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Abstract
Many significant efforts have so far been made to classify malignant tumors by using
various machine learning methods. Most of the studies have considered a particular tumor
genre categorized according to its originating organ. This has enriched the domain-
specific knowledge of malignant tumor prediction, we are devoid of an efficient model
that may predict the stages of tumors irrespective of their origin. Thus, there is ample
opportunity to study if a heterogeneous collection of tumor images can be classified
according to their respective stages. The present research work has prepared a heteroge-
neous tumor dataset comprising eight different datasets from The Cancer Imaging
Archives and classified them according to their respective stages, as suggested by the
American Joint Committee on Cancer. The proposed model has been used for classifying
717 subjects comprising different imaging modalities and varied Tumor-Node-Metastasis
stages. A new non-sequential deep hybrid model ensemble has been developed by
exploiting branched and re-injected layers, followed by bidirectional recurrent layers to
classify tumor images. Results have been compared with standard sequential deep
learning models and notable recent studies. The training and validation accuracy along
with the ROC-AUC scores have been found satisfactory over the existing models. No
model or method in the literature could ever classify such a diversified mix of tumor
images with such high accuracy. The proposed model may help radiologists by acting as
an auxiliary decision support system and speed up the tumor diagnosis process.
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1 Introduction

Many notable works have so far been carried out to classify malignant tumors by using
different machine learning techniques [45]. Most of the studies have tried to predict whether a
tumor is benign or malignant [62]. Their subjects have also been homogeneous in terms of
tumor origin and scanner modalities [41]. Thus, domain-centric prediction of tumors has been
much exercised than to propose an algorithm for predicting a tumor accurately irrespective of
its originating organ. The real-life prognosis of a tumor is much more complicated than just to
predict it as benign or malignant. The American Joint Committee on Cancer (AJCC) [18] has
propounded the popular Tumor-Node-Metastasis (TNM) staging system that depicts how
much a tumor has already spread in the body. Table 1 shows an example of how the TNM
staging of renal cancers has been accomplished.

The TNM stage may vary from one tumor-type to another. The overall pathological staging
brings TNM stages under a uniform prognostic group. In Table 2, the overall AJCC staging of
renal tumors has been shown. The present study has proposed a model that can predict the
overall pathological staging of a tumor irrespective of its genre.

The deep neural network (DNN) has been a prevalent technology in computer vision and
biomedical image processing. DNN has a wide variety of applications ranging from the
estimation of blood pressure [52, 70] to the detection of COVID-19 infections [1, 2]. Unlike
the traditional machine learning algorithms, explicit image pre-processing [37], segmentation
[38], and manual feature crafting are not required in deep learning. Thus, image processing
and re-generation becomes easier and effective with deep learning techniques [44]. However,
it has been observed that the traditional sequential models might mislay important imagery
features during the down-sampling phase. The sequential models also suffer from the high
variance that may affect generating a consistent accuracy. As the current problem at hand is a
multiclass problem having heterogeneous imagery, the present study has adopted a non-

Table 1 Definition of TNM staging of renal tumors as per AJCC 7th Edition manual

Primary Tumor (T) TX Primary tumor cannot be assessed

T0 No evidence of primary tumor
T1 Tumor size <=7 cm
T1a Tumor size <=4 cm
T1b Tumor size >4 cm and<=7 cm
T2 Tumor size >7 cm
T2a Tumor size >7 cm and<=10 cm
T2b Tumor size >10 cm
T3 Tumor extends into major veins or perinephric tissues but not into the ipsilateral

adrenal gland and not beyond Gerota’s fascia
T3a Tumor grossly extends into the renal vein or its segmental branches, or tumor

invades perirenal and/or renal sinus fat but not beyond Gerota’s fascia
T3b Tumor grossly extends into the vena cava below the diaphragm
T3c Tumor grossly extends into the vena cava above the diaphragm or invades the wall

of the vena cava
T4 Tumor invades beyond Gerota’s fascia

Regional Lymph
Nodes (N)

NX Regional Lymph Nodes cannot be assessed

N0 No Regional Lymph Node metastases
N1 Metastasis in regional lymph node(s)

Distant Metastasis
(M)

M0 No Distant Metastasis
M1 Distant Metastasis
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sequential paradigm of deep learning. The model has been developed by combining branched,
re-injected, and bidirectional recurrent layers [13]. The success of the model would pave a new
revolution in cancer treatment as there would be no need to rely on different models for staging
different cancer. A single model would work as a decision support system for staging tumors
of different genres and would help radiologists to affirmatively decide on the treatment plan.

