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Abstract
Intelligent Transportation System (ITS), including unmanned vehicles, has been gradu-
ally matured despite on road. How to eliminate the interference due to various environ-
mental factors, carry out accurate and efficient traffic sign detection and recognition, is a
key technical problem. However, traditional visual object recognition mainly relies on
visual feature extraction, e.g., color and edge, which has limitations. Convolutional neural
network (CNN) was designed for visual object recognition based on deep learning, which
has successfully overcome the shortcomings of conventional object recognition. In this
paper, we implement an experiment to evaluate the performance of the latest version of
YOLOv5 based on our dataset for Traffic Sign Recognition (TSR), which unfolds how
the model for visual object recognition in deep learning is suitable for TSR through a
comprehensive comparison with SSD (i.e., single shot multibox detector) as the objective
of this paper. The experiments in this project utilize our own dataset. Pertaining to the
experimental results, YOLOv5 achieves 97.70% in terms of mAP@0.5 for all classes,
SSD obtains 90.14% mAP in the same term. Meanwhile, regarding recognition speed,
YOLOv5 also outperforms SSD.

Keywords Deep learning . Traffic sign recognition . CNN .YOLOv5 . SSD

1 Introduction

In recent years, with the outbreak of Artificial Intelligence (AI), the vehicle-aided driving
system has updated previous driving mode. By acquiring real-time road condition information,
the system promptly reminds drivers to make accurate operations, thereby prevent car acci-
dents due to driver fatigue. In addition to the auxiliary driving systems, development of
autonomous vehicles also requires rapid and accurate detection of traffic signs from digital
images.
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Traffic Sign Recognition (TSR) is to detect the location of traffic signs from digital images
or video frames, given a specific classification [25]. The TSR methods basically make use of
visual information such as shape and color of traffic signs. However, the conventional TSR
algorithms are facing drawbacks in real-time tests, such as being easily restricted by driving
conditions, including lighting, camera angle, obstruction, driving speed, and so on. It’s also
very difficult to achieve multitarget detection, easy to miss visual objects because of slow
recognition [6].

With continuous improvement of computer hardware, the limitation of artificial neural
networks has been well alleviated, which has brought machine learning into a golden time of
development. Deep learning is a type of machine learning methods [7]. A deep neural network
model simulates the neural structure of our human brain while processing information. Using
this neural network model to extract the effective features from the road image is much better
than the conventional TSR algorithms, which has the potential to improve the robustness and
generalization of the algorithms [22].

The research outcomes in TSR not only avoid traffic accidents and protect drivers, but also
help inspect traffic signs on roads efficiently and accurately, which reduce unnecessary
manpower and resources. In addition, it also provides technical support for unmanned and
auxiliary driving. Therefore, the research work based on deep learning has tremendous
significance and is invaluable to our daily life.

In this paper, we mainly investigate how to achieve an accurate and real-time TSR model
based on deep learning. Our contributions lie in three aspects. Firstly, we collect and augment
sample images to form a new dataset for our traffic signs, which contains 2,182 images with
eight classes. Secondly, regarding the latest version of YOLOv5, we implement our experi-
ments and evaluate TSR performance based on our dataset. The key metrics and parameters
provide a few essential references for further explorations and exploitations. Finally, we
conduct a detailed comparison of TSR performance between YOLOv5 and SSD. We also
analyze and justify the advantages and disadvantages of these two deep learning models.

We review literature in Section 2, our methods are depicted in Section 3. Our results are
showcased in Section 4. Our conclusion and future work will be presented in Section 5.

2 Literature review

TSR has always been a hot research topic in recent years. For this purpose, TSR is investigated
to detect traffic sign region and non-traffic sign area in complex scene of images, TSR is to
extract the specific features represented through traffic sign patterns [20]. The existing TSR
methods are basically grouped into two categories: One is based on traditional methods, the
other is related to deep learning methods.

The main steps of TSR methods based on color and shape of a given image are to extract
the visual information contained in the candidate area, capture and segment the traffic signs in
the image, and correctly label the signs through patter classification [21]. Although TSR
requires color and shape information which is employed to improve the recognition accuracy.
The problems of illumination changes or color fading of traffic signs, as well as the deforma-
tion and the occlusion of traffic signs, are still unresolved problem [14]. Conventional machine
learning methods usually selected specified visual features and take use of the features to
classify the classes of traffic signs. The specific features include Haar-like features, HOG
features, SIFT features, and so on [3].
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Conventional TSR methods are based on template matching, which needs to extract and
utilize the invariant and similar visual features of traffic signs, the matching algorithms are run
for pattern classification. The feature representation of these methods needs to be specified
well, which is a tough problem to describe the visual features precisely, because of the
variations of traffic signs [17, 24].

