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Abstract
Smoking cessation efforts can be greatly influenced by providing just-in-time interven-
tion to individuals who are trying to quit smoking. Detecting smoking activity accurately
among the confounding activities of daily living (ADLs) being monitored by the wearable
device is a challenging and intriguing research problem. This study aims to develop a
machine learning based modeling framework to identify the smoking activity among the
confounding ADLs in real-time using the streaming data from the wrist-wearable IMU (6-
axis inertial measurement unit) sensor. A low-cost wrist-wearable device has been
designed and developed to collect raw sensor data from subjects for the activities. A
sliding window mechanism has been used to process the streaming raw sensor data and
extract several time-domain, frequency-domain, and descriptive features. Hyperparameter
tuning and feature selection have been done to identify best hyperparameters and features
respectively. Subsequently, multi-class classification models are developed and validated
using in-sample and out-of-sample testing. The developed models obtained predictive
accuracy (area under receiver operating curve) up to 98.7% for predicting the smoking
activity. The findings of this study will lead to a novel application of wearable devices to
accurately detect smoking activity in real-time. It will further help the healthcare profes-
sionals in monitoring their patients who are smokers by providing just-in-time interven-
tion to help them quit smoking. The application of this framework can be extended to
more preventive healthcare use-cases and detection of other activities of interest.
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1 Introduction

1.1 Background and motivation

The detrimental impact of addictive behavior on health is widely studied and is a
well-known fact [28]. Tobacco smoking is one of the most widespread but modifiable
risk factors for various non-communicable diseases like cardiovascular diseases
(CVD), stroke, chronic obstructive pulmonary disease (COPD), and cancer [36]. The
habit of tobacco smoking in the form of cigarettes, cigars, etc. is highly addictive and
at the same time, it is injurious to one’s health. Smoking habit is difficult to quit as
abstinent smokers often start with a sudden craving for smoking which results in lapse
and then permanent relapse. Despite several efforts, the cessation rate of smoking is
not encouraging enough. It becomes more challenging to improve upon cessation rates
due to a lack of effective methods for delivering the just-in-time intervention to the
smokers who are willing to quit smoking [53].

There are several apps for helping those who want to quit smoking. Such appli-
cations are often called persuasive applications and the technique is termed as
persuasive technology in the literature [11, 16]. However, these apps are mostly based
on self-reporting. A study reported that adherence to app features influences the quit
rate. The app provides various features such as a personalized quit plan, tracking
progress, and interactive-ness to facilitate quitting [49]. The main road-block in such
types of apps is adherence to using the app without losing the motivation [1, 31, 49].
An application MapMySmoke used motivational messaging to promote smoking
cessation [54] where the patient is required to manually log the smoking and craving
events and the application detects the location of the patients using geo-positioning
technology. Based on these logs and location information, the doctor of the patient
provides a personalized quit attempt plan. However, only 50% of participants logged
their smoking details regularly resulting in poor quit rate. Another study on smoking
cessation applications revealed that instead of using Behavior Change Technology
(BCT) based features, applications rather focuses on ease-of-use features [63]. There-
fore, using self-reporting based or educational applications has a limited impact on
improving the quit rate or providing a personalized quit plan.

Detecting the smoking log in near real-time is an ongoing and challenging research
problem and it can overcome the limitation of manually entering the smoking logs.
Further, it makes mobile app-based intervention possible to motivate the user to quit
smoking just-in-time. A recent development in mHealth [2] and persuasive technolo-
gies [65] provides an opportunity to intervene effectively and help in smoking
cessation. The developments in the area of IoT, sensors, machine learning, mobile
computing enable ubiquitous monitoring of ADLs with the help of body wearable
sensor devices in an unobtrusive manner. Computational intelligence can help in
identifying these ADLs like smoking, walking, running, and sleeping in real-time.
With the help of smartphones and mobile app, the behavioral feedback can be
communicated back to the user instantly. Furthermore, mobile applications (apps)
can also be used to deliver the interventions for behavioral modifications.
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Keeping in mind the general psychology of smoking behavior, a solution is envisaged in
which a near real-time intervention could help in smoking cessation [55, 60] by motivating
users for behavior change [8, 37, 45, 61]. Body wearables like smartwatches, bands, etc. could
track physical activity, sleeping behavior in real-time. These wearable devices consist of
sensors like accelerometer, gyroscope, magnetometer, etc. which provides the raw data signals
generated due to body movement. Further, computational intelligence helps in processing raw
sensor data for prediction, classification, or recognition of activities like running, walking,
sitting, and laying [37]. Data analytics helps in building the personalized behavioral profile of a
user with the help of mobile apps. This whole process helps in motivating users to adopt
healthy behavior, changing lifestyles, and thus improving one’s health. Recognition of ciga-
rette smoking is one such activity which could be included as one of the features in such smart
wearable devices and application. There are some studies conducted in this direction which
attempts to detect smoking activity with the help of sensor data [53, 55, 59]. Such studies are
limited to smoking activity and do not account for other ADLs limiting its practical applica-
tion. Further, these studies are at the preliminary level and are limited to the prediction of
smoking episodes, detecting smoking gestures, and first lapse detection. Other limitations are
the obtrusive use of wearable sensors.