2 Objective

The study aims to first prepare an image collection containing eight different cancers: bladder,
liver, renal, head & neck, breast, thyroid, uterus, and lungs. These cancers have been selected
as they belong to the leading cause of cancer-related deaths both in developed, developing, and
under-developed countries [10]. In this way, the image dataset prepared would have a varied
mix of tumor images as per originating organs, imaging modalities, subject demography, and
treatment strategy. The next aim is to develop a deep neural network model capable of
classifying the AJCC staging of such a varied mix of tumors. The problem at hand is complex
relative to other contemporary efforts where homogeneous image collections have been
classified. The present study conducts experiments with both sequential and non-sequential
models. The final aim is to compare the results obtained from different models and to select the
best model. The rest of the study is divided into the following sections: related work, data
acquisition, methodology, discussion, and conclusion.

Table 2 Overall AJCC staging of renal tumors as per AJCC 7th Edition manual

Stage I T1 N0 M0
Stage II T2 N0 M0
Stage III T1 or T2 N1 M0

T3 N0 or N1 M0
Stage IV T4 Any N M0

Any T Any N M1

Table 3 Recent significant studies on bladder cancer

Study Year Details Outcome

Xu et al. [65] 2017 used MRI radiomic features for differentiation between Non-Muscle Inva-
sive Bladder Cancer (NMIBC) and Muscle Invasive Bladder Cancer
(MIBC)

AUC of
0.8610

Ikeda et al.
[26]

2018 used a pre-trained network with 1.2 million images from the ImageNet to
distinguish between bladder tumors and healthy urothelium

93.0%
sensitivi-
ty

Eminaga
et al. [19]

2018 used 18,681 images from 479 cystoscopy videos in an Xception-based
model

99.52%
accuracy

Cha et al.
[11]

2018 investigated 123 bladder cancer subjects where AUC in clinical assessment
was 0.74

AUC of 0.8

Shkolyar
et al. [55]

2019 used CNNs to detect bladder tumors from cystoscopic videos of 100 patients 90%
sensitivi-
ty

Zheng et al.
[73]

2019 extracted radiomic features and used the nomogram as a bladder cancer
classifier

AUC of
0.876

Lin et al.
[31]

2019 used the least absolute shrinkage and selection operator (LASSO) method
with radiogenomics to predict the survival of patients

AUC of
0.956
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3 Related work

Recent notable studies have been included in the review of the literature to compare the
limitations and to bridge the research gap.

Tables 3, 4, 5, 6, 7, 8, 9, 10 reveals that, on a considerable number of occasions, non-
invasive approaches have successfully overshadowed the in-vitro diagnosis of tumors. Ma-
chine learning, especially, deep learning has emerged as a seminal technique for CAD-based
tumor prognosis. It has also been found that a model ensemble performs better than a single
model. Most of the Researchers have so far concentrated on the classification of a single tumor
genre. This has elevated the performance of domain-specific classification of tumors. How-
ever, the initiative to automate pathological staging has not been seen very often. Existing

Table 4 Recent significant studies on liver cancer

Study Year Details Outcome

Vivanti et al.
[61]

2017 detected new liver tumors by using deep learning and CT images 86%
accuracy

Sabut et al.
[49]

2018 classified liver cancer subtype by using texture features and Deep Neural
Network (DNN) along with 225 CT images

99%
accuracy

Ben-Cohen
et al. [6]

2018 proposed a CNN for the detection of liver metastasis 94%
accuracy

Bharti et al.
[7]

2018 proposed a model ensemble to differentiate four liver stages 96.6%
accuracy

Frid-Adar
et al. [21]

2018 used Generative Adversarial Networks (GANs) to reconstruct tumor images 78.6%
sensitivi-
ty

Romero et al.
[48]

2019 adopted a deep learning approach for classification of Colorectal liver
lesions

96%
accuracy

Sato et al.
[51]

2019 predicted hepatocellular carcinoma using real-world data 87%
accuracy

Table 5 Recent significant studies on renal cancer

Study Year Details Outcome

Ing et al.
[27]

