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Deep autoencoder based domain adaptation
for transfer learning
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Abstract
The concept of transfer learning has received a great deal of concern and interest
throughout the last decade. Selecting an ideal representational framework for instances
of various domains to minimize the divergence among source and target domains is a
fundamental research challenge in representative transfer learning. The domain adaptation
approach is designed to learn more robust or higher-level features, required in transfer
learning. This paper presents a novel transfer learning framework that employs a marginal
probability-based domain adaptation methodology followed by a deep autoencoder. The
proposed frame adapts the source and target domain by plummeting distribution deviation
between the features of both domains. Further, we adopt the deep neural network process
to transfer learning and suggest a supervised learning algorithm based on encoding and
decoding layer architecture. Moreover, we have proposed two different variants of the
transfer learning techniques for classification, which are termed as (i) Domain adapted
transfer learning with deep autoencoder-1 (D-TLDA-1) using the linear regression and (ii)
Domain adapted transfer learning with deep autoencoder-2 (D-TLDA-2) using softmax
regression. Simulations have been conducted with two popular real-world datasets:
ImageNet datasets for image classification problem and 20_Newsgroups datasets for text
classification problem. Experimental findings have established and the resulting improve-
ments in accuracy measure of classification shows the supremacy of the proposed
D-TLDA framework over prominent state-of-the-art machine learning and transfer learn-
ing approaches.
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1 Introduction

In this modern era of self-regulation, intelligent machine learning (ML) technologies are
developing exponentially to ease real-life applications, such as regression, classification, and
clustering. Such machines heavily depend on the learning techniques that are implied to learn
to develop a classifier. The ML techniques are mainly characterized as supervised, unsuper-
vised, and semi-supervised learning, etc. [31]. Supervised learning techniques train the
machine using labeled input data (train/source data) to predict the desired output (labels) of
test data. However, the hidden patterns needed to be mined from the train data in unsupervised
learning techniques as class labels are unknown. Semi-supervised learning techniques are used
when a minimal amount of labeled train data is available, i.e., a large amount of unlabeled train
data is used in conjunction with few labeled data to build the learning classifiers [57].

Several ML techniques assume that the learning of every new task starts from scratch, and the
training and test data originate from the same feature distribution and domain space [29].
Unsupervised and semi-supervised learning methods are relatively ineffective if sufficient infor-
mation about the test and training data is not available. In unsupervised learning, the prediction
model works poorly when the information about the unlabeled data does not exist. To overcome
this, a new approach to learning, called Transfer Learning (TL), has emerged as an attractive area
of research [12, 14, 25, 28, 33, 38, 42, 49]. TL is inspired by human intelligence, i.e., humans do
not require learning from scratch for every new task as they can efficiently utilize their already
acquired knowledge (from other tasks) to solve a new task or learn more rapidly. For example,
cycle riding experience helps in grasping motorbike skills quickly and swiftly. TL algorithms are
usually designed to predict the test data using a mathematical model trained on a dataset that
differs concerning domains, tasks, and distributions [57].

Domain adaptation (DA) is an excellent representation of TL, which utilizes both source
and target data for learning even though their distributions are not the same [31–33, 48]. The
goal of DA is to share the knowledge among source and target data but only for related tasks or
domains. A notable issue within DA is to decrease the dissimilarity between the distributions
of source and target domains, somehow maintaining the essential features of both environ-
ments. Although numerous research works have been done over the last decade on TL
algorithms to produce an appropriate distance measure for DA, yet remains an ongoing and
challenging subject. To that end, this work offers a novel DA method for determining the
distance among domains. Precisely, the DA approach runs over the source domain to derive
the representative features and then applied to target data. The distance measure is defined to
distinguish the difference between the source and target domain. In other words, if the distance
measure between domains is minimal, their distributions are considered to be similar, other-
wise dissimilar. Hence, the weight vectors trained from the encoding and decoding layers as of
the source data apply perfectly to target data for classification. Moreover, the feature repre-
sentation model based on the proposed DA approach makes the source and target domain
distributions similar, which constructs a new framework for the domain-specific features.

In this paper, we propose a marginal probability-based domain adaptation methodology,
which efficiently captures the similarity within the features of source and target domains. It is a
feature representation technique for reducing the dimensionality of features within both domains
for better representation learning. Further, we utilize one of the incredibly powerful approaches of
machine learning known as a deep neural network [42]. The concept of a deep learning network
originated from the artificial neural network with many hidden layers which capture the intricate
non-linear representation of data. The deep neural network is considered an intelligent feature
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extraction module that offers excellent flexibility in extracting high-level features in the proposed
TL model. Deep autoencoder is a deep feed-forward neural network that contains more than one
hidden layer and is trained to map the input value. We have utilized a deep autoencoder-based
supervised representation learning method for transfer learning called Transfer Learning with
Deep Autoencoder (TLDA) [55]. In TLDA, there are two layers: the first layer is for encoding
and the second layer is for decoding, where the weights are pooled through source and target data.
The first encoding layer is called the embedded layer. At this layer, the source and target data
distributions are minimized by the K-L divergence of the embedded instances between domains.
The second embedding layer is the level encoding layer where the source labels information is
encoded using a softmax regression model. The above discourse TLDA framework is coupled
with our proposed DA approach, as shown in Fig. 1.

Significant contributions of the work are summarized as follows:

i). We propose a new transfer learning framework that can tackle analogous multi-domain
predicament when the source and target domains exhibit profound data distribution (e.g.,
source data contain images of passenger cars; however, the target domain comprises
ambulances).

ii). In the proposed framework, we have exploited marginal probability distribution between
source and target domain to efficiently select similar features to bridge the vast differ-
ences across the source and target domains.

iii). Two different feature representation-based domain adaption techniques in conjunction
with deep autoencoder are proposed. We have termed the newly developed techniques
as (1) Domain Adapted Transfer Learning with Deep Autoencoder-1 (D-TLDA-1), and
(2) Domain Adapted Transfer Learning using Softmax Regression-2 (D-TLDA-2)

iv). To analyze the efficacy of D-TLDA-1 & D-TLDA-2 as improvements in the accuracies
of classification, simulations are conducted on two real-world datasets, namely, the
ImageNet dataset and the 20_Newsgroup dataset, and the impact of parameter sensitivity
have been examined.