The neural networks, Bayesian classifier, random forest, and Support Vector Machine
(SVM) are employed as classifiers. However, the performance of conventional machine
learning methods depends on the specified features, they are prone to missing the key features.
Furthermore, for different classifiers, corresponding feature description information is re-
quired. Hence, traditional machine learning methods have limitations, their real-time perfor-
mance is not comparative relatively.

Deep learning utilizes a multilayer neural network to automatically extract and learn the
features of visual objects, which has merits for image processing [29]. CNN models are one of
the most popular deep learning approaches for TSR. TSR algorithms are based on region
proposals, also known as two-stage detection algorithm, the core idea is selective search [10],
its advantages are the great performance of detection and positioning, but the cost is a large
amount of computations and high-performance hardware for computing.

The CNN models encapsulate R-CNN, Fast R-CNN, and Faster R-CNN. Faster R-CNN
combines the regression of bounding boxes and object classification, takes use of end-to-end
methods to detect visual objects, which not only improve the accuracy of object detection, but
also uplift the speed of object recognition. The road signs usually were detected from the
driver’s point of view, in this paper, we view the signs from the viewpoint of satellite images.
In [24], guided image filtering was employed for the input image to remove image artefacts
such as foggy and haze. The processed image is imported into the proposed networks for
model training.

Meanwhile, TSR algorithms based on regression, also known as single-stage detection
algorithm [1]. This kind of TSR algorithms eliminate the idea of Region Proposal Network
(RPN), and directly perform regression and classification in a network. You Only Look Once
(YOLO) and Single Shot MultiBox Detector (SSD) belong to the single-stage category.

Visual object detection consists of two tasks, which are classification and positioning.
Before the emerging of YOLOs, these two tasks are different in visual object detection. In the
YOLO models, the object detection is simply converted into a regression problem. Further-
more, YOLOs follow an end-to-end structure of neural networks for visual object detection
that obtains the coordinates of the predicted bounding boxes, the confidence of the target, and
the probability of the class that the target belongs to simultaneously through one image input
[18].

In 2020, three YOLO versions had been released, i.e., YOLOv4, YOLOv5, and PP-YOLO
[17, 24]. When the YOLOv4 was released, it was considered as the faster and more accurate
real-time object detection model, which inherits the Darknet and has obtained a distinct
average precision (AP) based on Microsoft COCO dataset while achieved a fast detection
speed based on Tesla V100. Compared with YOLOv3, the AP and FPS (i.e., frames per
second or video frame rate) have been effectively improved.

YOLOv5 was published in 2020. There is little research outcome on the performance of
YOLOv5 for TSR. Nevertheless, an experiment of detecting apples was conducted by using
YOLOv5 to compare with the performance of YOLOv3 [11]. The experimental results
indicate that YOLOv5 outperformed the previous model. YOLOv5 obtained 4.30% increment
of the detection accuracy. Moreover, a similar experiment was conducted for the apple
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picking-up [26]. The comparable outcomes with an improved YOLOv5s model, which were
14.95% and 4.74%, are satisfactory by comparing YOLOv3 and YOLOv4, respectively.

SSD is well known since it has been proposed [16]. Meanwhile, the SSD model is already
being improved and employed to detect visual object in various fields. Recently, the exper-
iments are implemented based on CTSD dataset with the improved SSD model, the results
reach 94.40% for the precision and 92.60% of the recall [9]. Besides, a comparison of traffic
sign recognition between SSD and YOLOv2 was carried out [4]. The GTSRB dataset was
taken into consideration. In general, SSD was 21.00% less than YOLOv2 in accuracy, the
latter was 16.00% faster than the SSD model.

3 Methodology

3.1 YOLOv5

The series of YOLO models have been updated to YOLOv5. The accuracy of visual object
detection continues being updated; the regression is always adopted as its core idea. In this
experiment, we take the latest version of YOLOv5 as one of the NZ-TSR models. The
structure of YOLOv5 algorithm is very similar to that of YOLOv4. The entire network model
is divided into four parts: Input, backbone, neck, and the prediction layer. In Fig. 1, the
network structure of YOLOv5 is shown in detail.