2017 used a machine learning framework and The Cancer Genome Atlas (TCGA)
data for prediction of disease-free-survival

AUC 0.79

Ali et al. [3] 2018 kidney cancer subtype classification by using Long Short Term Memory
(LSTM) along with the TCGA

95%
accuracy

Bektas et al.
[5]

2018 Support Vector Machines (SVM) classified nuclear grades 85%
accuracy

Han et al.
[25]

2019 did a renal cancer subtype classification by using the deep learning method 85%
accuracy

Zhou et al.
[74]

2019 used a deep learning model to classify renal tumors into benign and
malignant

93%
accuracy

Tabibu
et al. [50]

2019 used CNN to predict renal cancer histology subtypes 94%
accuracy

Tian et al.
[57]

2019 did the grading of renal carcinoma by using The Cancer Genome Atlas
(TCGA) and the Lasso model

84.6%
sensitivi-
ty

Kocak et al.
[29]

2019 predicted the mutation status in renal cell carcinoma by using the Random
Forest (RF)

AUC 0.98
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studies have mostly been engaged in distinguishing between benign or malignant tumors.
Accuracy levels dropped whenever the problem at hand went beyond simple binary classifi-
cation. Many of the studies have been semi-automated where manual feature extraction created
significant processing overhead. The use of transfer learning has created resource-consuming
architecture in many of the recent studies. Many research works relied on a single database for
carrying out the learning process and ended up with less trustworthy results. Although the
efforts to classify histological subtypes or grading have been identified in some cases, they are
also confined to some particular tumor-type. It has also been observed that many of the studies
have considered a single scanner modality. As a result, the existing studies have created
different models that may detect a particular type of tumor having a certain type of scanner
modality. Thus, there is a great scope for developing a model that can identify different tumors
having dissimilar scanner modalities. The present study bridges the research gaps found in the
related studies and proposes a new emerging scientific model for automated detection of
malignant tumors of different genres.

Table 6 Recent significant studies on head & neck cancer

Study Year Details Outcome

Halicek et al.
[23]

2017 developed a CNN classifier to detect differences between normal and
cancer affected tissue

81%
accuracy

Ma et al. [33] 2017 A CNN-based model that could distinguish between normal and cancerous
tissues

91%
accuracy

Gupta &
Malhi [22]

2018 used a deep learning framework to detect head & neck tumors 98.8%
accuracy

Lo et al. [59] 2018 predicting metastasis of a malignant tumor by proposing a Support Vector
Machines (SVM) based method

100%
accuracy

Li et al. [30] 2018 trained an Artificial Neural Networks (ANN) based model to classify HN
tumors

0.812 AUC

Halicek et al.
[24]

2019 differentiated head & neck squamous cell carcinoma from normal tissues
by using CNN

0.916 AUC

Diamant et al.
[16]

2019 used deep learning to predict clinical outcomes of head & neck cancer by
considering 300 cases from TCIA

0.92 AUC

Ma et al. [34] 2019 differentiated benign and malignant tumors by using an auto-encoder
network

92.32%
sensitivi-
ty

Table 7 Recent significant studies on breast cancer

Study Year Details Outcome

Dhungel et al.
[15]

2017 used CNN for classifying benign and malignant tumors 90% accuracy

Xu et al. [66] 2018 used CNN and INbreast datasets to estimate breast density 93% accuracy
Shen et al.

[54]
2019 applied a convolutional model on the InBreast dataset with 0.95

AUC (Single model)
0.98 AUC (model

ensemble)
Reddy et al.

[60]
2020 used Deep Neural Network with Support value (DNNS) 97% accuracy
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4 Data acquisition

