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Abstract
One of the primary clinical observations for screening the novel coronavirus is capturing a
chest x-ray image. In most patients, a chest x-ray contains abnormalities, such as consoli-
dation, resulting from COVID-19 viral pneumonia. In this study, research is conducted on
efficiently detecting imaging features of this type of pneumonia using deep convolutional
neural networks in a large dataset. It is demonstrated that simple models, alongside the
majority of pretrained networks in the literature, focus on irrelevant features for decision-
making. In this paper, numerous chest x-ray images from several sources are collected, and
one of the largest publicly accessible datasets is prepared. Finally, using the transfer learn-
ing paradigm, the well-known CheXNet model is utilized to develop COVID-CXNet. This
powerful model is capable of detecting the novel coronavirus pneumonia based on relevant
and meaningful features with precise localization. COVID-CXNet is a step towards a fully
automated and robust COVID-19 detection system.
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1 Introduction

Being declared as a pandemic, novel coronavirus is now a major emergency worldwide. The
virus is transmitted person-to-person by respiratory droplets or close contact with a con-
taminated surface [52]. The most common symptoms are fever, cough, and dyspnea, which
may appear 2-14 days after exposure to the virus. The standard diagnosis method, highly
specific but with inconstant sensitivity [25], is based on reverse transcription polymerase
chain reaction (RT-PCR) [40]. The RT-PCR test has certain shortcomings, such as availabil-
ity and time-consumption. It needs special test-kits, which may not be widely available in
some regions [5], and the results are generally available within hours to days [7]. A diag-
nostic guideline proposed by Zhongnan Hospital of Wuhan suggests that the disease could
be assessed by detecting clinical symptoms as well as radiological findings of pneumonia
[24]. Furthermore, Ai et al. show that chest computed tomography (CT) scans have high
sensitivity for COVID-19 diagnosis and can be considered as the primary diagnostic tools
in epicenters [1].

Chest x-rays (CXRs) and CT scans have been used for COVID-19 screening and disease
progression evaluation in hospital admitted cases [42]. Despite offering superior sensitivity
to thoracic abnormality detection [10], using CT has several challenges. CT scanners are
non-portable and require sanitizing of the equipment and imaging room between patients.
Besides, their radiation dose is considerably higher than x-rays [15]. On the contrary,
portable x-ray units are widely available and can be easily accessed in most primary hospi-
tals [16]. Moreover, x-ray imaging can be operated in more isolated rooms with less staff
exposure to the virus [36]. In many cases, the patient’s clinical situation does not allow a
CT scan; hence, CXR is a better choice for the initial assessment. Even initial reports from
China and a meta-analysis performed by Korean radiologists showed a poor performance
from chest CT in terms of specificity [29]. Therefore, many healthcare institutions prefer
taking a CXR as the preliminary step for COVID-19 diagnosis. Radiologists in Milan also
confirmed that during the peak of COVID-19 pandemic in Italy, they chose CXR instead
of CT to be taken in their hospital [12]. Spanish pediatric radiologists in Madrid have also
suggested that the systematic use of CT is not recommended due to the fact that children
are more sensitive to radiation. As a result, CXR is considered as the main tool for clinical
decision and management of children with suspected COVID-19 [44].

Since radiologists visit many patients every day and the diagnosis process takes signifi-
cant time, errors may increase notably. As a result, there might be many more false negatives
that will cost a lot to the patient and the medical staff. Therefore, automated computer-
aided diagnostic (CAD) tools are of utmost importance. Automated deep learning-based
CAD tools have previously shown promising results in medical disease classification tasks,
such as early detection of arthritis [9], and specifically in detection of thoracic diseases, e.g.
pulmonary nodules [55].