Fig. 1 Domain adaptation in transfer learning with deep autoencoder

22381Multimedia Tools and Applications (2022) 81:22379–22405



v). To establish clear superiority of the proposed D-TLDA-1 and D-TLDA-2, thorough
comparisons are conducted with the following:

(a) Transfer learning methods: Transfer Component Analysis (TCA) [32], marginal-
ized Stacked Denoising Autoencoder (mSDA) [8], Transfer Learning with Deep
Autoencoder (TLDA) [55, 56].

(b) Machine learning tools: Linear Regression (LR) [16], Neural Network (NN) [3],
Support Vector Machine (SVM) [45], and Extreme Learning Machine [50].

The rest of the paper is organized as follows. Section 2 contains a literature survey. Section 3
discussed the modelling framework of the objective function, which is to be optimized in the
learning model. In Section 4, the proposed framework for domain adaptation in transfer
learning with deep autoencoder is explained. In Section 5, two real-world datasets are used
to test the performance of our proposed techniques. This section also presents the findings of
our experimental results are reported and compared with the various machine and transfer
learning techniques. Finally, we conclude the paper in Section 6 with a brief discussion about
our contribution and future work.

2 Literature survey

The study conducted by Pan and Yang [31] is a ground-breaking effort that categorizes
TL and examines the research achievements made up to 2010. The homogeneous and
heterogeneous TL techniques introduced and summarized in the survey by Weiss et al.
[49]. However, in-depth look into heterogeneous TL is provided by Day and
Khoshgoftaar in their study [14]. Several researchers have studied specialized topics,
including activity recognition [12], computational intelligence [28], and deep learning
[42]. A number of studies also concentrate on particular application situations, such as
visual categorization [38], collaborative recommendation with auxiliary data [30], com-
puter vision [48], and sentiment analysis [25]. A neural probabilistic language learning
model proposed by Bengio et al. [4] learns a distributed representation for words and the
probability function for every word sequence. A unique sharing method utilizing Bayes-
ian methodology was reported by Bakker and Heskes [1], which is a general amalgam-
ation of expert architecture incorporating gated dependencies on task characteristics. A
heuristic approach, called positive examples and negative examples labeling heuristic,
was proposed by Fung et al. [17], in which a classifier efficiently utilizes both positive
and negative instances. Collobert and Weston [11] proposed a unified architecture for
natural language processing for features relevant to the tasks. Blitzer et al. [5] reported
the concept of pivot feature selection of domain adaptation (DA) for a target domain
using both the source and target domains. A co-clustering algorithm was suggested by
Dai et al. [13] to exploit the technique of transferal of label information across both
source domain and target domain. Cao et al. [6] introduced an extension of the AdaBoost
algorithm titled ITLAdaBoost as Inductive Transfer Learning AdaBoost algorithm for
pedestrian detection. Tang et al. [43] developed a framework for distributed learning
across heterogeneous networks to efficiently classify various types of social relation-
ships. A multi-task transfer learning approach for small training samples was proposed
by Saha and Gupta in [37]. The authors also developed an alternative method of
multipliers to solve an optimization problem.
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It was proved by Rosenstein et al. [35] that when two tasks are entirely dissimilar,
then transferral of knowledge even by exploiting the brute-force approach can’t cease
performance degradation. Therefore, the use of transformations to project instances of
different domains into a common latent space is a widely studied TL technique. Silver
et al. [40] proposed a context-sensitive neural network, where single output neural
network was used to learn different tasks. To construct a feature-based TL, Deng et al.
[15] used a sparse autoencoder technique to recognize emotions in a speech. Huang et al.
[20] introduced the idea of cross-language knowledge transfer using the deep multilin-
gual network with shared hidden layers. Long et al. [27] proposed adaptation regulari-
zation based TL techineque which optimized the structural risk functional and adapted
the joint distribution of the marginal and conditional distributions by exploring the
maximum possible learning objectives. A hybrid heterogeneous TL framework was
proposed by Zhou et al. [53], which utilized deep learning to understand the mapping
between cross-domain complex features. Roy et al. [36] proposed a domain adaptation
approach incorporating a stacked autoencoder-based deep neural network. Utkin et al.
[44] proposed a TL approach using a robust deep learning algorithm for the efficient
classification of multi-robot systems. Huang et al. [21] used the deep neural network to
design a TL approach for speaker adaptation in automatic speech recognition against
speaker variability. Tahmoresnezhad and Hashemi [41] proposed a DA technique to
contain domain shift problems when data distribution varies too much.

Ganin and Lempitsky [18] proposed a back-propagation regularization technique for DA
using deep learning models for unsupervised TL. The [18] was further enhanced by Clinchant
et al. [10], incorporating more robust regularization for denoising autoencoders. A stacked
denoising autoencoder (SDA) was proposed by Vincent et al. [47], which was later used by
Glorot et al. [19] to learn robust features in the data collected from different domains. Chen
et al. [8] further improved the [47] approach by proposing a marginalized SDA for transfer
learning. Shao et al. [39] developed the deep adaptive exemplar autoencoder method of
unsupervised DA using a bisection tree partition for source and target data. A TL model
was described by Liu et al. [24], which transfers the knowledge learned from abundant, simple
human action to recognize complex human efforts.