A dataset is prepared from eight different datasets from The Cancer Imaging Archive (TCIA)
[14] representing different tumors. TCGA-BLCA dataset represents Urothelial Bladder Car-
cinoma (BLCA). The dataset comprises 111,781 images of 120 numbers of patients. Major
imaging modalities are Computed Tomography (CT), Magnetic Resonance (MR), Computed
Radiography (CR), Positron Emission Tomography (PET), and Digital Radiography (DX).
TCGA-KIRP depicts cervical renal papillary cell carcinoma. It has 33 cases comprising 376
series and 26,667 images. Major imaging modalities are CT, MR, and PT. TCGA-LIHC is the
Liver Hepatocellular Carcinoma (LIHC) image dataset. It has 97 cases with 1688 series having
a total number of 125,397 images. Major imaging modalities are CT, MR, and PT. Non-Small
Cell Lung Cancer (NSCLC) radiogenomics dataset has a cohort of 211 subjects. The dataset
comprises Computed Tomography (CT), and Positron Emission Tomography (PET)/CT
images. TCGA-THCA represents thyroid cancer, having 6 cases in the image set with 28
series and 2780 numbers of images. Major imaging modalities are CT and PET. TCGA-UCEC
represents the Uterine Corpus Endometrial Carcinoma. There are 65 cases including 912 series
having 75,829 images. Major imaging modalities are CT, CR, MR, and PT. Head & Neck
radiomics collection contains clinical data and computed tomography (CT) from 137 head and
neck squamous cell carcinoma (HNSCC) patients treated by radiotherapy. TCGA-BRCA
represents Breast Invasive Carcinoma. It has 164 cases with 1877 series containing 230, 167
images. Imaging modalities are MR and mammography (MG).

Table 8 Recent significant studies on thyroid cancer

Study Year Details Outcome

Torab-Miandoab
et al. [58]

2017 applied image enhancement, image segmentation, and feature extraction
to determine cold thyroid nodules automatically

99%
accura-
cy

Farihah et al. [20] 2018 aimed to test the reliability of the Ultrasound Classification system in
predicting thyroid malignancy

93%
accura-
cy

Park et al. [47] 2019 developed an ultrasound-based deep learning model for the prognosis of
thyroid nodules

90%
sensi-
tivity

Wang et al. [63] 2019 did the histological subtype classification of thyroid tumor with VGG-19 97%
accura-
cy

Zhang et al. [72] 2019 used a random forest algorithm to diagnose thyroid nodules (0.834 AUC
in clinical diagnosis)

0.924
AUC

Table 9 Recent significant studies on uterine cancer

Study Year Details Outcome

Malek et al.
[35]

2018 proposed a computer-assisted method for distinguishing uterine sarcoma from
leiomyomas

92%
accuracy

Sun et al.
[56]

2019 developed a CADx by using CNN and attention mechanisms which predicted
subtypes of the endometrial tumor

84%
accuracy

Santhi et al.
[53]

2019 used a deep convolutional neural network for malignancy detection in uterine
cancer, and their contour extracted images

92.14%
accuracy
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The final image acquisition has been carried out by retrieving images from all the
aforementioned collections (Fig. 1). Each subject with pre-surgical DICOM images stored in
TCIA is identified with a Patient ID that is identical to the Patient ID of the same subject in
TCGA. Twenty best scans from each case having pathological data from all the eight
collections have been taken to form the final image collection. In this way, 717 cases where
the supportive clinical and pathological data are available to have been considered, and from
each such case thirty best scans are extracted. Thus, 14,340 radiological images have been
collected to form the new image dataset. This newly prepared image collection is heteroge-
neous to image modalities, cancer types, cancer stages/grades, and demographic characteristics
of patients.

5 Methodology

Equations 1 and 2 represent two key techniques used in the study, namely, branching and re-
injection [4], respectively.

FðiÞ W ;Xð Þ ¼ OðiÞl ¼ f W ðiÞl X l þ bðiÞl
� �

ð1Þ

Here X is the input vector; W is the weight vector; b is the bias; l is the corresponding layer
number; O is the output; i is the branch number and f (…) is the non-linear activation function.

OðkÞn ¼ OðiÞl þ OðjÞm ð2Þ
Where i, j, k are different branches of different convolutional layers l, m, n (n > l ≥ m, and k
≠ i ≠ j).

The concatenation of all the branches [46] is done by using Eq. 3:

Y ¼ F
0
W ;Xð Þ ¼ gc FðjÞ W ;Xð Þ

n o� �
ð3Þ

In Eq. 3, {F(j)(…)} is the collection of output tensors emanating from j (j = 1, 2… n; n > 0)
branches and gc is the concatenation operation via the axis c of the tensor.

