NB,
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and achieved the highest accuracy in logistic regression. Recently, Krishnaiah et al. [29]
proposed a fuzzy KNN approach by presenting an exponential membership function with
standard deviation, and they calculated the mean of the attributes measured. Buettner and
Schunter [11] performed classification using the RF algorithm, which they validated on the
Cleveland dataset. Notably, their method was not an FS approach. However, several studies,
including [35, 50], used GAs for performing FS. Ismaeel et al. [22] proposed an improved
extreme learning machine algorithm and implemented it on the Cleveland dataset; their
algorithm performed better than back-propagation neural networks. El-Bialy et al. [16]
performed FS using fast decision tree and C4.5 pruning tree algorithms. Saxena et al. [47]
used decision-trees for rule generation. Reddy et al. [43] implemented an adaptive genetic
algorithm with fuzzy logic to predict heart disease based on a rough set for features selection.
However, the previous studies on heart-disease prediction still lack optimizing FS and using an
appropriate classifier to enhance the performance of the heart-disease classification. Table 1
provides a summary of the related methods included in this study.

However, the previous studies on heart-disease prediction still lack optimizing FS and using
an appropriate classifier to enhance the performance of the heart-disease classification. Al-
though several studies proposed different FS algorithms, they did not considerably focus on
GA. While GA is best known for searching and finding the best subset features from the
original features that enhance the classification. In addition, FS is the most important factor in
improving the accuracy of heart-disease diagnosis to help doctors make the correct decision.
Therefore, we aim to select the best features by using the GAPSO-RF approach. Which selects
the best features using GA and PSO and at the same time enhance the performance of the
heart-disease classification with RF algorithm.

3 Materials and the proposed approach

We aim to select the best features to increase the heart-disease-diagnosis accuracy. Thus, an
GAPSO-RF based FS approach is proposed. Before the FS process, we implement discrim-
inate mutation strategy based statistical analysis to be used in adaptive mutation operator in
GA. After that, the features ranges are normalized by applyingmin–max normalization. During
the FS process, the proposed GAPSO-RF utilizes GA to search for a set of optimal features by
optimizing the hyper-parameters of the GA and the modified selection operator. The rejected
individuals from selection are passed to the PSO for reformation. The population of PSO will
be made of these rejected individuals who will connect to update their position and velocity to
achieve the best possible result from the non-fit individuals. The best individuals of PSO will
be injected into the new population of GA. The fitness function in both GA and PSO is
optimized using an optimized RF classifier to increase the classification accuracy. The overall
workflow of the proposed approach is illustrated in Fig. 1. Four tasks have to be performed for
prediction: (1) statistical analysis and data pre-processing, (2) GAPSO-RF utilization, (3) RF-
based classification, and (4) performance measurement. In the following subsections, we
describe the datasets, and then each step of the proposed approach is discussed.

3.1 Datasets description

In the proposed approach, two datasets, namely, Cleveland and Statlog, from the UCI
machine-learning repository are used [13]. Table 2 lists the features of both the datasets.
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Fig. 1 Workflow of the proposed GAPSO-RF approach

Table 2 Cleveland and Statlog datasets contain 14 features each

Feature Feature
Type

Feature Description

Age Numeric Patient age in years
Sex Nominal Patient gender (0 means female, and 1 means male)
Cp (suffering in

chest)
Nominal comprises the following values:

1. Angina pectoris
2. atypical angina
3. non-anginal pain
4. no symptoms

Trestbps
(Resting BP)

Numeric Resting blood pressure (in mm/Hg on hospital entry)

Chol Numeric Cholesterol in mg/dl
Fbs Nominal blood glucose when the patient is fasting >120 mg/dl; 1 when true, and 0 when

false
Restecg Nominal Rest electrocardiographic results assume one of the following three values:

0. normal
1. has ST-T wave anomalies (T-wave inversions and/or ST segment elevation or

depression of >0.05 mV)
2. it displays potential or particular left ventricular hypertrophy according to

ESTES standard
Thalach Numeric Reached maximum cardiac rate
Exang Numeric Workout led to angina (1 means yes, and 0 means no)
Oldpeak Numeric ST depression due to exercise relative to rest
Slope Nominal Slope of the ST segment during maximum workout

• upsloping
• flat
• downsloping

Ca Nominal Key vessel number colored by fluoroscopy
Thal Nominal The heart status is defined by the following three values:

• 3 means no defect
• 6 means an irreversible defect
• 7 means a reversible defect

Num Nominal It outlines two values for cardiac diagnosis: 0 means healthy (the patient has no
heart disease), and 1 means unhealthy (the patient suffers from a heart disease)
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The (Num) variable represents two values of the heart-disease diagnosis: 0 means healthy (the
patient has no heart disease), and 1 means unhealthy (the patient has a heart disease). As
shown in Fig. 2, in the Cleveland dataset, 165 records have the value of (1), and 138 have the
value of (0). In addition, in the Statlog dataset, 120 records have the value of (1), and 150 have
the value of (0).