In the input part, YOLOv5 and YOLOv4 both utilize mosaic method to enhance the input
data. The algorithm needs to normalize the input image to a fixed size, the standard size of the
image is 608 × 608 × 3. In addition, the network training is based on initial anchor box to
obtain prediction box through comparing it with the actual annotated box and updating the
network model parameters iteratively [23].

The backbone part contains focus module and CSP module [19]. The key step of the focus
model is to compress height and width of the input image through slicing operation. The
images are spliced to carry out the integration of image dimensional information (i.e., width
and height) into the channel information to increase input channels. On the aspect of CSP
module, two branches of CSP module are designed in YOLOv5, which are CSP1_X and

Fig. 1 The diagram of YOLOv5 structure
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CSP2_X [13]. Amongst them, CSP1_X module is mainly employed for the backbone
network, CSP2_X is mainly taken into use in the neck network.

The neck part in YOLOv5 mimics to YOLOv4, which adopts FPN+PAN structure. Feature
Pyramid Network (FPN) is working from top to bottom and utilizes upsampling operation to
transfer and fuse information to obtain predicted feature maps [8]. In contrast, PAN (Path
Aggregation Network) is a feature pyramid from the bottom to top.

In the prediction part, different from YOLOv4, YOLOv5 makes use of GIoU_Loss as the
loss function, which effectively solves the problem if the bounding boxes do not coincide [12].
GIoU is calculated as

GIoU ¼ IoU � jC � A [ Bð Þj
Cj j ; ð1Þ

where C expresses the smallest box for arbitrary bounding boxes A and B, enclosing A and B.
After that, the ratio of the area C is calculated and subtracted from the IoU of A and B. GIoU is
treated as a distance. So GIoU loss is derived as

GIoU Loss ¼ 1� GIoU ¼ 1� IoU � jC � A [ Bð Þj
Cj j

� �
: ð2Þ

3.2 SSD

The SSD model utilizes multiple size detection boxes while extracting object features and
generating various feature maps that strengthen the ability of network feature extraction. The
SSD model mainly contains two parts as shown in Fig. 2.

The first part is basic feature extraction network, which adopts VGG-16 network without
dropout layer, FC8 and softmax classification layers. It replaces the fully connected layers FC6
and FC7 in the ordinary VGG network with convolutional layers Conv6 and Conv7 [16]. In
the second part, four convolutional layers of Conv8, Conv9, Conv10, and Conv11 have been
newly added. Each convolutional layer utilizes a 1 × 1 convolution kernel for dimensionality
reduction and then makes use of a 3 × 3 convolution kernel for feature extraction [27].

The loss function of the SSD model consists of two parts: The localization loss (Lloc) and
the confidence loss (Lconf) [5]. The entire loss function is weighted sum of localization loss and
the confidence loss, as shown in Eq. (3).

Fig. 2 The diagram of SSD network structure
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L x; c; l; gð Þ ¼ 1

N
Lconf x; cð Þ þ �Lloc x; l; gð Þ� �

; ð3Þ

where N represents the number of positive instances in the prediction box, c is the confidence
of the predicted classification, l is the prediction box by using the proposed model, g is labelled
box for the ground truth, α is weight coefficient of the localization loss and the confidence loss
[28].

The confidence loss function (Lconf) adopts softmax loss [2], the input is confidence of each
classification c, Lconf is presented in Eq. (4).

Lconf x; cð Þ ¼ �
XN
i2Pos

xpijlog bcpi� �� X
i2Neg

log bc0i� �
; ð4Þ

bcpi ¼ exp cpið ÞP
p exp cpið Þ : ð5Þ

The localization loss function (Lloc) adopts smooth L1 loss [28] as the parameters of the
prediction box (l) and the labelled box (g) for the ground truth. It also includes the center
coordinate position (x, y), width w and height h. So Lloc calculation is shown in Eq. (6).

smoothL1 xð Þ ¼ 0:5x2; xj j� ð6Þ

Lloc x; l; gð Þ ¼
XN
i2Pos

X
m2 cx;cy;w;hf g

xkijsmoothL1 lmi � gmi
� �

; ð7Þ

where gmi is offset of the labelled box related to the default detection box, lmi is prediction box
output by the model. Therefore, the prediction box output by the SSD model is not the direct
coordinates of the prediction box but the offset of the prediction box is related to the detection
box.