In this study, firstly, we collect a dataset of CXRs from COVID-19 patients from mul-
tiple publicly accessible sources. Our collected dataset is one of the largest public sources
of COVID-19 CXRs, containing 1326 images. After visualizing primary dataset informa-
tion, we then investigate the possibility of disease detection by an individual Convolutional
Neural Network (CNN) model. On the next step, performance of prominent pretrained

30616 Multimedia Tools and Applications (2022) 81:30615–30645



CNN models for fine-tuning on the dataset is investigated. Afterwards, the CheXNet pre-
trained model on the same type of medical images is introduced, and its efficiency is
discussed. Finally, we develop our model based on the CheXNet and design a lung segmen-
tation module to improve the model localization of lung abnormalities. Class activation map
(CAM) is our main visualization leverage to compare our models. Main contributions can
be summarized as:

• Introducing one of the largest public datasets of COVID-19 CXR images, collected
from different sources

• Developing a robust pneumonia classification model by training on a large dataset of
COVID-19 CXRs

• Proposing a transfer learning approach to tackle the problem based on pretrained
network

• Precisely evaluating model performance by visualizing the results using CAMs

2 Related works

Identifying COVID-19 pneumonia using different types of medical images is a fast-growing
topic of interest. ML-based methods, along with manual feature extraction algorithms, are
used in a few articles to diagnose the disease [2, 6, 13, 18, 20]. However, most studies
are utilizing DL-based techniques. Researchers have tried to tackle the problem using CT
images, reaching high scoring metrics and precise abnormality localization [19, 45]. Con-
trarily, even though many studies have claimed to achieve excellent classification accuracy
scores using CXRs, such as [32] and [28], none of them have reported visualization results.
Because pneumonia diagnosis is more challenging in CXRs and the available COVID-19
pneumonia CXR datasets are small, we investigate those studies with visual interpretability
used as their metric.

Zhang et al. used a dataset including 100 CXRs from COVID-19 cases and devel-
oped a ResNet-based model with pretrained weights from ImageNet as the backbone [59].
Their best model achieved an f-score of ≈ 0.72 in classifying COVID-19 pneumonia from
Community-Acquired Pneumonia (CAP). Li et al. applied their multi-player model called
COVID-MobileXpert on a dataset of 537 images equally divided into normal, CAP, and
COVID-19 pneumonia samples [30]. Their main goal was to achieve acceptable accu-
racy using lightweight networks, such as SqueezeNet, for pneumonia detection on mobile
devices capturing noisy snapshots. Rajaraman et al. collected a more expanded dataset
containing 313 COVID-19 pneumonia CXRs from two different sources [36]. Lung seg-
mentation was then applied using a U-Net-based model. Finally, an ensemble of different
fine-tuned models was implemented and pruned iteratively to reduce parameters. Their
best single pruned architecture was Inception-V3, and their best ensemble model was by
weighted averaging strategy. They have achieved f-scores of 0.9841 and 0.99 detecting
COVID-19 pneumonia from CAP and normal CXRs, respectively. However, their final
generated visualization maps are not precisely discussed, and their model suffers some
implementation drawbacks due to the significant number of parameters.

In a more advanced effort, COVID-Net was introduced by Wang et al. [53]. It was
trained on COVIDx, a dataset with 358 CXR images from 266 COVID-19 patient cases.
Their architecture was first trained on ImageNet and then achieved a best f-score of 0.9479
in three-class classification. Their model visualization is not properly presented neverthe-
less. A most recent similar research study was CovidAID conducted by Mangal et al. [31].
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CovidAID is a DenseNet model built upon CheXNet weights. They compared their results
with COVID-Net on the same test set. Their findings suggest that CovidAID surpassed
COVID-Net with a notable margin, 0.9230 f1 score, compared with 0.3591. CovidAID
image visualization shows more precise performance compared to previous studies. Con-
sequently, developed models suffer a lack of robustness, mainly related to the insufficient
number of images.

Regarding recent developments of more advanced architectures, specially ensemble
methods, Kedia et al. proposed CoVNet-19 as an ensemble of VGG and DenseNet net-
works [26]. CoVNet-19 was trained on a relatively large dataset in terms of COVID positive
images, containing 798 CXRs. Worth mentioning that the authors have collected their
dataset from different public resources that some of them overlap. Hence, some of the
COVID x-rays are duplicated. Their best effort led to achievement of a f1 score of 0.9891
in three-class classification. To the best of our knowledge, this study had used the dataset
containing most number of COVID images to date.