Recently, Zhang et al. [51] used a deep transfer based multi-task learning approach for
better feature representations for annotating gene expressions of biological images. Some
surveys are supplied for readers who desire a thorough grasp of this area. In [29], Niu
et al. presented the most representative works on TL in the past decade from 2010 to
2020 and organized into different categories. Zhang et al. [57] connect and systematize
the existing TL researches, as well as to summarize and interpret the mechanisms and the
strategies of TL in a comprehensive way, which provides the most better understanding
of the current research status and ideas on TL. Moreover, TL based mechanisms have
been applied to a number of real-work applications such as Object detection in remote
sensing images [9], human activity recognition [7, 46], fruit freshness classification [22],
sketch recognition [52], person re-identification [26], detect malarial parasite [2], pre-
diction of COVID-19 infection through chest CT-scan images [23] and so on. Unlike the
earlier works, this paper proposed a novel supervised learning-based description method
called D-TLDA using deep autoencoder networks that minimize the distance measure
among the marginal probability distribution of domain variation and labeling of encodes
of the source domain.

22383Multimedia Tools and Applications (2022) 81:22379–22405



3 Modelling framework

In this section, we describe basic concepts of deep autoencoder, softmax regression, relative
entropy, and regularization used in our proposed formulation. Table 1 presents the list of
notations/symbols used in the proposed framework.

3.1 Deep autoencoder

An autoencoder is a mapping between an input (x) to hidden layers (y) such that the data can be
reconstructed (bx) from y. It includes two major processes: encoder and decoder. The encoder
encodes an input x into one or more hidden layers y using Eq. (1). However, the decoder takes
y and decodes it in reconstructed output bx using Eq. (2).

Encoding : y ¼ f Wxþ bð Þ ð1Þ

Decoding : bx ¼ f WTyþ bT
� � ð2Þ

Here, f represents a sigmoid function (non-linear activation function), W ∈ ℝk × m shows
weight matrix and b ∈ ℝk × 1 is the bias vector.

The essential purpose of an autoencoder is to construct a feed-forward neural network [3].
The deep autoencoder is a particular neural network that contains more than one hidden layer
and is trained to map the input values. Figure 2 shows a typical deep autoencoder diagram. In
Fig. 2, x1, x2 and x3 represent the input and bx1; bx2 and bx3 are output with two central nodes, z1
and z2, arranged symmetrically in three hidden layers. The goal of the deep autoencoder is to
minimize the deviance between output bx and input x.

Deep autoencoder minimizes the reconstruction error function ∑n
i¼1 bx−xk k 2 by learning the

weight matricesW1;WT
1 and bias vector b1; bT1 to accomplish this objective [55, 56]. Hence,

the aim of deep autoencoder can be written as the following optimization problem.

Table 1 Notations

Notation Definition Notation Definition

s Source domain T Transposition operation of matrix
t Target domain WT

i Decoding weight matrix for layer i
ns Number of instances in source domain bTi Decoding Bias matrix for layer i
nt Number of instances in target domain α,β and γ Balancing constants
nl Number of nodes in a label layer c Number of label layer
m Number of original feature u Pivot value/constant
k Number of nodes in embedding layer bx sð Þ

i Reconstruction output of x sð Þ
i

l sð Þ
i Label of instance x sð Þ

i bx tð Þ
i Reconstruction output of x tð Þ

i

x sð Þ
i

i-th instances of source domain by sð Þ
i Reconstructions of y sð Þ

i

x tð Þ
i

i-th instances of target domain by tð Þ
i Reconstructions of y tð Þ

i
Wi Encoding weight for layer i z sð Þ

i Hidden representation of by sð Þ
i

bi Bias matrix for layer i z tð Þ
i Hidden representation of by tð Þ

i

Pr tð Þ
M

Marginal probability of target domain Pr sð Þ
M

Marginal probability of source domain

y sð Þ
i Hidden representation of x sð Þ

i y tð Þ
i Hidden representation of x tð Þ

i
d Distance between each Pr sð Þ

M and Pr tð Þ
M

k Number of nodes in embedding layer
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min
W1; b1;WT

1 ; b
T
1
∑n

i¼1 bx−x��� ���2 ð3Þ

Suppose s ¼ x sð Þ
i ; l sð Þ

i

� �
represents source domain having set of input data x sð Þ

i ∈ℝm�ns with

label l sð Þ
i ∈ 1;…; nlf g, and t ¼ x tð Þ

i represents target domain without label. Then, for a given
number of instances of source domain (ns) and target domain(nt), the reconstruction error using
Eq. (3) can be derived as follows:

f 0 x;bx� �
¼ ∑

rϵ s;tf g
∑
i¼1

nr

x rð Þ
i −bx rð Þ

i

���� ����2 ð4Þ

Equation (4) can be adequately understood by Fig. 2 in which y rð Þ
i ¼ f W1x

rð Þ
i þ b1

� �
is the

first hidden layer called embedding layer with output y ∈ ℝk × 1, (k ≤ m), the weight
matrix W1 ∈ ℝk × m, and bias vector b1 ∈ ℝk × 1. The output of the embedding layer (y) is
taken as the input of the second hidden layer. The second hidden layer (called label layer) is

calculated as z rð Þ
i ¼ f W2y

rð Þ
i þ b2

� �
; whereW2∈ℝnl�k and b2 ∈ ℝk × 1 shows weight matrix

and bias vector, respectively using Eq. (1). The output z∈ℝnl�1 of nl nodes used to predict the

number of class labels of the target domain. Similarly, the third hidden layer by∈ℝk�1, known

as reconstruction of embedding layer with the weight matrix WT
2 ∈ℝ

k�nl and bias vector

bT2∈ℝ
k�1, is evaluated as by rð Þ

i ¼ f WT
2 z

rð Þ
i þ bT2

� �
using Eq. (2). Finally, bx is constructed

for input x by bx rð Þ
i ¼ f WT

1by rð Þ
i þ bT1

� �
; where WT

1∈ℝ
m�k and bT1 ∈ℝ

k�1 are respectively the

corresponding weight matrix and bias vector.