These studies do not propose a holistic solution for smoking cessation due to its
limitation of post-processing of sensor data. In a study conducted by Thakur et.al., a
mobile app-based model of smoking cessation was conceptualized. The study had
shown that the smoking activity signals are periodic, and therefore utilizing this
periodicity of the signals, a recognition system could be developed, which is capable
of detecting the smoking activity among ADLs in near-real-time [60]. In this study,
the authors conceptualized a holistic solution where the ADLs can be measured using
the IMU sensor and recognized in real-time using machine learning models. Further,
interventions can be delivered in real-time using a smartphone app.

1.2 Research objectives

In this study, we aim to develop an activity recognition system for recognizing activities of
daily-living including smoking in near real-time. Motivated by a lack of studies on real-time
prediction of smoking and other daily living activities, this paper has been developed to
address following research objectives which in turn will lead to the development of automated
prediction of smoking activity system in near-real time:

1) To derive features from the raw sensor signals of streaming nature to build predictive
models for predicting the smoking activity along with the activities of daily living.

2) To build a generalized predictive modeling framework suitable for real-time predictions
of activities using IMU sensor data.

3) To identify important features variables for the prediction of the activities.
4) To assess the generalizability of the modeling framework for predicting activities of

interest in preventive healthcare settings.

The rest of this paper is organized as follows. Section 2 discusses the relevant
literature in sensor-based detection of smoking activity. In Section 3, details of the
experimental setup, data acquisition, and solution approach are given. In section 4, we
present the findings of the experiments carried out, followed by a brief discussion of
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the findings and comparison with baseline studies. Preventive healthcare implications
of the proposed modeling framework are presented in Section 5 and the conclusions
of this study are given in Section 6.

2 Literature review

2.1 Review of methods proposed in the literature for promoting smoking cessation

Various methods for encouraging smoking cessation have been discussed in the literature. The
methods with reasonable efficacies reported in the literature are pharmacological treatments
[27] like nicotine replacement therapy (NRT), combination therapy, non-nicotine medications
and non-pharmacological treatments like training, behavior therapy, counseling, e-cigarettes,
etc. [23]. According to a study conducted by Heydari et al. (2015) on combination therapy,
which involved NRT along with the counseling is reported to be the most preferred way of
treatment [24]. Various studies reported that the rate of smoking cessation is higher in the adult
population as compared to older age groups [33, 34]. A recent study revealed that the smoking
cessation rate could be improved if physicians put more effort towards counseling patients in
outpatient services and encourage follow-up visits [26]. Despite several methods and expen-
ditures, the rate of smoking cessation is not satisfactory and requires significant efforts to
bridge the gaps. The factors like the inability to track patient’s progress, reliance on patient’s
self-reporting, poor engagement, and lack of emotional involvement are said to be the major
hurdles towards smoking cessation [5, 25, 32, 66, 69].

2.2 Review of smartphone-based applications for promoting smoking cessation

With the advancements in information and communication technologies (ICT’s) the mode of
delivering healthcare services are also changing rapidly [58]. It opens doors for the physicians
and the patients to exchange information quickly and transparently, crossing geographical
limits. Effective use of technology can cater to alleviating the hurdles in delivering effective
treatment to the patients [58, 61]. Recently, a significant number of studies conducted on quit
smoking, which uses mobile applications or wearable devices. The method of targeting
behavior change using mobile applications is called as persuasive technology [51, 65]. A
study suggests that computer-based intervention (CBI) is more effective as compared to in-
person brief intervention (IBI) in cases of substance use. CBI has advantages like cost,
reliability, honest self-reporting from a patient, and regular feedback from the healthcare
provider [56]. Besides it also aids self-monitoring, progress tracking, and daily reminders
[22]. Most of the mobile applications available on google play store which offers smoking
cessation or quit smoking features are ineffective. Factors like losing interest in using apps,
unable to provide incentive, lack of evidence-based clinical practices, more reliance on user-
based reporting are some of the reasons that causes poor adherence to use such apps and
resulting in futile efforts. [1, 17]. Therefore, there is a need to devise mechanisms to make such
applications more engaging to improve adherence to the interventions delivered through these
applications. Apps with features like gaming can also help in increasing its usage and
adherence [31].

Applications using evidence-based clinical practice and behavior change theories are more
effective for engaging patients in the long term. Long term engagement of patients with such
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apps has shown improved results in quit smoking [22, 49, 63]. Due to the self-reporting feature
in these apps, patients gradually lose interest in using the application and results in poor
adherence [51]. These applications lack the required intelligence, static, and unable to provide
tailored and personalized feedback [25].