3.2 Statistical analysis and pre-processing

3.2.1 Multivariate statistic analysis

The first step is to analyze the conditional mean and variance for each attribute conditioning on
‘Num = 1’ and ‘Num = 0’, and calculate the T2 metric for each attribute, where T2 metric is
defined as follows:

T2 ¼ X 1−X 0

h i2 1

n1
þ 1

n0

� �
Sp

� �−1
ð1Þ

where X 1 and X 0 are the mean for Num equals 1 and 0, respectively, and Sp is defined as
follows:

Sp ¼ n1−1
n1 þ n0−2

� �
S1 þ n0−1

n1 þ n0−2

� �
S0 ð2Þ

where n1 and n0 are the sample numbers when Num equals 1 and 0, respectively. In addition,
S1 and S0 are the standard deviations for Num equals 1 and 0, respectively. Tables 3 and 4
report the statistical analysis for all the attributes in the selected datasets when Num equals 1
and 0, respectively. Moreover, the T2 metric is calculated in Tables 5 and 6 for Cleveland and
Statlog datasets, respectively.

As depicted in Table 5, the attributes (Age, Trestbps, Chol, Thalach, and Oldpeak) of
Cleveland dataset have the most considerable variance. It is because these attributes are
continues, and a considerable variance is expected for continuous attributes. The attributes

Fig. 2 Distributions for the Cleveland and Statlog datasets
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(Sex, Fbs, and Restecg) are non-continuous, and have the slightest variances, so they provide
much less information according to the entropy theory. The remaining attributes (Cp, Exang,
Slope, Ca, and Thal) are non-continuous, and have the highest variances, providing the
essential information for classification. Further correlation analysis is implemented for (Cp,
Exang, Slope, Ca, and Thal) and shows some correlation between (exang) and the other four
attributes as shown in Table 7. After excluding (Exang), the remaining four attributes (Cp,
Slope, Ca, and Thal) are the most significant. These four attributes will have a lower mutation
probability (e.g., 10−3) throughout GA evolution.

Table 6 presents the T2 metric for each attribute in the Statlog dataset. The attributes
(Thalach, Chol, Thal, Trestbps, and Age) have the most considerable variance. The attributes
(Sex, Fbs, and Restecg) are non-continuous, and have the slightest variances, so they provide
much less information according to the entropy theory. The remaining attributes (Cp, Exang,
Oldpeak, Slope, and Ca) are non-continuous, and have the highest variances, providing the
essential information for classification. Further correlation analysis for (Cp, Exang, Oldpeak,

Table 3 Statistics of the attributes in the Cleveland and Statlog dataset when Num = 1

Feature Cleveland Statlog

Mean Standard Deviation Mean Standard Deviation

Age 52.496970 9.550651 56.591667 8.116273
Sex 0.563636 0.497444 0.833333 0.374241
Cp 1.375758 0.952222 3.616667 0.779823
Trestbps 129.303030 16.169613 134.441667 19.095424
Chol 242.230303 53.552872 256.466667 47.969166
Fbs 0.139394 0.347412 0.141667 0.350170
Restecg 0.593939 0.504818 1.225000 0.974140
Thalach 158.466667 19.174276 138.858333 23.130719
Exang 0.139394 0.347412 0.550000 0.499580
Oldpeak 0.583030 0.780683 1.584167 1.282067
Slope 1.593939 0.593635 1.816667 0.564843
Ca 0.363636 0.848894 1.150000 1.034286
Thal 2.121212 0.465752 5.833333 1.769648

Table 4 Statistics of the attributes in the Cleveland and Statlog dataset when Num = 0

Feature Cleveland Statlog

Mean Standard Deviation Mean Standard Deviation

Age 56.601449 7.962082 52.706667 9.509830
Sex 0.826087 0.380416 0.553333 0.498813
Cp 0.478261 0.905920 2.820000 0.927362
Trestbps 134.398551 18.729944 128.866667 16.457660
Chol 251.086957 49.454614 244.213333 54.019085
Fbs 0.159420 0.367401 0.153333 0.361516
Restecg 0.449275 0.541321 0.860000 0.990085
Thalach 139.101449 22.598782 158.333333 19.283357
Exang 0.550725 0.499232 0.153333 0.361516
Oldpeak 1.585507 1.300340 0.622667 0.800851
Slope 1.166667 0.561324 1.400000 0.590757
Ca 1.166667 1.043460 0.286667 0.648557
Thal 2.543478 0.684762 3.786667 1.556914
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Slope, and Ca) shows some correlation between (Exang) and the other four attributes as shown
in Table 8. After excluding (Exang), the remaining four attributes (Cp, Oldpeak, Slope, and
Ca) are the most significant. These four attributes will have a lower mutation probability (e.g.,
10−3) throughout GA evolution.