Table 10 Recent significant studies on lung cancer

Study Year Details Outcome

Mao et al. [36] 2018 used a deep auto-encoder that was used for the four-type classification task 95%
accura-
cy

Liu et al. [32] 2018 trained CNNs for lung nodule classification with ELCAP dataset 90.3%
accura-
cy

Bhatia et al. [8] 2019 did Lung Cancer Detection using Deep Learning Residual Approach with
LIDC-IRDI dataset

84%
accura-
cy

Moitra &
Mandal [42]

2019 Did the grading of Non-Small Cell Lung Cancer (NSCLC) using the
Fuzzy-Rough Nearest Neighbour (FRNN) method

0.96 AUC

Moitra&
Mandal [43]

2019 Did AJCC staging of NSCLC Radiogenomics dataset using
One-dimensional CNN & Gated Recurrent Unit (GRU)

97%
accura-
cy
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Bidirectional LSTM [69] is described in Eq. 4:

H
!

t ¼ X t W ðf Þxh þ H
!

t�1 W ðf Þhh þ bðf Þh
� �

H
 

t ¼ X t W ðbÞxh þ H
 

tþ1 W ðbÞhh þ bðbÞh

� �

yt ¼ g Wy H
!

t�1 ; H
 

tþ1
h i

þ by
� � ð4Þ

Where t is the timestamp; Xt is the mini-batch input; h is the number of hidden units; H
!

tis the

forward and H
 

tis the backward hidden states; ∅ is the layer activation function.

Fig. 1 Glimpse of the final image collection (1st row represents TCGA-BRCA, 2nd row represents Head &
Neck Radiomics, 3rd row represents TCGA-BLCA, 4th row represents TCGA-KIRP, 5th row represents TCGA-
LIHC, 6th row represents TCGA-UCEC, 7th row represents TCGA-THCA and 8th row represents NSCLC
radiogenomics)
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Dense layers [67] are expressed in Eq. 5:

Yi ¼Wyt þ b ð5Þ

Fig. 2 Proposed non-sequential recurrent deep neural network model
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Softmax [64] is used for detecting the class scores from the final layer outcome (Eq. 6):

Ŷi ¼ softmax Yið Þ ð6Þ
In Eq. 6, Ŷi = (exp (oi)/Σj exp. (oj)) and oi is the relative levels of confidence [12] for
belongingness to each class I (0 < Ŷi < 1).

The most likely class may be found in Eq. 7

î oð Þ ¼ iargmaxoi ¼ iargmaxŶi ð7Þ
The cross-entropy loss [71] is expressed as Eq. 8:

l Y ; Ŷ
� � ¼ �Σj Yj log Ŷj ð8Þ

Where Y is the actual value and Ŷ is the predicted value. The ultimate objective is to minimize
the negative log-likelihood [68] or to maximize the accuracy (Eq. 9):

L* Y ; Ŷ
� � ¼ argŶimin

Xn
i¼1

H p Y ið Þ; p Ŷi
� �� � ð9Þ

Where H[p] is the entropy of distribution [28] p and is calculated as Eq. 10:

H p½ � ¼
X
j

�pðjÞ log pðjÞ ð10Þ

The proposed model (Fig. 2) may be described with the help of steps 1 through 9:

Step 1. Input tensor is fed in four varied parallel convolutional branches (Eq.1).
Step 2. Each convolutional layer is followed by pooling and normalization layers.
Step 3. Layer 2 is added with layer 4 (Eq.2).
Step 4. All the branches are concatenated (Eq.3).
Step 5. The concatenated output is vectorised with time-step.

Fig. 3 Glimpse of clinical data from TCGA-BLCA

Fig. 4 An instance of pixel arrays and their corresponding AJCC class labels extracted from clinical data
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Step 6. The flattened output is injected in bidirectional recurrent layers (Eq.4).
Step 7. The recurrent layer is followed by fully connected dense layers (Eq.5).
Step 8. Class scores and the most likely class are measured by using Eq.6and Eq.7.
Step 9. Loss is measured and minimized by Eq.8, Eq.9, and Eq.10.

Unlike a typical sequential model, the combination of branching and re-injecting layers
keep important features alive in the system. In each branch, the initial point-wise
Convolutional layer determines features that mix information from the channels of the input
tensor. Four dissimilar branches form the heterogeneous ensemble that helps in surpassing the
limitation of a typical sequential model. Reinjection makes sure that, even if the output of a
layer becomes tiny after activation or down-sampling, it gets regenerated from the original
layer output. These layers perform steps like segmentation, feature selection implicitly. Had it

Fig. 5 Flow diagram of the overall classification method

Fig. 6 Sequential CNN model used in the study
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been a traditional machine learning model, these steps would have to be done manually. The
time-distributed flattened layer vectorises the concatenated output and appends the time-step
feature needed by the following bidirectional recurrent layers. The output of the flattened layer
passes through two bi-directional Long Short Term Memory (LSTM) layers. The bi-
directional LSTM layers can learn from their previous and successive layers. This increases
the strength of the classifier as it can adjust the weights and bias from both directions. Finally,
the fully connected dense layers produce the class scores (Fig. 2).