2.3 Review of literature on the detection of smoking activity using wearable sensor
devices

An automated detection or logging of smoking events can help in providing personalized and
tailored feedback. It is one of the challenging research problems of the field of human activity
recognition using sensors. Various approaches has been discussed for human activity recog-
nition in real-time [20, 68]. To detect smoking automatically requires using some type of body
wearable sensors. These sensors can be an accelerometer, gyroscope, respiratory sensors, smart
lighter, and smoke detection sensors. The key issues while using these wearable sensor devices
are unobtrusive sensing [70] and ubiquitous sensing [38]. It is observed that wrist wearable
IMU (Inertial Measurement Unit) sensors are mostly used in different studies to detect
smoking activity [53, 57, 59, 60, 64]. In some research, a respiration sensor, heart rate sensor,
smoke sensor, or smart lighter has also been used in addition to the IMU sensor [51, 53, 57,
60].

In a study, a 6-axis (accelerometer and gyroscope) IMU sensors to be worn on both wrists
and body wearable electrocardiograph (ECG) sensor suite has been used for recording
respiration data. Their model did well when used IMU and ECG data together, but the
performance was poor when these sensors were used in silos. Further, the body wearable suit
is quite obtrusive for practical applications [53]. In a similar study, four 6-axis IMU sensor
attached on the wrist, lower elbow, upper elbow, and lower arm [46] has been used. The
objective of this study was to classify smoking and non-smoking events and to determine the
optimal number of sensors required and their position on the body to detect smoking events.
The predictive accuracy of the classification models developed in this study could be im-
proved, and further, they had used 4 sensors at different body positions which is not feasible in
practical applications. Building highly accurate predictive models without using obtrusive
sensing could be a viable option for practical usage and we worked with the same objective in
our study.

The IMU sensor data is streaming in nature and carries unique signatures of
different activities involving the motor movement of the human body. However,
earlier studies have not exploited this nature of sensor data. Therefore, earlier pro-
posed approaches were lacking in performance limiting its practical applicability. It is
more prevalent and comfortable to wear sensors in the form of a wrist band or
smartwatches. Therefore, hand movement becomes extremely important in identifying
activities of daily living. Activities like smoking, walking, running, eating, drinking,
talking, etc. involves a significant amount of hand movement. IMU sensor data needs
to be translated into a suitable form to detect or classify these activities which brings
the importance of feature extraction. The size of the time-window that should be
considered to derive the feature vector from the streaming data is equally important.
To find an optimal time-window size requires experimentation with the segmentation
of streaming sensor data in different size time- windows. In our study, we have used
a 50% overlapping window of 1, 3, 5 s respectively to create feature vectors. The raw
data corresponding to each window is processed to derive the associated feature
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vector. The feature vector we extracted consist of various time domain, frequency
domain, and descriptive features. The data we used are all properly labeled and,
therefore, we build several supervised machine learning-based models. In subsequent
sections, we shall explain the complete methodology and results.

3 Methodology

This study aims to develop a modeling framework for activity recognition with a special focus
on smoking activity. Accordingly, a framework is developed which is as shown in Fig. 1. The
framework consists of 3 layers which are data preparation, model development, and model
application. In the first layer, raw data from the IMU sensor is processed, transformed and
features are extracted. The feature vectors are then labeled to generate the final input data
which becomes the output for the model development layer. In this layer a classification model
is developed, tuned, best features are identified, and the model is evaluated and validated. The
best model identified in this layer is served in the model application layer where new data
streaming from the sensor is used to make predictions of the activities in real-time. In the
following sub-sections, we will discuss the methodology and solution approach in detail.

Fig. 1 Framework for developing a real-time activity prediction model
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3.1 Wearable wrist band development

A prototype of a wearable wrist band has been developed for experimental purposes, as shown
in Fig. 2, to capture the hand motion patterns of the activities. The band was developed by
assembling MPU-9250 (a 6 axial inertial sensor) sensor unit with an Arduino nano micro-
controller (ATmega328). The data logger unit with RTC DS3231 was used to capture the
sensor data. A program was written and uploaded in the micro-controller to write the data from
the accelerometer and gyroscope sensors in the SD card via a data logger unit along with time-
stamps whenever the circuit is turned on. The frequency of the data points is 14 Hz. The pin
diagram of the circuit module is as shown in Fig. 3.