Table 5 The T2 metric for all attributes in the Cleveland dataset

Feature SP
X 1−X 0

T2

Age 8.827614 −4.104480 143.414563
Sex 0.444178 −0.262451 11.653548
Cp 0.931148 0.897497 65.008119
Trestbps 17.334947 −5.095520 112.557643
Chol 51.687551 −8.856653 114.044344
Fbs 0.356510 −0.020026 0.084538
Restecg 0.521432 0.144664 3.016085
Thalach 20.732938 19.365217 1359.265531
Exang 0.416513 −0.411331 30.526314
Oldpeak 1.017205 −1.002477 74.243914
Slope 0.578929 0.427273 23.697672
Ca 0.937450 −0.803030 51.693507
Thal 0.565434 −0.422266 23.697943

Table 6 The T2 metric for all attributes in the Statlog dataset

Feature SP
X 1−X 0

T2

Age 8.891049 3.885000 113.171686
Sex 0.443499 0.280000 11.785068
Cp 0.861850 0.796667 49.094218
Trestbps 17.628906 5.575000 117.536598
Chol 51.332741 12.253333 194.994691
Fbs 0.356478 −0.011667 0.025455
Restecg 0.983005 0.365000 9.035219
Thalach 20.991701 −19.475000 1204.525619
Exang 0.422820 0.396667 24.808727
Oldpeak 1.014525 0.961500 60.749741
Slope 0.579250 0.416667 19.981132
Ca 0.819832 0.863333 60.609500
Thal 1.651374 2.046667 169.105398

Table 7 Correlation analysis in the Cleveland dataset

Features CP Slope Ca Thal Exang

Cp 1 0.11971659 −0.18105303 −0.16173557 −0.39428027
Slope 0.11971659 1 −0.08015521 −0.10476379 −0.25774837
Ca −0.18105303 −0.08015521 1 0.15183213 0.11573938
Thal −0.16173557 −0.10476379 0.15183213 1 0.20675379
Exang −0.39428027 −0.25774837 0.11573938 0.20675379 1
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3.2.2 Discriminate mutation strategy in genetic algorithm

In the current GA algorithm, the individual dimension is 13 (as there are 13
attributes), so it requires a population size of 213 = 8192 individuals to cover all
possible combinations. An improvement is always selecting the attributes with the
most critical information to be endowed with less mutation probability (i.e., 10−3). In
comparison, the remaining attributes will have a higher mutation probability to
explore more individuals with higher fitness. In the simulation, the sets (Cp, Slope,
Ca, and Thal) and (Cp, Oldpeak, Slope, and Ca) are the most significant attributes for
Celeveland and Statlog, respectively, which have less mutation probability, (i.e., 10−3).
The remaining attributes will have higher but equal mutation probabilities. The
initialization of the population at the start of the GA should also be modified using
this discriminate mutation strategy. In the initial population, the individual should
always have the most significant attributes.

3.2.3 Data pre-processing

The data are normalized before performing FS. To that end, we normalize the dataset
values. This process has been gaining importance because all features may have
different data types, and it eliminates the numerical difficulties due to the different
range of values during the computation process. In the proposed approach, we
implemented min–max normalization, a technique that converts a value a to a in
the range of [max _ new − min _ new] as follows:

a ¼ a−amin
amax−amin

� max new−min new½ � þ min new; ð3Þ

where from min _ new to max _ new denotes the range of the transformed values. We
implemented min _ new = 0 and max _ new = 1. Subsequently, these transformed values
were used as input for the FS method.

3.3 Hybrid modified genetic algorithm and particle swarm optimization

FS, which is a method of selecting reduced number of appropriate features, enhances the
classification by determining the best subset of features from the set of original features. It
eliminates unnecessary features, thereby lowering the computational and memory costs. It
involves selecting a subset of features t from the total features T based on a particular
optimization criterion. GA combined with PSO was used as an FS approach to search for