4 Experiments

4.1 Data collection

In this experiment, we selected eight classes of traffic signs with high awareness and important
safety significance. Because of sparsity of traffic signs on road, we collected traffic sign
images instead of driving videos. We split them into two groups, both two groups are captured
from the streets of our city by using our mobile cameras.

Our dataset is composed of 2,182 traffic sign images which are labelled as “No U-turn”
(271 images), “Road bump” (329 images), “Road works” (294 images), “Watch for children
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crossing” (176 images), “Crosswalk ahead” (313 images), “Give way” (317 images), “Stop”
(286 images) and “No entry” (196 images), which are shown in Table 1.

4.2 Dataset augmentation

For the raw data in our dataset, a few images were captured in landscape view. Firstly, we
made use of the software called JPEG Autorotate to rotate the images to portrait direction.
After that, due to ultrahigh definition images with too long training time, we resized the image
whilst keeping the same aspect ratio between width and height. Thus, we normalized all
images in our dataset to be 1128 × 2016 and 1536 × 2048.

The image annotation for model training in YOLOv5 requires the label information. In this
paper, we utilized a labelling tool, namely Labellmg. Especially, we need to convert the format
which suits to YOLO because the default format was designed for PascalVOC. Each label
comprises of five parameters: Index of classification, center point coordinates (x, y), width w,
w≥x≥1, and height h, h≥y≥1. Once all labelling work is accomplished, we group all images in
our dataset into training test and test dataset with the proportion 8:2. We put images and
corresponding annotation files into our folders, respectively.

Table 1 Our dataset summarization

Class Sample Num. Class Sample Num.

No U-turn 271
Road 
bump

329

Road works 294
Watch for 
children 
crossing

176

Crosswalk 
ahead

313 Give way 317

Stop 286 No entry 196
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Compared to YOLOv5, the dataset for training in the SSD model requires the VOC2007
format. Therefore, in Labellmg, we adopted the default format. The image labelling informa-
tion is stored as a .xml file in the specified folder. The.xml file contains the label classes,
coordinates, width, and height. The formal VOC2007 dataset encompasses Annotations folder,
ImageSets folder, JPEGImages folder, SegmentationClass folder, and SegmentationObject
folder.

For the SSD dataset in our experiment, we define the sample number in training-validation
dataset as 80.00% of the total, the number of test dataset is 20.00%, and the numbers of
training and validation datasets are 64.00% and 16.00%, respectively.

4.3 Implementations

In order to implement the TSR experiment with YOLOv5 and SSD based on our own dataset,
we took use of Google Collaboratory (Colab) platform with powerful GPU support. The key
configuration of our hardware and software as well as the parameters of our experiments is
listed in Table 2.

Once the experimental environment is completely set up, we need to mount our Google
Drive to Colab and access the prepared dataset. For the experimental parameters, YOLOv5 is
shown on the left side in Fig. 3(a), SSD is presented on the right side in Fig. 3(b).

4.4 Experimental results

YOLOv5 model has an excellent visualization function in the result. At first, we visually
display its final recognition results for our dataset as shown in Fig. 5. From Fig. 4, we clearly
observe TSR in our YOLOv5 experiment is dramatically accurate.

In Table 3, we state the precision of “Road bump”, “Cross walk”, “Give way”, and “No
entry”. The lowest precision obtained by “No U-turn” is 0.94. In terms of recall, the values for
almost eight classes are all over 90.00%, which indicates the excellent TSR performance of
YOLOv5 in our dataset. Therefore, undoubtedly, for the mean average precision, “No U-turn”
obtains as high as 99.50%, all other classes are around 97.00%. It demonstrates that the
YOLOv5 model is able to achieve the completely accurate prediction of NZ-TSR in our
dataset.

In the end, all specific evaluation metrics of YOLOv5 in our dataset are shown in Fig. 5.
Especially, the second and third columns are the mean values of the loss functions of the
training dataset and the validation dataset for visual object detection and classification,
respectively. The smaller the value is, the better the recognition performance of the model
will be.

Table 2 The key configuration and environment parameters of our experiments

Operation System Ubuntu 18.04.5 LTS
GPU Tesla P100-PCIE-16GB
RAM 26GB
Programming Language Python 3.7.10
CUDA Version 11.0.228
PyTorch Version 1.8.1
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Usually, the most convenient and direct way to evaluate the experiment results is accuracy.
In this paper, we make use of PR curves to demonstrate the tradeoff between precision rates
and recall rates of the TSR performance of the models.