3.2 Softmax or multinomial logistic regression

In classification problems, softmax or multinomial logistic regression model comes into the
picture when the possible values of class label l can have many values, i.e., l ∈ {1, 2, …, nl},
such that nl representing the label number, and nl ≥ 2. It is a generalization of the logistic
regression [16]. To calculate the probability Pr(l = j|x), j = {1, 2, …, nl} for a test input x the

Fig. 2 Deep autoencoder
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softmax model construct the hypothesis hθ(x) function. The hθ(x) is estimated by calculating
the probabilities of the class label for all of the nl different possible values of class to which x
belongs. Therefore, it can be counted as follows:

hθ xð Þ ¼

Pr
�
li ¼ 1 xi; θj Þ

Pr
�
li ¼ 2 xi; θj Þ

:
:
:

Pr
�
li ¼ nl xi; θj Þ

2666666664

3777777775
¼ 1

∑nl
j¼1e

θTj xi

eθ
T
1 xi

eθ
T
2 xi

:
:
:

eθ
T
nl
xi

26666664

37777775 ð5Þ

Here; θ1; θ2;…; θnl are the parameters of model and 1=∑nl
j¼1e

θTj xi normalizes the distribution.

For a given source data set xif ; ligni¼1; li∈ 1; 2;…; nlf g;the softmax regression model can be
designed by solving the optimization model presented in Eq. (6).

minθ −
1

n
∑n

i¼1∑
nl
j¼1I li ¼ jf glog eθ

T
j xi

∑nl
j¼1e

θTj xi

 !
ð6Þ

where, I represents an indicator function, which gives either 0 or 1 values. Once the softmax
regression model is trained, i.e., parameters of the model are evaluated the probability of x
belongs to a label j can be calculated using Eq. (5) and the class label assign to x can be
obtained by using the Eq. (7).

l ¼ max
j

eθ
T
J x

∑nl
j¼1e

θTj x
ð7Þ

Softmax regression model include the labels information of the source domain s ¼ x sð Þ
i ; l sð Þ

i

� �
into the embedding layer y sð Þ

i by evaluating Eq. (7). Then, the loss function of the softmax
regression can be formalized as follows:

f 1 θ; lið Þ ¼ −
1

ns
∑
i¼1

ns

∑
j¼1

nl

1 l sð Þ
i ¼ j

n o
log

eθ
T
j y

sð Þ
i

∑nl
j¼1e

θTj y sð Þ
i

ð8Þ

Here, θTj j∈ 1;…; nlf gð Þ is the j−th row of W2.

3.3 Relative entropy

Relative entropy or Kullback-Leiber (KL) divergence is a measure of divergence among
two different probability distributions [34]. If P and Q are two given discrete
non-symmetric probability distributions, then the relative entropy of Q from P, D(P ∣
|Q), is the loss of information when Q is approximated to P. Similarly, D(Q‖P) gives the
loss of information when P is approximated to Q. Mathematically, D(P‖Q) and D(Q ∣ |
P) are calculated as follows:

D P‖Q
� �

¼ ∑iP ið Þln P ið Þ=Q ið Þð Þ
D Q‖P
� �

¼ ∑iQ ið Þln Q ið Þ=P ið Þð Þ
ð9Þ
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Relative entropy measures the change between source and target data domain when they are
embedded. In classification, two probability distributions are said to be dissimilar when the
value of relative entropy is higher. Total relative entropy between P and Q is given by D(P,
Q) = D(P‖Q) + D(Q ∣ |P). Then, the measure of relative entropy of embedded instances
between the source and target domains may be written as:

f 2 y sð Þ; y tð Þ
� �

¼ D Ps‖Pt

� �
þ D Pt‖Ps

� �
ð10Þ

Here, Ps and Pt are respectively the probability distributions of source and target at the
embedded layer. They may be evaluated as follows:

Ps ¼
1

ns
∑ns

i¼1y
sð Þ
i

∑
1

ns
∑ns

i¼1y
sð Þ
i

; Pt ¼
1

nt
∑nt

i¼1y
tð Þ
i

∑
1

nt
∑nt

i¼1y
tð Þ
i

ð11Þ

As a result, when two different domains are embedded in the same embedding space, the
relative entropy is used to determine their divergence. In the embedding space, the purpose of
minimizing the relative entropy is to guarantee that the source and target domain distributions
are comparable.

3.4 Regularization

Regularization is a common way of controlling and flexibly reducing over-fitting. Regulari-
zation is accomplished by introducing the regularization term R(θ) in the cost function to
manage the over-fitting of parameters w. Mathematically, it is defined as R(θ) = δ. ‖w‖2;
where,δ ≥ 0 is the constant multiplier.

4 Proposed transfer learning model for classification

This section explains our proposed transfer learning framework of classification. The detailed
flow diagram of the learning model is presented in Fig. 3. It consists of different processes:
domain adaptation, objective function formulation, Gradient descent algorithm, classifier
construction, and accurate measurement. All these processes are discussed in the following
subsections.

4.1 Domain adaptation

Domain adaptation (DA) is a realistic illustration of TL because it uses both source and target
data for the training model even through the distributional differences [31–33, 48]. DA aims to
communicate knowledge between source and target data for the relevant entities or tasks. A
particular challenge for DA is to minimize the inequality between the distributions of the
source and target domains while retaining the critical characteristics of both domains. Thus, we
propose a marginal probability distribution based on the distance measure of DA in the present
TL model. The proposed distance measure adapts the source and the target domain by

rendering the marginal distribution of both domains. Let, Pr sð Þ
M and Pr tð Þ

M represent the discrete
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marginal distribution probability for each feature of the given source (x(s)) and target (x(t))

domains. Then, mathematically, Pr sð Þ
M and Pr tð Þ

M may be calculated using the Eq. (12) as
follows.

Pr sð Þ
M ¼ ∑m

j¼1x
sð Þ
ij

∑ns
i¼1∑

m
j¼1x

sð Þ
ij

; Pr tð Þ
M ¼ ∑m

j¼1x
tð Þ
ij

∑nt
i¼1∑

m
j¼1x

tð Þ
ij

ð12Þ

Now, let dij denotes the difference between the marginal distribution probabilities for each
source feature to the all target domain features. That is, the distance metric, dij, may be
calculated as:

dij ¼ Pr sð Þ
M −Pr tð Þ

M

��� ��� ð13Þ

The adaptation works for the features having the same marginal distribution probability.
However, the difference between the two probabilities is not exactly zero. Therefore, we used
a pivot value/constant (u) to distinguish the difference between the two domain distributions.
Algorithm-1 demonstrates the complete procedure of the proposed domain adaptation (DA)

Fig. 3 Proposed transfer learning model
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technique. The outputs of Algorithm-1 are the newly generated source domain (sDA) and the
target domain (tDA). Now, the adaptive domains will be used in the deep autoencoder to form
the neural network.