3.2 Data collection

Data was collected for activities like walking, running, walking-upstairs, walking-downstairs,
and smoking. During these activities’ participants were asked to wear the wearable wrist band.
To conduct this study, ethical clearance was taken from the Institute Ethical Committee of
Indian Institute of Technology Kharagpur, India. The data was collected from a total number
of 13 male participants in March 2019. Participation in the study was voluntary and informed
consent was taken before starting the data collection. Out of 13 participants, 7 individuals aged
between 22 and 24 years participated in providing data for the physical activities. The other 6
participants, who were regular cigarette smokers aged between 30 and 36 years, participated in
providing data for their smoking activity. The raw sensor data was annotated with their
corresponding activities namely smoking, walking, running, walking-upstairs, and walking-
downstairs. The baseline characteristics of the study data are presented in Table 1.

3.3 Feature extraction

Feature extraction has been carried out on the raw sensor signals from the accelerometer and
gyroscope. The time-domain features, frequency domain features, and descriptive features
were extracted from each axis x, y, and z of both sensors based on similar work carried out in
earlier studies [3, 14, 35, 42, 57]. The sensor data is of streaming nature and an appropriate
method was required through which features can be extracted in real-time. Therefore, the
concept of the sliding window is used for feature extraction. This window keeps collecting the
streaming sensor data depending upon its size and carries out the feature extraction from the
raw data. Also, we have kept an overlap of 50% from the previous window for each

Fig. 2 Image of the wrist-wearable
band used to capture hand motion
data
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subsequent window. It has been done to ensure that the characteristics of every trivial gesture
present in any activity are captured completely in the feature vector that is generated from the
sensor data of that sliding window. In this work, we tried and tested with different window
sizes of 1-s, 3-s, and 5-s to identify which is an optimal window size for creating features. The
sensor data were sampled at 14 Hz which means that the length of the data segment is, N = 14,
for each epoch of 1 s. Therefore, the data size corresponding to the 3 windows turns out to be
as, N = 14, 42, and 70.

A total number of 8 time-domain features were extracted for each axis of both sensors.
Therefore, the total number of time-domain features for each window is 48. These are mean,
standard deviation, peak-to-peak, root mean square, skewness, mean absolute deviation,
kurtosis, median, and inter-quartile-range. Three frequency domain features were extracted
from each window, and these features are maximum amplitude, spectral energy, and
frequency-domain entropy. Total of 18 features was generated in the frequency domain
considering all the axis. At first, the Fast Fourier Transform (FFT) is used to transform the
data from the time domain to the frequency domain. Then the frequency domain features are
extracted for every window of data. Pearson Correlation coefficient has been used as the
descriptive feature. It is measured using Pearson’s correlation coefficient between the signals
of all the axes of the IMU sensor. A total of 15 correlation coefficients were computed from the
binary combination of the 6 axes of the IMU sensor. The detailed explanation of the sliding
window and features extracted in this study is given in Appendix A.

Fig. 3 Circuit diagram of the wearable band

Table 1 Baseline characteristics of the study data

Activity No. of participants No. of episodes Total duration (in minutes)

Smoking 6 32 137.71
Walking 7 19 91.32
Running 7 18 40.65
Walking-upstairs 7 19 27.27
Walking-downstairs 7 19 21.38
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3.4 Development of machine learning based multi-class classification models

In this study, a supervised multi-class classification model has been developed which attempts
to assign a class label to a new input feature vector. Such a model can be described as a
training data set (x1, y1), where x1ϵRn is the ith input feature vector and y1 ∈ (1, .…, K)is the ith
class label. The objective is to find a learning model f such that f(x1) = y1 for new unseen input
feature vectors [6]. The predictive strength of several classification models has been analyzed
which facilitates choosing the best model for the application. The stack of classification
models consists of Logistic regression (LR) [12, 67], k-nearest neighbour (KNN) [4, 10],
adaptive boosting (AdaBoost) [18, 19], random forest (RF) [9], support vector machines
(SVM) [13] and a decision tree classifier (DT) [52]. We used the Python distribution
Anaconda of version 5.1.0 and various libraries of scikit-learn 0.19.1 to build and evaluate
these classifiers [39].

In-sample and out-of-sample validation had been carried out to measure the predictive
efficacy of the models and also to check its generalizability on new unseen data [7, 50]. In the
in-sample validation approach, the training samples are used to make predictions using the
developed model. In-sample validation provides an upper bound of predictive accuracy of the
developed model. The out-of-sample validation test data sample which has not been used
during training and is unseen to the model is used to make predictions using the developed
model. Out-of-sample validation ensures the generalizability of the model. Further, grid search
using 5-fold cross-validation had been carried out to identify the best hyper-parameters of the
models which were later used during model development. The area under the ROC curve
(AUC) is a standard metric used to evaluate a classification task [21, 41]. AUC is used to
evaluate the performance of the various classification models being developed. As discussed in
the previous section, we had used a different window size of 1 s, 3 s, and 5 s; therefore, we
developed the same models three times using different window sizes and compared their
outcome with each other. It informed us of the optimal window size to consider while
generating features from the raw sensor data.