All the images are resized to 64*64 for convenience in processing. After getting converted
to pixel array, the input dataset typically takes the shape of rank 4 tensor: (number of samples,
image height, image width, number of color channels). From the available clinical data
(Fig. 3), the AJCC label corresponding to each patient has been tied with the respective image
array. The whole dataset has been compressed and loaded for the experiment (Fig. 4). The
class imbalance issue has been resolved by Synthetic Minority Over-Sampling (SMOTE) [9].
The input has been fed into the proposed model and has been run for 2000 epochs with an
early stopping callback value and 200 as patience value. The experiment has been done with
10-Fold Repeated Stratified Cross-Validation with a repeat value of 10 (Fig. 5). It repeats
Stratified K-Fold 10 times with different randomization in each repetition. Here, the number of
folds is 10 and the cross-validator gets repeated 10 times with a random state value of 999 for
each repetition. It reduces preprocessing bias and correlation between data so that the accuracy
never gets artificially inflated. Training and validation data have been rescaled for standard-
ization. Each of the convolutional layers has been regularized by L2 or Euclidean norm and
followed by batchnormalisation and MaxPooling layers or AveragePooling layers for nor-
malizing and down-sampling the spatial features. Default padding and strides are used. The
batch size used is 128 and adam is used as the optimizer with a learning rate of 1e-4. All the
hyper-parameters have been determined by conducting a prolonged experiment. At last, the
training and validation accuracies are measured and other evaluation metrics [39] like ROC-
AUC score, Kappa Statistics, and F1-score are fetched from the confusion matrix. Similar
experiments are carried out with other sequential models that performed well in the past in a

Fig. 7 Sequential CNN + BiRNN model used in the study

Table 11 Best evaluation results of different models measured by various metrics

Model Validation Accuracy F1-Score Cohen’s Kappa ROC AUC

Proposed Non-sequential Model 0.93 0.9 0.86 0.98
Sequential CNN+BiRNN Model 0.84 0.81 0.75 0.9
Sequential CNN Model 0.66 0.64 0.61 0.76
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similar domain [40]. All the experiments have been performed with Python 3.6.8 (IPython
7.5.0) [17].

6 Discussion

The proposed Non-Sequential Recurrent Model Ensemble (NSRME) has been run on the
newly formed dataset along with other models like a sequential CNN model (Fig. 6) and a
sequential CNN model combined with bi-directional Recurrent Neural Network (CNN +
BiRNN) (Fig. 7). The latter two models were quite successful in classifying NSCLC TNM
staging and histology subtypes by using the TCIA Radiogenomics dataset, respectively. The
best and average results attained by these models are compared and analysed (Tables 11
and 12).

The best training and validation accuracy of the proposed model is found in iteration 2 at
epoch 123. Whereas, the best accuracy of CNN + BiRNN is found in iteration 4 at epoch 216
and the same for the CNNmodel is found in iteration 5 at epoch 267. From Table 11, it may be
interpreted that the proposed model’s performance is ahead of other sequential models. Kappa
statistics nearing 1 is quite encouraging, so are the high ROC-AUC score and high F1-Score.

Table 12 Average results (with standard deviations) of different models evaluated by various metrics

Model Validation Accuracy F1-Score Cohen’s Kappa ROC AUC

Proposed Non-sequential Model 0.89 ± 0.001 0.87 ± 0.004 0.84 ± 0.005 0.96 ± 0.002
Sequential CNN+BiRNN Model 0.66 ± 0.01 0.62 ± 0.03 0.65 ± 0.01 0.75 ± 0.02
Sequential CNN Model 0.59 ± 0.03 0.56 ± 0.02 0.57 ± 0.01 0.69 ± 0.01

Fig. 8 Training and validation accuracy and loss of the sequential CNN model
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Evaluation results (Tables 11 and Table 12) depict a high True Positive Rate (TPR) and less
type-I and type-II errors i.e., less False Positives (FPs) and less False Negatives (FNs).