4.2 Objective function

Suppose s ¼ x sð Þ
i ; l sð Þ

i

� �
is a given source domain labeled data x sð Þ

i ∈ℝm�ns ; l sð Þ
i ∈ 1;…; nlf g and

t ¼ x tð Þ
i target domain without the label. In our proposed framework, the objective is to

minimize all the defined functions: f0 (in Eq. (4)), f1 (in Eq. (8)), f2 (in Eq. (10)) and f3(W,
b, WT, bT) simultaneously, as shown in Fig. 1. Therefore, by considering the weighted
aggregation method, the total objective function [54, 56] can be formalized as follows.

F ¼ f 0 x;bx� �
þ α: f 1 θ; lið Þ þ β: f 2 y sð Þ; y tð Þ

� �
þ γ: f 3 W ; b;WT ; bT

� � ð14Þ

Here α, β and γ are non-negative factors to set of scales the effect of different components in
the total objective function. In Eq. (14), the function f3 is a regularization function on the
parameters of the model, which is defined as follows:

f 3 W; b;WT; bT
� � ¼ W1k k2 þ b1k k2 þ W2k k2 þ b2k k2

þ WT
1

�� ��2 þ bT1
�� ��2 þ WT

2

�� ��2 þ bT2
�� ��2

Therefore, the objective of the proposed model is to minimize the total objective function, as
expressed below.

minW1;b1;W2;b2 Fð Þ ð15Þ

4.3 Transfer learning model

The unconstrained optimization problem formulated in Eq. (14) is a minimization problem

concerning the decision variablesW1; b1;WT
1 ; b

T
1 andW2; b2;WT

2 ; b
T
2 . To solve the optimiza-

tion problem, we have used the Gradient Descent Algorithm [54, 56], an iterative process in
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which each particular variable gets updated and the objective function is optimized. It is noted
here that the optimization problem is not a convex optimization. Therefore, getting stuck in the
local minima is entirely possible. However, we can still obtain the optimal minimal by an
exceptional selection of step size. To solve the optimization problem with the gradient descent
approach, we update the decision variables as follows:

W1≔W1−η
∂F
∂W1

; b1≔b1−η
∂F
∂b1

;WT
1≔W

T
1−η

∂F
∂WT

1

; bT1≔b
T
1−η

∂F
∂bT1

ð16Þ

W2≔W2−η
∂F
∂W2

; b2≔b2−η
∂F
∂b2

;WT
2≔W

T
2−η

∂F
∂WT

2

; bT2≔b
T
2−η

∂F
∂b2

: ð17Þ

Here, η is the step size, which determines the speed of convergence. Equations (16) and (17)
need to find the partial derivatives (gradients) of the objective function with respect to

W1; b1;WT
1 ; b

T
1 ;W2; b2;WT

2 and b
T
2 . The derivatives are computed as follows:

∂F
∂W1

¼ ∑ns
i¼12W1A

sð Þ
i ° WT

2 W2B
sð Þ
i °C sð Þ

i

� �� �
°D sð Þ

i x sð ÞT
i

þ∑nt
i¼12W1A

tð Þ
i ° WT

2 W2B
tð Þ
i °C tð Þ

i

� �� �
°D tð Þ

i x tð ÞT
i þ α

ns
∑ns

i¼1D
sð Þ
i ° 1−

Pt

Ps
þ ln

Ps

Pt

� 	� 	
x sð ÞT
i

þ α
nt
∑nt

i¼1D
tð Þ
i ° 1−

Ps

Pt
þ ln

Pt

Ps

� 	� 	
x sð ÞT
i þ 2γW1

−
β
ns

∑ns
i¼1∑

nl
j¼11 l sð Þ

i ¼ j
n o�

WT
2 j−

WT
2e

WT
2 y

sð Þ
i

∑nl
l¼1e

W2l y
sð Þ
i

°D sð Þ
i x sð ÞT

i

ð18Þ

∂F
∂WT

1

¼ ∑ns
i¼12A

sð Þ
i by sð ÞT

i þ ∑nt
i¼12A

tð Þ
i by tð ÞT

i þ 2γWT
1 ð19Þ

∂F
∂W2 j
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i¼12W2 j W1A
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i °B sð Þ

i

� �
°C sð Þ

ij y
sð ÞT
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i

� �
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β
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i

∑le
W2l y

sð Þ
i
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 !
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∂F
∂WT

2

¼ ∑ns
i¼12W1A

sð Þ
i °B sð Þ

i °z sð ÞT
i þ 2γWT

2 þ ∑nt
i¼12W1A

tð Þ
i °B tð Þ

i z tð ÞT
i ð21Þ

Here, W2j is the j-th row of W2 and nsj is the number of instance with the label j in source
domain. Some intermediate variables are presented as follows:
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A rð Þ
i ¼ bx rð Þ

i −x rð Þ
i

� 	
°bx rð Þ

i ° 1−bx rð Þ
i

� 	
;

B rð Þ
i ¼ by rð Þ

i ° 1−by rð Þ
i

� 	
;

C rð Þ
i ¼ z rð Þ

i ° 1−z rð Þ
i

� �
and

D rð Þ
i ¼ y rð Þ

i ° 1−y rð Þ
i

� �
:

The updated variables are used to train the layers of the autoencoder. Once the autoencoder
layers are trained, the second autoencoder layer can be formed using the output of the previous
autoencoder layers. This procedure may require to be repeated to create an autoencoder. This
autoencoder is used as an initialization step in the transfer learning process. The details of the
transfer learning with deep autoencoder are summarized in Algorithm-2. In our proposed
learning model, we begin with Algorithm-1 on the source & target data for the adaptation and
further apply the outcomes of Algorithm-1 in Algorithm-2.