Table 8 Correlation analysis in the Statlog dataset

Features CP Slope Ca Exang Oldpeak

Cp 1 0.13689972 0.22588953 0.35315984 0.16724401
Slope 0.13689972 1 0.10949768 0.25590835 0.60971157
Ca 0.22588953 0.10949768 1 0.15334736 0.25500546
Exang 0.35315984 0.25590835 0.15334736 1 0.2746722
Oldpeak 0.16724401 0.60971157 0.25500546 0.2746722 1
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optimal solutions. GA was introduced by John Holland in 1975. Although they can be used for
solving both search and optimization problems, they are best known for solving the latter
(Holland, 1992). A GA is a search heuristic that mimics the natural evolution process. It is
regularly used to produce useful solutions for the problems related to search and optimization.
Notably, GA belongs to the broader category of evolutionary algorithms (EAs). In several real-
world optimization projects, EAs have proved to be the most efficient solution. Substantially,
Holland supposed that the population size is limitless, that the fitness function correctly
represents the convenience of a solution, and that the correlations between the genes are very
small, which leads to problems [9]. Population size is limited, impacting the GA’s sampling
capacity and efficiency.

PSO were introduced by Eberhart and Kennedy [26] in 1995. It is a population-
based optimization technique that is inspired by the behavior of fish schooling or bird
flocking. PSO algorithm is one of several types of swarm intelligence algorithms. One
of several PSO’s main advantages is that it is computationally inexpensive due to its
low system requirements [37]. Using a local search approach in combination with GA
solve much of the hindrances that occur due to the finite population size. Hybridiza-
tion has proven to be an efficient way to construct capable genetic algorithms. By
adding new genes, a local search approach with GA helps neutralize much of the
challenges that exist because of the limited population size as well as the genetic drift
dilemma [6]. A GA uses the laws of genetics as its paradigm for implementing
problem-solving on a population (P) of individuals. Each individual is characterized
by a set of variables called genes. To build a chromosome, genes are combined into a
string. Therefore, each solution is represented by a chromosome.

Chromosomes Ck, where k = (1, …, P), are encoded in a binary vector Bk of length
n. Binary encoding is used to identify whether a feature is selected for input or not. The
group of all the chromosomes is referred to as population. In the initial population, the
individual should always have the four most significant attributes, (Cp, Slope, Ca, and
Thal). After that, a GA accomplishes its task via four basic operations: modified
selection, crossover, modified mutation, and fitness calculation. We believe that (non-
fit individuals) can contain good genes that can direct the search process’ cursor to
locations in the search space where significant improvements can be found. Accordingly,
in the selection operation, the rejected chromosomes (non-fit individuals) are passed to
PSO for reformation as GA searches for good chromosomes, not good genes, and the
best individuals (fittest individuals) are selected based on the value of the fitness
function, which is calculated in both GA and PSO using the RF algorithm and with
high efficiency to survive to next generation. Moreover, RF prevents over-fitting, which
is one of the main challenges in heart-disease prediction. Therefore, in the proposed
GAPSO-RF, the RF classifier is used with GA to select the best features. Algorithm 1
presents the hybrid approach using modified genetic algorithm and PSO. RFs comprise
many individual decision-trees, which function as an ensemble. An algorithm that can
construct many small decision-trees using a few features is considered computationally
cheap. If we can create several small, weak decision-trees in parallel, then by averaging
or taking the majority vote, we can combine the trees to form a single, strong learner.
Practically, RFs are the most effective learning algorithms to date. The RF algorithm is
illustrated in Algorithm 2. In the following subsections, we detail the GAPSO-RF
processes, namely, selection, crossover, and mutation.
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3.3.1 Modified tournament-selection operator

In a GA cycle, the initial population is set to be 50 and the maximum iteration number to be 30
generations. Subsequently, we begin the tournament-selection process, which is critical to
selecting the best individuals, which have been appraised for their fitness value, from the
current generation for reproduction or to be survived in the successive generation and the
rejected individuals are passed to the PSO for reformation. The population of PSO will be
made of these rejected individuals who will connect with one another to update their position
and velocity to achieve the best possible result from the non-fit individuals. The best
individuals of PSO will be injected to the new population of GA.

The fitness function was applied in GA by implementing the RF classifier, eval-
uating the score of each solution, and observing how close the solution was to the
one we needed. To calculate the fitness function, a chromosome must first be decoded
in the binary representation. Tournament selection was applied with a size of 0.26.
Although tournament selection is equivalent to rank selection with respect to the
selection pressure, it is more effective in computation and more appropriate for
parallel implementation [33].

The fitness of the individuals is calculated by 1) transforming the feature space of the
dataset, and 2) applying k-fold cross-validation or holdout validation and obtaining a high
accuracy score from the RF classifier. The selection probability of each individual is calculated
as follows:

Ps cð Þ ¼ v cð Þ
∑N

j¼1v cð Þ ð4Þ

where Ps(c) and v(c) denote the probability of selection and the fitness value for the cth
chromosome, respectively.