3.5 Feature selection analysis

Sequential backward feature selection (SBFS) which is a wrapper-based method had been used
to select the best features from the pool of all features [43]. This method belongs to the class of
greedy search algorithms. In SBFS, a d-dimensional feature space is reduced to a k-
dimensional feature space where k < d. SBFS algorithm is implemented using a python
library mlxtend [47]. Feature selection analysis had been carried out to identify the most
relevant features, to mitigate the curse of dimensionality which occurs for high-dimensional
feature spaces with a limited number of samples, to remove the noise or irrelevant features and
to reduce the computational time complexity.

4 Experimental results and discussions

4.1 Data visualization and analysis of raw sensor signals

A brief analysis of the raw patterns of the activities has been carried out with the help of data
visualization. Line plots of the raw sensor data have been plotted for 60 s to understand the
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signal signature for different activities. The patterns of signal for each activity have been
analyzed. Signal patterns of smoking activity are as shown in Fig. 4a, b. It has been observed
that signals of the smoking activity are periodic, and the peaks appear at a regular interval. It
reflects the hand movement pattern during smoking in which few gestures repeat at regular
intervals. These gestures are hand-rise, puffing, and hands-down. Walking activity is shown in
Fig. 5a, b which shows high acceleration, these signals are also periodic but the repetition is
highly frequent, which resembles faster hand movement during walking as compared to
smoking. Running activity data shown to have the highest acceleration as compared to the
other activities being considered. It can be observed from the plots shown in Fig. 6a, b that the
signals follow a sinusoidal trend. Running and walking activity signals share a similar
signature to some extent, with different intensities. The intensity of running activity signals
is very high as compared to that of walking activity signals. Figure 7a, b represents walking-
downstairs, and Fig. 8a, b represents walking-upstairs are very similar but the first one is more
frequent than the second because the spacing between the peaks of downstairs activity is less
than walking-upstairs. It is observed from the raw patterns of the different activities that each
activity bears a unique signature, especially smoking, walking, and running. Upstairs and
downstairs activity shares close similarities. A natural similarity exists between walking,
upstairs, and downstairs activity as they are walking activity only with trivial variations. The
difference in the raw patterns of the activities is characterized with the help of feature
extraction exercise. These features are utilized in building the predictive models which are
explained in the further section.

4.2 Results of multi-class classification models

A champion-challenger method [29] is presented in the modeling framework to select the best
model. Champion-challenger is a type of hybrid ensemble approach where several models
compete with each other and the model with the highest predictive accuracy is chosen for the
actual application. Hyperparameter tuning, and feature selection analysis has also been carried
out to identify the best combination of hyperparameters and best features.

4.2.1 Hyperparameter tuning

At first, the best hyper-parameters are identified for each model using 5-fold cross-validation
(CV) based grid search [40] approach. These hyper-parameters and their values were used
while building the models throughout the experiments and are given in Table 2.

Fig. 4 Raw signal patterns of smoking activity. a Accelerometer, b Gyroscope
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4.2.2 Feature selection analysis

The most prominent features were identified using the feature selection algorithm, as discussed
in the previous section. The algorithm used in this study for feature selection is sequential
backward feature selection (SBFS). SBFS method gives the best subset of features as output.
Then the classification model is build using this selected subset of features. The output of
feature selection is explained with the help of Fig. 9. The output plots resemble the elbow-
curve, and the elbow-joint in the curve can be considered as the point where we get the optimal
number of features required to build a model with the most optimized predictive accuracy. It
can be observed from the figure, that the optimal predictive accuracies are being started
receiving from the feature subset of size 12 features.

However, the highest accuracy for a window of 1 s is received from a subset of 44 features
with predictive accuracy being at 88.8%. Similarly, for a 3-s window, the highest accuracy is
achieved at 91.9% with a subset of 56 features and for a 5-s window, the highest accuracy is
achieved at 93.1% with a subset of 27 features. Once the reduced feature subset is obtained
after running the SBFS algorithm, we build a classification model for the classification of
activities.

4.2.3 Feature importance analysis using heat-map

Next, we analyzed which are the most important features. We initially had a set of 87 features.
SBFS method gave us 87 sets of features and the size of each set is, S ∈ {1, 2, 3, …. ., 87}.
We used this data to get the total number of occurrences of each feature in these sets. The

Fig. 5 Raw signal patterns of walking activity. a Accelerometer, b Gyroscope

Fig. 6 Raw signal patterns of running activity. a Accelerometer, b Gyroscope
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count of total occurrences is then normalized in the range (0, 1). The resultant values are the
importance score of each feature. A heat map is drawn using this information and is shown in
Fig. 10. From the heat map, it is evident that the accelerometer features are more important
than the gyroscope, further within the descriptive features which are the correlation of different
axis of accelerometer and gyroscope also shows that the correlation between signals of
different accelerometer axis and between accelerometer and gyroscope axis have more
importance towards the predictive accuracy of the activities.