In Fig. 6, we see mAP@0.5 results for eight classes in the SSD experiment. Overall, the
accuracy of TSR in almost all classes reaches nearly 90.00%. In particular, the TSR of “Give
way” has the best performance, the final average precision is as high as 97.06%. However, the
average precision of “Watch for children crossing” is quite low, only 78.32%. The reason is
highly remarked that the number of instances of that specific class is lower than others.

All SSD experimental results are summarized in Table 4. The results illustrate the SSDmodel
has a relatively good outcome apart from “Watching for children crossing”. In other words, for
the SSD model, the more instances the dataset contains, the more accurate prediction will be.

4.5 Comparisons

After conducting a comprehensive comparison of YOLOv5 and SSD in our dataset, we see
intuitively that the mean average precision of all eight classes obtained by YOLOv5 and SSD

Fig. 3 YOLOv5 vs. SSD experimental parameters (a) YOLOv5 (b) SSD

Fig. 4 TSR results by using YOLOv5
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is 0.98 and 0.90, respectively. From the perspective of accuracy rate of each class, the
experimental results of YOLOv5 are all better than SSD except for “Road works”. Further-
more, the performance of YOLOv5 for “No U-turn”, “Watch for children crossing” and “Give
way” is remarkable, which has reached 0.99, close to 100.00% detection. For the SSD
experiment, the highest recognition accuracy is 0.98 obtained in “Road works”. However, in
“Watch for children crossing” with a small number of samples, the accuracy is only 0.78. In
the end, on the aspect of the TSR accuracy in our dataset, both YOLOv5 and SSD show good
capabilities, but YOLOv5 performs a bit better.

For the TSR efficiency, with the same number of images in the test dataset, YOLOv5
spends only 15 s, while SSD needs 129 s. The speed of TSR by using YOLOv5 is 30 FPS,
nearly ten times faster than SSD, which is 3.49 fps. Therefore, YOLOv5 outperforms SSD as
well in terms of TSR efficiency.

5 Conclusion and future work

This project aims to probe the accuracy and speed of TSR based on the dataset of our traffic
signs. Hence, in this paper, we selected the latest version of the series of YOLO algorithms,
namely YOLOv5, to evaluate its performance. Besides, we also identify which model is much
suitable for the TSR between YOLOv5 and SSD. In this experiment, we adopt a customized

Fig. 5 All specific evaluation metrics of YOLOv5 in our dataset

Table 3 The YOLOv5 experimental results with our dataset

Classes of traffic signs Precisions Recalls mAP@0.5

No U-turn 0.937 1.000 0.995
Road bump 1.000 0.903 0.965
Road works 0.979 0.897 0.928
Watch for children crossing 0.997 1.000 0.995
Crosswalk ahead 1.000 0.979 0.986
Give way 1.000 1.000 0.995
Stop 0.984 0.938 0.975
No entry 1.000 0.938 0.976
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dataset of our traffic signs, which contains 2,182 traffic sign images including eight classes.
Then, we implement a well-designed experiment based on the Google Colab platform having a

Fig. 6 Precision-recall curves for eight classes in the SSD experiments
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very strong computational capability. In addition, we also analyze and compare the perfor-
mance of the two models by using our evaluation metrics.

From the experimental results, the accuracy of YOLOv5 is up to 97.70% for all classes, the
mean average precision in each class is over 90.00%. Hence, SSD obtains 90.14% on the
accuracy in general. But for the class with fewer samples, it only has 78.32% recognition rate.
Therefore, YOLOv5 performs better than SSD in terms of recognition accuracy. Furthermore,
from the perspective of recognition speed, YOLOv5 is faster than SSD with 30 fps (frames per
second), SSD only has 3.49 fps. We believe that YOLOv5 is more suitable for TSR in real-
time traffic environment.

In future, we will keep extending our datasets to cover all classes of our traffic signs.
Meanwhile, more newly developed models for visual object recognition, such asMask R-CNN,
CapsNet, and Siamese neural network would be included. Capsule neural network (CapsNet)
has been employed for effectively identifying a class of traffic signs which have spatial
relationships. Compared with the well-known deep neural networks, capsule networks tackle
the topological relationship between visual objects. In addition, we will adopt professional
evaluation metrics to assess the performance of our models frommultiple aspects in future [15].
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