4.4 Construction of the classifiers

Afterward training all the factors and variables of the learned autoencoder, we construct the
classifier for labeling the target domain. Four different classifiers are built as follows.

(i). Directly use the source and target domain without using the proposedDA approach to train the
autoencoder using Algorithm-2. The output of the second hidden layer is used to calculate the
probabilities of the belongingness to the class. The maximum value of all these probabilities
predicts the label. This classifier is termed ransfer learningwith deep autoencoder-1 (TLDA-1).

(ii). Directly use the source and target domain without using the proposed DA approach and
apply the softmax regression algorithm to train the classifier for the source domain in the
embedding space. Then, predict the class label for the target domain using Algorithm-2.
This classifier is called transfer learning with deep autoencoder-2 (TLDA-2).

(iii). First, apply our proposed DA procedure (Algorithm-1) on the source and target domain
to adopt similar features. The adapted domains are used to train the autoencoder using
Algorithm-2. The maximum probability of belongingness from the second hidden layer
predicts the class. We named this proposed domain adapted transfer learning with deep
auto encoder-1 (D-TLDA-1).
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(iv). First, adapt the two domains using Algorithm-1 and apply softmax regression to train
the autoencoder using Algorithm-2 for classification. We named this proposed domain
adapted transfer learning with deep auto encoder-2 (D-TLDA-2).

5 Experimental simulations

The proposed D-TLDA frameworks are systematically implemented to evaluate its effective-
ness in classifying real-world datasets, namely the ImageNet dataset and 20_Newsgroups
dataset. This section consists of various subsections. The first subsection briefly summarizes
the details of datasets and their pre-processing according to the TL framework. The second
subsection concerns the examined outcomes and discussions of the accuracy measurement
obtained by the representative TL classification approaches. Finally, in the last subsection, we
performed a thorough comparative study to demonstrate the efficacy of the proposed learning
model over other transfer learning and traditional machine learning techniques. The proposed
framework for classification has been implemented in MATLAB on a workstation having a
Xeon® processor with 16 GB RAM on Windows 7 OS.

5.1 Datasets

ImageNet Dataset1 The ImageNet dataset is a collection of over 10 million images. The
images from different categories such as ambulance, taxi, jeep, minivan, passenger car, and
scooter are taken to build five different domains. The five domains contain diverse images and
categories as D1: (ambulance and scooter images), D2: (taxi and scooter images), D3: (jeep and
scooter images), D4: (minivan and scooter images), and D5: (passenger car and scooter
images). Hence, images come from different domains and categories, i.e., ambulances come
from D1 and taxi comes from D2, which make an appropriate dataset for transfer learning
representation.

20_Newsgroups Dataset2 The Newsgroups dataset is a collection of nearly 20,000 newspa-
per documents, which are uniformly partitioned across 20 different groups based on the subject
matter of the newspapers, and each group corresponds to a different topic. The dataset has
grown into a successful collection for experimentally testifying the ability of learning-based
representation techniques in text classification. We have selected six categories from News-
group datasets in which datasets are binary classified based on their subject matter content
similarities. To construct our classification problem, we have collected five different domains
from these six categories: D1 (comp.os.mswindows.misc. + comp.graphics), D2 (comp.sys.
ibm.pc.hardware + comp.graphics), D3 (comp.sys.mac.hardware + comp.graphics), D4 (comp.
windows.x + comp.graphics), and D5 (rec.autos + comp.graphics).

To form the analysis of the proposed D-TLDA frameworks, we selected two domains from
these five domains and constructed a classifier by taking one as the source domain and the
other as the target domain. Hence, the total possible combinations of classification problems
are 5P2 = 20 for both datasets. Tables 2 and 3 show the statistics of the real-word ImageNet
datasets for image classification problems and 20_Newsgroups datasets for text classification

1 http://www.image-net.org/download-features
2 http://qwone.com/~jason/20Newsgroups/
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problems. Details of positive and negative instances are provided corresponding to each
domain in the tables for depicting the class labels, i.e., domain D1 of 20_Newsgroups contains
the data of class label 0 and class label 1 representing ‘comp.os.mswindows.misc.’ and ‘comp.
graphics, respectively. The number of features is 1000 for ImageNet datasets and 61,188 for
20_Newsgroups dataset.

5.2 Results and discussions

This section presents the empirical results of the proposed D-TLDA approaches for predicting
the binary class label of the target domains for the twenty classification problems of both
ImageNet and 20_Newsgroups datasets. The accuracy measure parameter is widely used to
estimate the performance of the classification problems. For this purpose, an absolute differ-
ence based accuracy measure is used as the result to investigate the correctness of the learning
approaches. Accuracy is defined as the number of correctly identified sample labels divided by
total actual sample labels. The accuracy is evaluated using Eq. (22) as follows.

Accuracy ¼ 1−
1

n
∑

Actual lebel−Predicted lebelj j
Actual lebelj j

� 	
*100 ð22Þ

The accuracy value having the highest value will be considered as the most accurate model in
finding the unknown labels of the target domain. Five different source domains are generated
for a target domain, and each source domain classification model (as discussed in section 4.3)
is trained. The four TL classifiers are D-TLDA-1, D-TLDA-2, TLDA-1, and TLDA-2.
Therefore, a total of 80 learning models were constructed for the target domains. The
D-TLDA and TLDA classifiers are different depending on their implementation procedure;
D-TLDA first applies the proposed DA approach (using Algorithm-1), then Algorithm-2 is
performed, whereas TLDA will be directly implemented using Algorithm-2.