4.2.4 Classification model development and validation

Classification models were build using feature data set generated by each sliding window size
of 1 s, 3 s, and 5 s on the model-input data with all the features and the model-input data with
only the best features identified after feature selection analysis. In total 6 experiments were
carried out to develop these models which are as mentioned below:

1. Experiment 1: Model development had been done using all the features on the dataset
generated using a 1-s sliding-window-based feature extraction process.

2. Experiment 2: Model development had been done using all the features on the dataset
generated using a 3-s sliding-window-based feature extraction process.

3. Experiment 3: Model development had been done using all the features on the dataset
generated using a 5-s sliding-window-based feature extraction process.

Fig. 7 Raw signal patterns of walking-downstairs activity. a Accelerometer, b Gyroscope

Fig. 8 Raw signal patterns of walking-upstairs activity. a Accelerometer, b Gyroscope

14540 Multimedia Tools and Applications (2022) 81:14529–14551



4. Experiment 4: Model development had been done using the best features subset derived
using SBFS on the dataset generated using a 1-s sliding-window-based feature extraction
process.

5. Experiment 5: Model development had been done using the best features subset derived
using SBFS on the dataset generated using a 3-s sliding-window-based feature extraction
process.

6. Experiment 6: Model development had been done using the best features subset derived
using SBFS on the dataset generated using a 5-s sliding-window-based feature extraction
process.

The detailed validation results are presented in Appendix B. For better readability, model
validation results for only smoking activity are shown below in Tables 3, 4, 5, 6, 7, and 8
respectively for each of the above experiments. The findings from these experiments are

Table 2 List of hyper-parameters along with their best values to achieve the best estimator during modeling

Classification model Parameter of best estimator Value Accuracy of best estimator

Adaboost no. of estimators 1000 78.39
learning rate 1

RF max depth 30 94.13
no. of Estimators 1000

SVM C 10 94.09
gamma 0.01
kernel rbf

KNN metric Manhattan 93.15
no. of neighbors 1
weights Uniform

Logistic Regression C 20 89.35
penalty l2

DT criterion entropy 87.46
max depth 21

Fig. 9 Output of feature selection algorithm for all the windows
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manifold. The predictive accuracy of classifiers for smoking, running, and walking activities
was equally comparable. Decision tree, KNN, and Random forest overfitted as their in-sample
AUC is 100% and it dropped significantly in out-of-sample validation. Of which decision tree
is more biased and overfitted as its AUC is dropping close to 3.5%. The overall performance is
highest in the SVM classification model in a 3-s all feature model developed in experiment 2
with an AUC of 98.799%. The classification models like Adaboost, Logistic Regression, and
SVM are generalizable as the difference between AUC values of in-sample and out-of-sample
validation is not very significant implying that models are performing well on unseen data. The
performance of classifiers is distinguishably better in 3-s and 5-s windows as compared to 1-s
window for all the activities. The overall AUC is less in case of walking-upstairs and walking-
downstairs activities as compared to the AUC of the other activities. This could be due to less
sample size available for training and validation of these two activities. The predictive
accuracy in experiments 4, 5, and 6 are equally comparable or better with their counter-parts
in experiments 1, 2, 3 respectively. It implies that feature selection led to the improvement of
the model both in terms of predictive performance and prediction time optimization. A sliding
window of 3 s is most optimal as it gives the highest predictive accuracy and at the same time,
the first response time of such a prediction model in practical applications will be less than a
sliding window of 5-s.

Fig. 10 Analysis of the importance of all the features using a heat map

Table 3 In-sample and out-of-sample validation of classification model developed in experiment-1 for smoking
activity

Classification model AUC (in-sample testing) AUC (out-of-sample testing)

Adaboost 0.97672 0.97099
Decision Tree 1 0.95815
KNN 1 0.97286
Logistic Regression 0.9681 0.96533
SVM 0.99536 0.9808
Random Forest 1 0.97616
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4.3 Discussions

The experiments were carried out to identify an optimal approach for real-time prediction of
smoking activity using supervised machine learning-based multi-class classification methods.
Various time domain and frequency domain features were derived from the raw sensor data. A
sliding window mechanism has been used to address the streaming nature of sensor signals.
Determining an optimal window size was critical to develop an accurate prediction model.
Therefore, sliding windows of different sizes (1-s, 3-s, and 5-s) were used to derive the feature
variables from the raw sensor data. Subsequently, experimentation has been carried out with
different window sizes to identify which is most important to build a classification model. To
summarize, our objectives for this study were: To engineer an exhaustive feature set from IMU
sensor raw data and develop a multi-class classification model using this feature set as an
input; To identify an optimal sliding window size to gain the maximum predictive accuracy;
To compare different classification algorithms and identify the best classification method for
this problem; To conduct a feature selection analysis to identify the most important features.