From Figs. 8, 9, and 10 it may be observed that the average validation accuracy and loss of
the proposed model are better than other sequential models. From Table 12, it has been found
that the average ROC-AUC score of the proposed model is higher than the average ROC-AUC
scores of the CNN + BiRNN model and the sequential CNN model. Deviations are also less
with the proposed non-sequential model (Table 12). These results imply that classification
results have a less rate of miss and fewer false alarms. It has happened as the preprocessing
layers of the proposed non-sequential model have not let the important features die out of
down-sampling and the bidirectional LSTM layers memorized important features emanated
from both the forward and backward path. The average memory usage during the non-
sequential model execution also got decreased to 50% which was around 80% during

Fig. 9 Training and validation accuracy and loss of the sequential CNN + BiRNN model

Fig. 10 Training and validation accuracy and loss of the proposed non-sequential model
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sequential model execution. This has happened as the inception layers acted as cheaper filters
and fewer numbers of time-distributed layers have been used than the CNN + BiRNN model.
Thus, it may be concluded that the proposed model has performed steadily in classifying
heterogeneous classes of tumors.

When the results of the newly proposed model have been compared with the recent notable
studies (Table 13), it has been found that the non-sequential recurrent ensemble of deep neural
network has performed satisfactorily.

In Table 13, the recent prominent studies have been compared with the proposed one by
considering one of the most trustworthy parameters i.e. Area under the ROC Curve (AUC) that
depicts the aggregated performance of a classifier against all possible threshold values. From
Table 13, it is evident that the performance of the proposed model has indeed matched the top
performers in various genres. Most of the existing studies are based on a single tumor-type and
a single imaging modality. They often considered a single database and tried to detect subtypes
or grades of a particular cancer type. It has been observed that many of them relied on
manually crafted features. Thus many important features were ignored and whenever the
number of classes increased, the performance was affected. These problems were mitigated by
training the proposed model from the scratch and by using automated features. With the newly
proposed model, the dataset was a mix of eight databases, imaging modalities were also
diverse, and the task was more complicated than the grading of tumors as the number of target
classes was more. Despite such intricacy, the non-sequential recurrent model ensemble
(NSRME) has truly matched the performance of the leading recent studies. This speaks in
favour of the promises made by the proposed model. The study may be considered as a
momentous step towards making a revolutionary model that eliminates the need for having
different models for identifying different tumor-types.

7 Conclusion

No other model in the existing literature could classify such a varied mix of malignant tumor
imagery with such high accuracy. Here lies the novelty of the study. The scientific contribution
of the study is also manifold. Unlike the existing models, it helps in determining the overall

Table 13 Comparison of leading studies concerning the parameter Area under the ROC Curve (AUC)

Study Year Cancer
Type

#Class Prediction #Database Modality Method AUC

Lin et al. [31] 2019 Bladder Two Survival Single Single LASSO 0.96
Romero et al. [48] 2019 Liver Two Metastasis Single Single Inception &

Residual
0.97

Kocak et al. [29] 2019 Kidney Two Mutation Single Single RF 0.98
Diamant et al.

[16]
2019 Head&Neck Five Subtype Four Single CNN 0.92

Shen et al. [54] 2019 Breast Two Malignancy Single Single CNN Ensemble 0.98
Zhang et al. [72] 2019 Thyroid Two Malignancy Single Single RF 0.92
Sun et al. [56] 2019 Uterine Four Grade Single Single CNN &

Attention
0.95

Moitra & Mandal
[42]

2019 Lung Four Grade Single Single FRNN 0.96

Proposed Model 2020 All Above Five Stage Eight Multi NSRME 0.98
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prognostic group of a tumor irrespective of its type and imaging modality. Once the overall
pathological staging is determined, the TNM staging of the respective tumor may also be
detected easily. The proposed model may determine histopathological grades and subtypes of
different tumors with little customization. In this way, the present study may help medical
personnel in determining the stage or grade of tumors in a more assenting way. The present
study could not include many tumor genres for a lack of clinical data. In the future, many other
types of tumors may be brought under the periphery of the study. In the future, the model may
also diagnose blood cancer or leukemia, where no tumors are formed. Experiments may be
carried out in the future with different hyper-parameters and meta-learners to improve the
model further.
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