The classifiers aim to minimize the objective function presented in Eq. (12) by obtaining the
optimal encoding and decoding weight vectorsW1,W2,WT

1 , andW
T
2 . Therefore, it is essential to

tune the parameters associated with individual objectives such as α associated with the loss
function of the regression model, β associated with the entropy, and γ associated with the
regularization function. So, we have conducted an extensive parameter sensitivity analysis of the
proposed D-TLDA-1&D-TLDA-2 and the TLDA-1&TLDA-2. To investigate the influence of

Table 2 Details of ImageNet Dataset

Details D1 D2 D3 D4 D5

Number of Positive instances 1510 1326 1415 1535 986
Number of Negative instances 1427 1427 1427 1427 1427

Table 3 Description of the 20_Newsgroup Dataset

Details D1 D2 D3 D4 D5

Number of Positive instances 581 581 581 581 581
Number of Negative instances 569 580 528 560 566
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the parameters, α and β are sampled from the set {0.01, 0.05, 0.10, 0.50, 1.00, 5.00, 10.00,
50.00, 100.00}, the embedding layers k are selected from {10, 20, ..., 80} and γ = 0.00001.

Supervised domain adaptation experiments are performed in the learning simulation over
20 runs, and averages of the accuracy of 20 classification problems are reported for both
datasets. The output results are presented in Appendix as Table 5 for the ImageNet dataset and
Table 6 for the 20_Newsgroups datasets. In Tables 5 and 6, the highest accuracy values
representing the best learning model for the target domain are shown in bold. Figure 4 shows
the classification accuracy results for twenty adaptation tasks on the ImageNet dataset for the
four methods with different parameters. In Fig. 4, the x-axis represents the index of the 20
target domain instances, and the y-axis represents the average percentage accuracy. After some
preliminary experiments, we present eight variations on the ImageNets dataset for parameter
sensitivity and depict the outcomes in figures from Fig. 4a–h . The average accuracies of all the
problems sorted the increasing order for obvious comparison. From the figures, we can
observe that the performance of the D-TLDA is relatively stable compared to the TLDA in
the selection of α and β. From Fig. 4, we can ensure that the proposed D-TLDA-2 outperforms
the TLDA-2 for all the choice of parameters. Similarly, D-TLDA-1 gives better results than
TLDA-1 for most target domains.

The parameters values of α = 5.00, β = 5.00, and α = 10.00, β = 10.00, achieve good and
highest accuracy for the ImageNet dataset with other parameters values as γ = 0.00001, and k =
10 (see Fig. 4e, f). Thus, we set these values of parameters to perform classifications for the
20_Newsgroups datasets. The average accuracies of twenty different runs for the 20_News-
groups datasets are of the four classifiers shown in Fig. 5, and the results are presented in
Table 6 of the Appendix. Similar to the ImageNet dataset, we have evaluated the results for 20
classification problems drawn from the 20_Newsgroup dataset. From the figures, we have
observed that the efficacy of our proposed TL framework. The D-TLDA-2 performs better
than D-TLDA-1, representing the superiority of the nonlinear sigmoid regression model to
predict representative learning. D-TLDA-2 is also outperformed TLDA-1 and TLDA-2,
indicating the effectiveness of the domain adaptation task from the source domain. It is to
be noted that D-TLDA-1 is better than TLDA-2, and TLDA-1 shows the benefit from taking
advantage of the marginal probability distribution-based distance measure in the source
domain and the success of using deep learning for the transfer learning domain adaptation.

5.3 Comparative study

5.3.1 Comparison with well-known transfer learning techniques

We have compared the performance of our proposed method with the three most popular
baseline transfer learning methods, viz. Transfer component analysis (TCA) [32], Marginal-
ized Stacked Denoising Autoencoders (mSDA) [8] and transfer learning with deep
autoencoder (TLDA) [55, 56]. TCA is one of the first machine learning methods aimed at
learning a low-dimensional representation for transfer learning. The number of latent dimen-
sions was carefully tuned during the implementation of TCA. That is, for the ImageNet
dataset, the number is sampled from [10, 20, 30, …, 80], and its best results are reported.
The mSDA is a transfer-learning algorithm based on stacked autoencoders, and we adopt the
default parameters as noted in Chen et al. (2012). TLDA-1 and TLDA-1 evaluated the results
for classification problems with parameter values, α = 10.00, β=10.00, γ = 0.00001, u = 1
× 10−5 and k = 10.
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The comparisons of average accuracies of 20 classification problems are shown in Figs. 6
and for the ImageNet dataset and the 20_Newsgroup dataset, respectively. In Figs. 6 and 7,
column 1 shows the TCA classification results on the 20 classification problems with an
average accuracy of 75.5% for the ImageNet dataset and 68.3% for the 20_Newsgroup dataset.

Fig. 4 Classification accuracy analysis on ImageNet dataset for different parameter. a α = 0.05, β = 0.05.
b α = 0.10, β = 0.10. c α = 0.50, β = 0.50. d α = 1.00, β = 1.00. e α = 5.00, β = 5.00. f α =
10.00, β = 10.00. g α = 50.00, β = 50.00. h α = 100.00, β = 100.00
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Column 2 shows the mSDA classification accuracy is 83.3% and 73.32% for the respective
datasets. Average classification accuracies of TLDA-1 & TLDA-2 are represented by columns
3 and 4 of Figs. 6 and 7 with the values of 88.7% and 90.1% for the ImageNet dataset and
82.6% and 87.7% for the 20_Newsgroup dataset. Finally, column 5 and column 6 show the
accuracy results obtained from the proposed D-TLDA-1 and D-TLDA-2 approaches with the
average values of 90.8% and 92.1% for the ImageNet dataset and 93.2% and 93.7% for the
20_Newsgroup dataset. Thus, our proposed D-TLDA-1 & D-TLDA-2 approaches outperform
the current state-of-the-art results by achieving highest prediction accuracy in comparing with
the transfer learning methods.

Now, we will perform the comparison of the prediction accuracy for both classification
datasets with respect to the well-known classical machine learning methods and analyze the
result to observe the efficacy of the proposed transfer learning method.