To develop an accurate classification model, the quality of data becomes very important on
which it is to be trained. To ensure that, data of physical activities like walking, running,
walking-upstairs, walking-downstairs along with smoking activity is gathered in free-living
conditions from the subjects for a total duration of 318.33 min. We used this data for the
development of the classification model. The authors were interested in evaluating different
questions, as discussed in the previous paragraph. The first question is to find the best
classification method for activity detection. The experimental findings suggest that the SVM
and logistic regression classification models were the most generalized learner because the
difference between the predictive accuracy of their in-sample and out-of-sample validation is
very less. SVM further achieved the highest predictive accuracy in almost all the experiments.

Table 4 In-sample and out-of-sample validation of classification model developed in experiment-2 for smoking
activity

Classification model AUC (in-sample testing) AUC (out-of-sample testing)

Adaboost 0.96791 0.96164
Decision Tree 1 0.95996
KNN 1 0.98185
Logistic Regression 0.98191 0.97556
SVM 0.99904 0.98799
Random Forest 1 0.98321

Table 5 In-sample and out-of-sample validation of classification model developed in experiment-3 for smoking
activity

Classification model AUC (in-sample testing) AUC (out-of-sample testing)

Adaboost 0.97622 0.96708
Decision Tree 1 0.96947
KNN 1 0.98531
Logistic Regression 0.98691 0.9859
SVM 0.99983 0.98757
Random Forest 1 0.97956
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KNN, decision tree, and random forest model were suffered by the overfitting and bias. The
application of such models is not very safe in real-life scenarios.

4.4 Comparative analysis with the baseline studies

The results of this study are further compared with the baseline studies. The comparison was
primarily based on the 4 criteria; the performance of the algorithms/classifiers, obtrusivity of
the sensors, consideration of confounding activities in the model, and focus on the real-time
prediction. These dimensions signify the practical applicability of the model. The comparison
with the baseline studies is presented in Table 9. The comparison suggests that the SVM
classification model is most appropriate to classify activities using IMU sensor data. In terms
of the performance of the model, this study has achieved the highest predictive accuracy for
smoking. Some of the baseline studies have also achieved comparable accuracy but they have
used more sensors at different body positions which increases the obtrusiveness and impacts
the practicality. The obtrusivity is defined in terms of mild, high, and very high in the table.
Mild obtrusive means the use of sensor wearable at a single body position and mostly on the
wrist. High means using more than one type of sensor wearable or at 2 different body positions
whereas very high obtrusivity is classified when more than one type of wearable is used at 2 or
more body positions. The other dimension of comparison was the consideration of confound-
ing activities while predicting smoking activity. Apart from this study, only two other studies
(Varkey et al., 2012 and Senyurek et al., 2019) have considered predicting smoking activity
among confounding activities in their models. But, these two studies have high obtrusivity and
predictive accuracy is significantly less than this study. The comparison in Table 9 over the
chosen criteria indicates that the current study is best positioned for practical applications
among the prominent baseline studies.

Table 6 In-sample and out-of-sample validation of classification model developed in experiment-4 for smoking
activity

Classification model AUC (in-sample testing) AUC (out-of-sample testing)

Adaboost 0.97301 0.97113
Decision Tree 1 0.96
KNN 1 0.97486
Logistic Regression 0.95707 0.95703
SVM 0.98906 0.98132
Random Forest 1 0.97614

Table 7 In-sample and out-of-sample validation of classification model developed in experiment-5 for smoking
activity

Classification model AUC (in-sample testing) AUC (out-of-sample testing)

Adaboost 0.98051 0.97285
Decision Tree 1 0.96801
KNN 1 0.98115
Logistic Regression 0.97689 0.9711
SVM 0.99799 0.98652
Random Forest 1 0.98291

14544 Multimedia Tools and Applications (2022) 81:14529–14551



5 Preventive healthcare implications of the proposed modeling
framework

The study was conducted to explore the practical applicability of the IMU sensor in real-time
prediction the daily-living activities with a special focus on smoking. The application of IMU
is practical in identifying the activities only if they are used unobtrusively. Literature suggests
that use of smartwatches and wearable bands are increasing significantly for preventive
healthcare purpose [48]. The existing wearable band or smartwatches are limited to predicting
only physical activity like running, walking, etc. The objective of this study was to extend the
features of such devices to predict more sophisticated activities like smoking and beyond. To
make the application practical, the activity recognition should be in near real-time, using such
methods and models which are lightweight, fast, and highly accurate. In this study, an IMU
sensor-based generalized modeling framework is proposed which can help can help in
delivering preventive healthcare more smartly. The efficacy of this framework is tested on
the real-time predictions of daily living activities. The further applications of the proposed
IMU sensor-based activity-recognition modeling framework in other healthcare settings
include:

5.1 Ensuring conformance to the standard operating procedures (SOPs) in hospital
settings

The proposed framework can be extended to develop models for predicting safety-critical
activities in hospital settings e.g. frequent washing/sanitization of hands by healthcare profes-
sionals in the view of the prevailing COVID-19 pandemic.