3.3.2 Crossover operator

In this process, two parent chromosomes are used to construct a new chromosome on the basis
of crossover probability, which is 0.5 in the experiments. The constructed chromosome has a
better string than those of its parent chromosomes. The following are the steps of the
crossover:

1) A combination of two individual strings is chosen with the assistance of the reproduction
operator.

2) A cross-site is randomly picked alongside the length of the string.
3) swapping the positions of values between the two strings.

3.3.3 Modified mutation operator

Upon the completion of the crossover process, the strings undergo mutation, which is the
random change in the value of a gene. Mutation means that we flip a single bit from 0 to 1 or
vice versa. The mutation operator is used to obtain a better solution by changing the current
one. Mutation prevents the GA from being stuck in a local minimum. The mutation operator is
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modified by implementing the discriminate mutation strategy based statistical analysis as
illustrated in Section 3.2.2.

3.4 Random forest classification

In the proposed approach, the RF algorithm is used for binary classification. RF constructs
many decision-trees during the training period and generates a class that has a mean prediction.
The hyper-parameters of RF were tuned using a grid search. A wide range of parameter values
were implemented in grid search as shown in Table 9. The best set of parameters extracted
from the grid search was used to train random forest to get max classification accuracy.

We specify the number of random trees as 1000, maximal depth as 10 using confidence 0.5
in vote strategy and Gini impurity in criterion (split criterion); pruning and pre-pruning are
applied; minimal leaf size is 2; the minimal size for splitting is 4. The Gini impurity is
calculated as follows:

G ¼ ∑C
j¼1p jð Þ* 1−p jð Þð Þ ð5Þ

where C denotes the number of classes and p(j) the probability of choosing a class j data point.

3.5 Performance measures

Four measures were implemented to assess the performance of the classification models:
accuracy, recall, precision, receiver operating characteristic (ROC), and area under the ROC
curve (AUC). Accuracy represents the rate of correctness of a classifier. Therefore, we take the
sum of true positive (TP) records and true negative (TN) records and then divide by the total
number of records which represents the sum of TN, TP, false negative (FN) and false positive
(FP); thus, accuracy denotes the ratio of the number of correctly predicted records to the total
number of records, as shown in Eq. (6). Recall represents the rate of values that measures
positive records that the classifier correctly predicted. Moreover, it is called true positive rate
(TPR) or sensitivity. Thus, recall is calculated as shown in Eq. (7). Precision is the ratio of TP
records to the total of positive predicted records, as shown in Eq. (8). The ROC curve is a
graph of TPR versus false positive rate (FPR), where TPR is on the y-axis and FPR on the x-
axis. The AUC metric is used to calculate AUC, and it describes the separability measurement
or degree. It informs how the model can identify among classes.

Accuracy ¼ TN þ TPð Þ
TN þ TP þ FN þ FP

ð6Þ

Table 9 Grid search values for the proposed RF

Parameter Grid search value

No of trees 50, 100, 200, 500, 1000, 2000
max_depth 3, 5, 10, 15
min_samples_split 2, 5, 10, 20
min_samples_leaf 1, 5, 10, 12
max_features auto, log2, sqrt
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Recall ¼ TP
FN þ TP

ð7Þ

Precision ¼ TP
FPþ TP

ð8Þ

4 Experiments results and discussion

In this section, two public datasets, namely, Cleveland and Statlog, are used to evaluate the
proposed approach, and then the classification performance of our approach is compared with
those of other state-of-the-art methods. Moreover, the proposed approach will be compared
with the methods that implement GA and with those that do not implement GA. In addition,
we will discuss the complexity of the proposed approach.

4.1 Experimental setup

In this section, two types of experiments are implemented on the Cleveland and Statlog
datasets to assess the efficacy of the proposed model. All the computations are performed
on Google CoLab, which provides GPU Tesla k80 with 12 GB of GDDR5 VRAM, and Intel
Xeon Processor with two 2.20-GHz cores and 13 GB RAM. Moreover, the Python program-
ming software package scikit-learn is used for the experiments.

4.2 Results of the Cleveland dataset

The model was applied on the Cleveland heart-disease dataset, which had 13 features. All the
303 heart-disease records of the dataset were considered. To assess the classification perfor-
mance, the results obtained from the experiments of the proposed model were compared with
those of other state-of-the-art methods in terms of heart-disease prediction. In the first
experiment, throughout cross-validation, the data records were divided into 10 folds; one-
fold was used in testing, and the remaining nine folds were used in training. The data were
divided into folds via stratified sampling, meaning that the class distribution (defined by the
label attribute) in the subsets/folds was the same as that in the complete dataset. Finally, the
result was obtained by averaging all the 10 iterations.