3 Dataset overview

The most common imaging technique used as the first clinical step for chest-related diseases
is CXR [60]. Hence, more CXRs could be collected publicly than CT images. A batch of
randomly selected samples from the dataset with frontal view, also known as anteroposterior
(AP) or posteroanterior (PA), is shown in Fig. 1.

There is another CXR imaging view called L, standing for Lateral, which is an adjunct for
the main frontal view image. Lateral CXR is performed when there is diagnosis uncertainty
using frontal CXR [21]. Thus it is not as common as frontal CXR, and due to its different
angle, it is excluded from our data.

Fig. 1 Randomly selected frontal CXR images from different sources
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3.1 Dataset Sources

Since COVID-19 is a novel disease, the number of publicly available x-rays is relatively
small, but constantly growing. There are different databases, regularly updated day by day,
which our dataset is constructed upon them:

1. Radiopaedia1: open-edit radiology resource where radiologists submit their daily
cases.

2. SIRM2: the website of the Italian Society of Medical and Interventional Radiology,
which has a dedicated database of COVID-19.

3. EuroRad3: a peer-reviewed image resource of radiological case reports.
4. Figure 14: an image-based social forum that has dedicated a COVID-19 clinical cases

section.
5. COVID-19 Image Data Collection [11]: a GitHub repository by Dr. Cohen et al. which

is a combination of some of the mentioned resources and other images.
6. Twitter COVID-19 CXR Dataset5: a twitter thread of a cardiothoracic radiologist from

Spain who has shared high-quality positive subjects.
7. Peer-Reviewed Papers: papers which have shared their clinical images, such as [22]

and [35].
8. Hannover Medical School Dataset [56]: a GitHub repository containing images from

the Institute for Diagnostic and Interventional Radiology in Hannover, Germany.
9. COVIDGR Dataset [49]: a set of CXR images from PCR-confirmed patients built

under collaboration with expert radiologists in Spain.
10. Miscellaneous Sources: Images shared via other sources, such as RSNA cases6 and

Instagram pages7.

Benefiting from several datasets with different imaging technologies and wide distribu-
tion of patient ages and locations decreases the chance of having bias. Distribution of our
collected dataset among different above-mentioned sources is depicted in Fig. 2.

To create a more robust dataset, we aimed to have multiple sources also for images in
other classes. Four sources were considered to collect normal CXRs:

1. Pediatric CXR dataset [27]: AP-view CXRs of children collected from Guangzhou
Medical Center, including normal, bacterial pneumonia, and viral pneumonia cases.

2. NIH CXR-14 dataset [54]: Curated by the National Institute of Health (NIH), this large
dataset has more than 100,000 images of normal chests and different abnormal lungs,
including pneumonia and consolidation.

3. Radiopaedia: Other than infected cases, healthy CXRs taken for the purpose of medical
check-ups are also available in Radiopaedia.

1https://radiopaedia.org
2https://sirm.org/category/senza-categoria/covid-19/
3https://eurorad.org/
4https://figure1.com/covid-19-clinical-cases
5http://twitter.com/ChestImaging/
6https://cases.rsna.org/coronavirus
7https://www.instagram.com/theradiologistpage and https://www.instagram.com/radiology case reports
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Fig. 2 Dataset distribution. COVIDGR dataset with 426 images has the largest contribution in building our
dataset

4. Tuberculosis Chest X-ray Image Datasets [23]: Provided by U.S. National Library of
Medicine, it has two datasets containing 406 normal x-rays.

Currently, 1326 images of COVID-19 patients are collected in different sizes and for-
mats. All collected images are publicly accessible in the dedicated repository8. The dataset
includes 5,000 normal CXRs as well as 4,600 images of patients with CAP collected from
the NIH CXR-14 dataset.