5.2 Geriatric care management

Usually, youth are busy in their day-to-day activities and old people are staying at home. The
proposed framework is going to provide a mechanism to monitor the well-being of old people
staying alone at home [15, 30].

5.3 Management of chronic diseases

The level of daily physical activity of patients can be tracked and suitable intervention can be
planned. This framework can also help in developing mechanisms to ensure adherence to

Table 8 In-sample and out-of-sample validation of classification model developed in experiment-6 for smoking
activity

Classification model AUC (in-sample testing) AUC (out-of-sample testing)

Adaboost 0.95987 0.95864
Decision Tree 1 0.96662
KNN 1 0.98428
Logistic Regression 0.96674 0.96349
SVM 0.99626 0.98619
Random Forest 1 0.98432
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doctor’s prescription by the patients suffering from chronic diseases like diabetes, cardiovas-
cular disease, chronic obstructive pulmonary disease [62].

5.4 Lifestyle management

A suitable recommendation can be planned based on the activity log of the people being
monitored. A recent study had enlisted various future work in their review research on physical
activity recognition and monitoring (PARM) [44].

5.5 Monitoring the activity of persons working in a hazardous environment to ensure
safety

Only authorized persons are allowed to work in a hazardous environment, there may be some
inadvertent lapses in following safety protocols. This framework will help in monitoring the
activity of workers in such an environment. The framework could also be extended to include
various other suitable sensor devices and making a relevant prediction about the health and
safety of such personnel.

6 Conclusion and future directions

The main objective of this study was to develop a modeling framework to predict the smoking
activity among the activities of daily-living in real-time. The main contributions of this study
are:

6.1 Development of a low-cost wrist wearable IMU sensor device-

We first developed a wrist wearable device using a 6-axis IMU sensor. We used this device to
collect data for activities like walking, running, walking up-stairs, walking down-stairs, and
smoking in a free-living environment.

6.2 Developed the methodology of pre-processing the IMU sensor data
for the real-time applications-

The sensor generates the data which is streaming in nature, so we proposed the utilization of a
sliding-window mechanism to create features out of the streaming sensor data. This study is
first of its kind which has studied the optimal size of the sliding window. Different size of
sliding window has experimented and an optimal size was identified to be used for feature
generation.

6.3 Developed a generalized machine learning-based predictive modeling
framework-

A supervised machine learning-based modeling framework has been designed to build the
classification models for the recognition of smoking and physical activities. The framework
also performs the hyperparameter tuning and feature selection analysis to identify the best set
of hyperparameters and important features. Subsequently, those hyperparameters and
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important features are used to build the prediction models. The developed models are validated
using in-sample and out of sample testing to assess their performance and the best model is
chosen for the application. In this study, the SVM model achieved the best performance with
an AUC of 98.78%.

Hence, the present work lays the foundation for future research of real-time detection of
addictive activities using wearables and developing systems for just-in-time intervention to
promote cessation of such addictive behaviors. The developed framework can also be used for
different healthcare applications and use-cases. In this study, an attempt has been made to
predict smoking activity among the activities of daily living to assess the practical applicability
of the system. However, there are few limitations of this work despite the relative merits of the
proposed model is compared to the models available in the literature.

This paper considered only a few physical activities apart from the smoking activity for
classification. More activities like sleeping, eating, drinking, talking, and any other activity of
interest can be incorporated in future research work. It will enable the real-life application of
this model with more profoundness. The developed modeling framework can be deployed
using a mobile application and its performance in a real-life scenario is yet to be assessed.
Using the same mobile application, healthcare services can be designed to provide real-time
interventions for smoking cessation. Further, a study can be conducted to investigate the
efficacy of such interventions. The performance of supervised machine learning models also
depends on the choice of the features which are hand-crafted and thus defines an upper bound
on the performance of the machine learning models. Deep learning models can draw the
features from raw data automatically. The performance of the real-time activity detection
system could be further improved both in terms of predictive accuracy and prediction time
using deep learning-based classification models like recurrent neural network (RNN), and
LSTM. This study was limited by the smaller dataset whereas a deep learning model requires
large data for training. Further experimentation with the large dataset could be done to test a
deep learning model for the real-time prediction of the smoking activity. There are various
other methods for human activity recognition (HAR) based on video data, and other environ-
mental sensor data like infra-red sensors. It will be interesting to compare HAR methods based
on wearable sensor devices versus video or environmental sensor-based methods. Further, the
computational time complexity analysis should also be carried out to understand the suitability
of these methods.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s11042-022-12349-6.
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