In the second experiment, we performed the train/test holdout validation. The data were
split as 70% for training and 30% for testing. The model was trained on 212 records and tested
on the remaining 91 as unseen data. The primary reason behind using this distribution is to
satisfactorily compare our approach with those in other researches on the same dataset. We ran
the same experimental procedure five times, following which the mean of the five results was
calculated. Table 10 compares the results of these two experiments with those of recent
researches. Evidently, the proposed approach achieves better classification results than those
of most methods. The experimental results on the Cleveland dataset confirm that the proposed
approach achieves the accuracy rates of 87.8% and 95.6% for 10-fold and holdout (TR =
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70%) validations, respectively. In the 10-fold validation, the proposed approach increases the
average accuracy by 6.61%, 5.62%, and 2.67% over Saqlain et al. [46], Shah et al. [48], and
Mathan et al. [32], respectively. The results of the other experiment (holdout) demonstrate that

Table 10 Benchmarking our approach with others in the literature on the Cleveland dataset

Study Method Accuracy

Pre-Processing Feature Selection Classification

El-Bialy et al.
[16]

– Manual C4.5 algorithm and fast
decision
tree

78.54 (10-fold)

Paul et al. [35] handling
missing
values

Correlation coefficient &
GA

fuzzy rules 80 (holdout)

Saqlain et al.
[46]

Data
standardiza-
tion

Fisher score and the
Matthews correlation
coefficient

SVM 81.19 (10-fold)

Shah et al. [48] Normalization parallel probabilistic
principal component
analysis

SVM 82.18 (10-fold)

Vivekanandan
and Iyengar
[51]

min--max
normalization

modified differential
evolution algorithm

Integrated model of fuzzy AHP
& ANN

83 (holdout)

Suresh and
Ananda Raj
[50]

handling
missing
values

GA NB 83.20 (k-fold)

Buettner et al.
[11]

Grouping – RF 84.40 (10-fold)

Chitra and
Seenivasag-
am [12]

min--max
normalization

– Feed Forward and Cascaded
Correlation NN

85 (holdout)

Mathan et al.
[32]

– – Gini index-based decision tree
& Neural network

85.30 (10-fold)

Jha et al. [23] – – Random subspace classifier 86.14 (3-fold)
Saxena et al.

[47]
– All Possible-MV algo-

rithm to handle the
missing values

Decision-trees and rules
generated

86.70 (10-fold)

Subanya et al.
[49]

– Artificial bee colony
algorithm

SVM 86.76 (holdout)

Amin et al. [5] remove the
missing
values

Tests 8100 combinations
of the features

Vote algorithm as a hybrid
methodology of logistic
regression and NB

86.87 (10-fold)

Gokulnath and
Shantharaj-
ah [18]

Z score GA SVM 88.34 (holdout)

Yazid et al.
[54]

– – Flower pollination neural
network

89.60 (holdout)

Ali et al. [3] – – Hybrid grid search algorithm
using two optimized SVM
models

92.20 (holdout)

Ali et al. [4] – χ2 statistical model Deep neural network 93.33 (holdout)
GAPSO-RF

(ours)
min--max

normalization
GA-PSO RF 87.80 (10-fold)

GAPSO-RF
(ours)

min--max
normalization

GA-PSO RF 95.60 (holdout)
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the proposed increases the average accuracy by 7.26%, 3.4%, and 2.27% over Gokulnath and
Shantharajah [18], Ali et al. [3], and Ali et al. [4], respectively. Figure 3a and b depict the ROC
analysis for the 10-fold and holdout (TR = 70%) validations, respectively. Table 11 compares
results of using subset features selected of GA for Cleveland dataset with other models. The
results show that RF overcomes the other models.

4.3 Results of the Statlog dataset

We compare our approach with several benchmark approaches on the Statlog heart-disease
dataset, which contained 13 features. All the 270 heart-disease records of the dataset were
considered. We performed the same experiments on the Statlog dataset as those performed on
the first dataset, i.e., Cleveland. First, the data records were partitioned into 10 folds, and the
results were obtained by calculating the mean of all the ten iterations. Second, the data were
split as 70% for training and 30% for testing (i.e., holdout (TR = 70%). The model was trained
on 189 records and tested on the remaining 81 records as unseen data. The primary reason
behind using this distribution was to satisfactorily compare our approach with those in other
researches on the same dataset. We performed the same experimental procedure five times and
recorded the average of the five results.

Table 12 compares the results of the proposed approach with those of the recent state-of-
the-art heart-disease-prediction methods. Evidently, our approach obtains the accuracy rates of
87.78% and 91.4% for the 10-fold and holdout (TR = 70%) validations, respectively, the best
results achieved on the Statlog dataset thus far. In the 10-fold validation, the proposed
approach increases the average accuracy by 11.18% and 3.78% over El-Bialy et al. [16] and
Rado et al. [40], respectively. In the other experiment (holdout (TR = 70%)), the results
proved that the proposed approach increases the average accuracy by 12.62% and 1.4% over
Long et al. [30] and Karthikeyan and Kanimozhi [24], respectively.