Fig. 5 Classification accuracy on 20_Newsgroup dataset for different parameters. a α = 5.00, β = 5.00. b α
= 10.00, β = 10.00
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5.3.2 Comparison with traditional machine learning techniques

We have compared the performance of our proposed method with the traditional machine
learning tools: Linear Regression [16], Neural Network [3], Support Vector Machine [45], and
Extreme Learning Machine [50]. Neural Network (NN) and Logistic Regression (LR) are the
most traditional supervised machine learning algorithms. For the implementation of LR and
NN algorithms, we use the original code and adopt the default parameters with the number of
hidden layers as 10. The SVM is a learning algorithm based on a support vector regression
model for evaluating the predictive accuracy of the target domains. The number of hidden
nodes used in ELM is chosen by a trial-and-error method and set as 100 for both datasets. The
machine learning tools obtain the resulting accuracy of different target domains with varying
combinations of source domains. The accuracy averages to the 20 classification problems for
the ImageNet dataset and the 20_Newsgroup dataset are shown in Figs. 8 and 9 for compar-
atively analyzing the mentioned machine learning approaches.

For the ImageNet dataset, in Fig. 8, column 1 shows the average accuracy of the LR
method results on the classification problems, which is 80.5%. Column 2 shows the SVM
classification accuracy is 84.4%, whereas column 3 represents the NN classifier that obtains
80.56% value. The ELM classification value is represented by column 4 with an average
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Fig. 6 Comparison of average accuracy on ImageNet dataset with transfer learning techniques
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Fig. 7 Comparison of average accuracy on 20_Newsgroup dataset with transfer learning techniques
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accuracy of 85.18%. Further, column 5 and column 6 show the accuracy results obtained from
the proposed D-TLDA-1 and D-TLDA-2 approaches with the average values of 90.8% and
92.1%. In a similar fashion, for the 20_Newsgroup dataset, the average classification accuracy
obtained by the LR approach is 77.1%, represented by column 1 of Fig. 9. Further, column 2
presents the average prediction accuracy of the SVM that is 71.38%, column 3, showing the
NN method with 65.8%, and the ELM approach obtained 72.91% in column 4 of Fig. 9.
Average classification accuracies of D-TLDA-1 & D-TLDA-2 are represented by columns 5
and 6 of Fig. 9 with the values of 93.2% and 93.7% for the 20_Newsgroup dataset. It can
clearly be observed that the proposed D-TLDA-1 and D-TLDA-2 provide better average
accuracies than all the prominent machine learning tools we have considered for comparison.

In summary, we observe that the proposed D-TLDA method performs better than all the
compared algorithms on image classification problems for the ImageNet dataset and text issues of
classification of the 20_Newsgroup dataset. In general, the model retained a considerably more
extensive margin of accuracy advancement of D-TLDA-2 on both datasets. Table 4 illustrates the
margin of improvements in the accuracy (in percentage) of D-TLDA-1 & D-TLDA-2 over
compared machine learning and transfer learning approaches. The highest percentage marginal
improvements in the accuracy are 16.60% and 25.40% by the D-TLDA-2 compared to the
accuracy obtained from TCA, demonstrating our model’s more vital transfer learning capability.
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Fig. 8 Comparison of average accuracy on ImageNet dataset with machine learning techniques
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6 Conclusion and future work

In transfer learning, domain adaptation adapts the similar features of both the source
and target domains, and the deep learning approach extracts robust features for
designing a powerful classifier. This paper utilized a deep learning approach to
improve t rans fe r l ea rn ing through opt imum explo i ta t ion of marg ina l
probability-based domain adaptation methodology. The new transfer learning frame-
work can tackle analogous multi-domain predicament when the source and target
domains exhibit profound data distribution. The proposed framework exploited mar-
ginal probability distribution between source and target domain to efficiently select
identical features to bridge the vast differences across source and target domain.
Further, these adapted domains train a deep neural network as a deep autoencoder.
The classification model is termed domain adapted transfer learning with deep
autoencoder (D-TLDA). Two versions of this feature representation technique in
conjunction with deep autoencoder are proposed as (1) Domain Adapted Transfer
Learning with Deep Autoencoder-1 (D-TLDA-1), and (2) Domain Adapted Transfer
Learning with Deep Autoencoder using Softmax Regression-2 (D-TLDA-2). Extensive
experiments have been performed on two real-world datasets, viz. ImageNet dataset
and the 20_Newsgroup dataset for image and text classification problems, respective-
ly. By thorough comparison, we have shown that the accuracy achieved by our
proposed transfer learning frameworks, D-TLDA-1 and D-TLDA-2, outperformed
other well-known transfer learning methods viz. Transfer Component Analysis
(TCA), marginalized Stacked Denoising Autoencoder (mSDA), Transfer Learning with
Deep Autoencoder (TLDA-1 and TLDA-2). It is also shown that D-TLDA-1 and
D-TLDA-2 have supremacy over prominent machine learning algorithms such as
Linear Regression (LR), Neural Network (NN), Support Vector Machine (SVM),
and Extreme Learning Machine (ELM).

In the future, we will apply the proposed approach over big datasets such as
Galaxy Dataset, Leaf Dataset, etc., to find the analysis of accuracy over other transfer
learning approaches. Also, we will examine the performance of the proposed method
by using various distance metrics (e.g., Normalized Euclidean distance, Hamming
distance, etc.) for determining the divergence between the distributions of the source
domain and the target domain.

Table 4 Comparison of the improvements in average accuracy (%)

Approaches ImageNet Dataset 20_Newsgroup

D-TLDA-1 D-TLDA-2 D-TLDA-1 D-TLDA-2

LR [16] 10.30 11.60 16.10 16.60
SVM [45] 6.40 7.70 21.82 22.32
NN [3] 10.24 11.54 27.40 27.90
ELM [50] 5.62 6.92 20.29 20.79
TCA [32] 15.30 16.60 24.90 25.40
mSDA [8] 7.50 8.80 19.90 20.40
TLDA-1 [56] 2.10 3.40 10.60 11.10
TLDA-2 [56] 0.70 2.00 5.50 6.00
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