3.2 Statistical asnalysis

The dataset consists of 1326 chest x-rays labeled as COVID positive, acquired from differ-
ent institutions around the world between Jan 2020 and May 2021. Due to the lack of image
information availability from some of the sources, we made our best efforts to prepare the
metadata of 452 chest x-rays, which is nearly 34% of the total data in COVID class. The
patients had a mean of 1.62 chest x-ray studies performed at different time points, consider-
ing that each study contains one image. Current metadata consists of patient age, patient sex,
x-ray view (AP/PA), PCR test result, survival result, study location, offset between imaging
date and institution admission date, offset between imaging date and the onset of symptoms,
a set of symptoms at the time of capturing the image, whether patient also had CT scan as
the next step or not, and also notes on medical background of the patient. Since images are
not stored in DICOM format, these features are extracted manually by investigating case
reports one-by-one. Each metadata record stands for one image, i.e. a patient with 12 x-rays
has 12 records in the metadata. Numerical variables in the metadata are patient age, number
of studies per patient, admission offset, and symptom offset. Descriptive statistics related to
aforementioned variables is shown in Table 1.

Most patients have only one chest x-ray during the study, and also most patients are
adults in their 60s. Considering the first image capture performed mostly in the first day
of admission to the institution, the average time for the second chest x-ray capture is 8.72
days after the admission date. Based on the symptom offsets, the average time for capturing

8COVID-19 Chest X-ray Image Data Collection. Available on: https://github.com/armiro/COVID-CXNet
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Table 1 Descriptive statistics of continuous variables

Mean ± Std Min Max Most occurring value Number of missing
values

Patient age (year) 53.76 ± 21.20 0.03 99 50 and 55 (10 times) 62 / 279

Study per patient 1.62 ± 1.28 1 12 1 (196 times) -

Admission offset (day) 5.93 ± 7.03 1 42 1 (92 times) 196 / 452

Symptom offset (day) 10.49 ± 8.66 1 47 7 (21 times) 314 / 452

images is 10.49 days after the onset of patient symptoms. It is also worth mentioning that
all patients referred to the institutions between 0 to 14 days after noticing their symptoms.
The average time between symptom onset and referral is 6.37 days. Remaining features are
all categorical; x-ray view, patient sex, whether patient has survived or not, PCR test result
at the time of study, and symptoms mentioned in the case report. A set of charts for each
categorical variable distribution are depicted in Fig. 3.

While image view is distinguishable by chest features in the x-ray, labels are set only
when the view is directly mentioned in x-ray report or in the image itself. Firstly, the image
view distribution shows a bias towards AP view, which means most images are from low
quality and it makes the procedure of COVID pneumonia detection more challenging in
comparison with benefiting from a dataset of mostly PA chest x-rays. Secondly, the share
of male patients is approximately double the female patients. Rather than a bias, it seems
like more COVID patients are males, since dataset is constructed from several sources in
different institutions without a possible patient sex bias. Finally, if we consider unmentioned
patient survivals as survived ones, most patients has survived. Since patient survival and the
volume of manifestations in x-ray are supposed to be correlated, patient survival is possibly
predictable based on the chest x-ray. This idea is not yet implementable, due to the class
imbalance and lack of sufficient data.

One of the most concerning issues, specially among the community, is the relation
between typical symptoms and chance of being infected by COVID-19 disease. Based on the
case reports, patient symptoms are extracted and illustrated in Fig. 4 based on the frequency
of happening among investigated cases.

Fever is the most reported symptom with a possibility of 46.24% being reported by
patients as the first sign of disease. Surprisingly, pain (which includes abdominal pain, chest
pain, and myalgia) and fatigue are more reported than other well-known symptoms, such as
diarrhea or ageusia. Another interesting fact is that one-third of patients have complained
from fever and cough at the same time, which are exact main symptoms of influenza.

Fig. 3 Descriptive charts for categorical variables. a x-ray image view, b patient sex, c PCR test result, and
d patient chance of survival

30621Multimedia Tools and Applications (2022) 81:30615–30645



Fig. 4 Most reported symptoms from COVID patients

4 Proposedmethod

In the following section, details about the proposed pipeline, from image preprocessing
to model development, are explained in different steps. Initially, image preprocessing and
contrast enhancement are mentioned. Afterwards, a base convolutional model is designed
and trained on different portions of data from the dataset. Then, pretrained models based on
the ImageNet dataset are discussed. Finally, a pretrained model on a similar image type is
explained.