Figure 4a and b depict the ROC analysis for the 10-fold and holdout (TR = 70%)
validations, respectively. Table 13 compares results of using subset features selected of GA
for statlog dataset with other models. The results show that RF overcomes the other models.

Fig. 3 ROC curve of the Cleveland dataset for a 10-fold, and b holdout (TR = 70%)
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Although several studies have implemented FS in their proposed methods, little attention
has been given to optimizing fitness function in GA. In our proposed approach, we used RF as
a fitness function in GA to get the maximum value of classification accuracy. We tuned the
hyper-parameters of RF using grid search; after that, we applied pruning and pre-pruning.
Besides that, we implemented the experiments in GA different hyper-parameters and different
types of crossover, mutation and selection as shown in Fig. 5. In the crossover, we applied
uniform as it achieved better results than one point. Moreover, we used tournament selection as
it produced better results than roulette wheel.

Table 14 summarizes the performance-evaluation results for both 10-fold and holdout (TR
= 70%) validations on the Statlog dataset. As seen from Table 14, our proposed approach with
the optimal selected features achieved a better performance than that achieved upon using all
the features at once. Additionally, our proposed approach increases the average accuracy on

Table 12 Benchmarking our approach with others in the literature on the Statlog dataset

Study Method Accuracy
(%)

Pre-
Processing

Feature Selection Classification

El-Bialy
et al. [16]

– manual C4.5 algorithm and fast
decision tree

76.60 (10-fold)

Long et al.
[30]

min--max
normalization

Chaos-based firefly
algorithm
& rough set

type-2 fuzzy logic 78.78 (holdout)

Rado et al. [40] remove the
missing
values

Correlation-based FS &
Feature importance &
Recursive feature
elimination

SVM 84 (10-fold)

Mukherjee
et al. [34]

– – Multi-layer perceptron
ensembles & SVM &
Generalized additive
model

85 (10-fold)

Yazid et al.
[54]

– – Flower pollination neural
network

89.60 (holdout)

Karthikeyan
and
Kanimozhi.
[24]

– – CNN & Deep belief
network algorithm

90 (holdout)

GAPSO-RF
(ours)

min--max
normalization

GA-PSO RF 87.78 (10-fold)

GAPSO-RF
(ours)

min--max
normalization

GA-PSO RF 91.40
(holdout)

Table 11 Compare the subset features selected from GA with other classifiers for Cleveland dataset

Model Accuracy (%)

Logistic regression (SVM) 80.22
SVM 81.32
Decision trees 82.42
NB 85.71
Proposed RF 95.60
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the Statlog dataset by 5.93% and 7.45% in the 10-fold and holdout (TR = 70%) validations,
respectively.

4.4 Effectiveness of FS

In this subsection, the performance of the FS process in GA is evaluated. FS improves the
performance of the proposed approach compared with using all the features at once. The
features sets of the Cleveland and Statlog datasets are reduced by 46.15% and 30.77%,
respectively. From Table 15, it is evident the proposed approach decreased the number of
features. The features selected in Cleveland dataset are 7 features (Cp, Fbs, Restecg, Exang,
Slope, Ca, and Thal) and for statlog dataset the features selected are 9 features (Age, Sex, Cp,
Fbs, Thalach, Exang, Slope, Ca, and Thal). The overall measurement results for the Cleveland
dataset both with and without FS on GA are summarized in Table 16. As previously
mentioned, the experiment was performed twice (10-fold and holdout (TR = 70%)). From
the experimental results in Table 16, one can see that the proposed approach with selected
optimal features achieves better performance than that achieved upon using all the features at
once. Our proposed approach increases the average accuracy on the Cleveland dataset by
4.33% and 6.59% in the 10-fold and holdout (TR = 70%) validations, respectively.

Fig. 4 ROC curve of the Statlog dataset for the a 10-fold and b holdout (TR = 70%) validations

Table 13 Compare the subset features selected from GA with other classifiers for Statlog dataset

Model Accuracy (%)

Decision trees 74.07
Logistic regression (SVM) 83.95
SVM 83.95
NB 88.89
Proposed RF 91.40
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4.5 Time complexity

In this subsection, we compare the time complexity of our proposed approach GAPSO-RF
with GA-based different models. Table 17 shows the comparison of computational cost among
the approaches on the Cleveland dataset. This table records the complexity time (i.e., FS and
classification), number of generations, and prediction accuracy. We can see that the complex-
ity time of our approach GAPSO-RF is not the best. However, as concluded from Table 17,
our proposed approach achieves the best prediction accuracy compared to other GA-based
methods. In addition, the proposed approach reached the best rate of 87.80% by the minimum
number of generations 30.

Fig. 5 Different hyper-parameters which affect the efficiency of GA. Red and green curves represent the max
and average fitness, respectively. a number of generations = 50, population size = 50, crossover rate = 0.5 and
mutation rate = 0.07. b number of generations = 50, population size = 50, crossover rate = 0.5 and mutation
rate = −0.4. c number of generations = 30, population size = 50, crossover rate = 0.5 and mutation rate =
0.07. d number of generations = 30, population size = 50, crossover rate = 0.5 and mutation rate = 0.08

Table 14 Evaluation of the FS used in the proposed approach on the Statlog dataset

FS Accuracy (%) Precision (%) Recall (%) AUC (%)

10-fold Without 81.85 82.17 86.00 89.50
With 87.78 87.26 91.33 91.00

Holdout Without 83.95 86.36 84.44 91.90
With 91.40 89.58 95.56 92.60
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First, the proposed GAPSO-RF approach improves the conventional GA as follows: 1)
Reduce the number of generations by 70%, 2) Execution time improved by 65.87%, and 3)
Improve the prediction accuracy by 0.67%. Second, a convolutional neural network (CNN) is
good in feature selection, as mentioned in [17, 52]. However, it consumes a higher compu-
tation cost. Results show that GA-based CNN has a higher computational cost than others. In
addition, the proposed GAPSO-RF outperforms GA-CNN in prediction accuracy and execu-
tion time. In the future, the CNN model can be used for different types of datasets (e.g.,
electrocardiogram (ECG) signals and images). The implementation of a discriminate mutation
strategy in GA-based statistical analysis and the implementation of the PSO in local search are
reasons to reduce the number of generations and thus reduce the execution time. Despite this,
the execution time in our approach is relatively large. In the future, we intend to develop an
efficient feature selection method with low complexity and high performance. Third, GA-NB
achieves the best execution time due to the number of iterations in PSO and RF. Nevertheless,
we outperform this approach by 5.88% in the average prediction accuracy.

5 Conclusion

We presented a GAPSO-RF-based FS approach with an RF classifier as the base of a fitness
function to select significant features to increase the accuracy of heart-disease diagnosis. The
proposed approach achieved high accuracy of 95.6% and 91.4% on the Cleveland and Statlog
datasets, respectively. After that, the results of the proposed FS method are compared with the

Table 15 Feature-dimension details for the Cleveland and Statlog datasets

DataSet Original Selected Feature Subset Reduced (%)

Cleveland 13 7 46.15
Statlog 13 9 30.77

Table 16 Evaluation of the FS employed in the proposed approach on the Cleveland dataset

FS Accuracy (%) Precision (%) Recall (%) AUC (%)

10-fold Without 83.17 83.72 78.26 91.30
With 87.80 89.76 82.61 92.00

Holdout Without 89.01 87.97 84.78 91.00
With 95.60 97.44 92.68 94.00

Table 17 Comparison of computational time of GAPSO-RF with other GA based different models

Parameter Comparison Proposed GAPSO-RF Conventional GA GA-SVM GA-NB GA-CNN

Number of generations 30 100 100 100 30
Optimum classification (%) 87.80 87.13 85.64 83.68 86.39
Time (second) 2559.10 7499.98 148.05 111.41 9185.88
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results without using FS and found that it outperforms in accuracy. Moreover, it outperformed
the existing state-of-the-art methods on the same datasets. Furthermore, a comparative analysis
is performed between GAPSO-RF and conventional GA and found that our proposed ap-
proach outperformed conventional GA. Additionally, we protected our model from overfitting
by using the RF algorithm for classification. Hence, our experimental results confirmed that
the proposed approach enhanced the decision-making process of the practitioners during heart-
disease diagnosis.

The following are some of the limitations of this research: First, more classifiers should be
evaluated to have a more extensive evaluation of the results. Second, the proposed model’s key
drawbacks are its high computational cost and temporal complexity, as it is based on the
wrapper feature selection strategy. More studies need to be conducted to address the limita-
tions of the proposed approach in the future. First, multi-objective genetic algorithm can be
applied. Second, to overcome small-data limitations in heart-disease prediction, we plan to use
in future work surrogate data or merging different heart-disease datasets. Finally, for electro-
cardiogram (ECG) signals and images, further study can be carried out for improving the
features selection by using convolutional neural network (CNN). Moreover, we intend to
develop an efficient classifier to improve the performance.
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