4.1 Preprocessing and enhancements

Due to the small number of images in positive class, data augmentation must be applied
to prevent overfitting. For the augmentation process, Albumentations9 library is used
because of its wide set of augmentation functions, from course dropout to elastic transform
and different image distortions. Images are also normalized and downsized to (320, 320)

to prevent resource exhaustion and reduce memory utilization. There are several image
enhancement methods based on histogram equalization that increase image contrast to make
non-linearities more distinguishable. Radiologists also use manual contrast improvement
to better diagnose mass and nodules. An example of enhancement algorithms applied on a
marker-annotated CXR is shown in Fig. 5.

As expected, Contrast Limited Adaptive Histogram Equalization (CLAHE) has bet-
ter revealed nodular-shaped opacity related to COVID-19 pneumonia. CLAHE is one of
the most popular enhancement methods in different image types [34]. Another histogram
equalization-based algorithm is Bi-histogram Equalization with Adaptive Sigmoid Func-
tion (BEASF) [4]. BEASF adaptively improves image contrast based on the global mean
value of the pixels. It has a hyperparameter γ to define the sigmoid function slope. Figure 6
depicts the output of BEASF with different γ values.

Although BEASF did not result in opacity detection improvement in all of the images, it
could compliment the CLAHE method. Therefore, a BEASF-enhanced image with a γ =
1.5 is concatenated with CLAHE-enhanced and the main images to be fed into the model.

9https://albumentations.ai
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Fig. 5 Different image enhancement methods. a is the main image, b is the image with histogram equaliza-
tion (HE), c is adaptive histogram equalization (AHE) applied on the image, and d is the image with contrast
limited AHE

A U-Net based semantic segmentation [41] is also utilized to extract lung pixels from the
body and the background. A collection of CXRs with manually segmented lung masks from
Shenzhen Hospital Dataset [47] and Montgomery County Dataset [8] are used for training.
The diagram of the ROI extraction block is shown in Fig. 7.

Using model checkpoints, best weights are used to generate final masks. Afterwards,
edge preservation is considered by applying dilation as well as adding margins to the
segmented lung ROIs. Lung-segmented CXR is then used as the model input. Lung seg-
mentation is often underestimated in similar research studies based on chest x-rays, while it
can drastically improve performance by limiting search area for convolutional layes.

Fig. 6 BEASF with different hyperparameter values compared with original image and CLAHE
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Fig. 7 The segmentation approach based on the U-Net

4.2 Basemodel

The base model consists of a couple of convolutional layers, followed by a flatten layer
and some fully-connected layers. No batch normalization or pooling layers are used for this
implementation stage. Figure 8 illustrates the base model architecture. This model serves as
a benchmark to compare other networks with the most simple one.

Convolution layers have 32 filters, each of which has a kernel size of 3×3. The activation
function is set as a Rectified Linear Unit (ReLU), which adds non-linearity to images help-
ing the model with better decision making. Fully-connected layers have 10 neurons, and the
last layer has one neuron, which demonstrates the probability of the input image belonging
to the normal class (p = 0.0) or pneumonia class (p = 1.0).

4.3 Pretrainedmodels

Transfer learning is to benefit from a pretrained model in a new classification task. Some
pretrained models are trained on millions of images for many epochs and achieved high
accuracy on a general task. We experimentally selected DenseNet, ResNet, Xception, and
EfficientNet-B7 architectures pretrained on the ImageNet. Pretrained models are used for
fine-tuning, i.e. training on target datasets for a small number of epochs, instead of retraining
for many epochs. Since ImageNet images and labels are different from the CXR dataset, a
pretrained model on the same data type should also be considered.

CheXNet is trained on CXR-14, a large publicly available CXR dataset with 14 different
diseases such as pneumonia and edema [37]. CheXNet claims to have a radiologist-level
diagnosis accuracy, has better performance than previous related research studies [54, 57],
and has simpler architecture than later approaches [38]. CheXNet is based on DenseNet
architecture and has been trained on frontal CXRs. It also could be used as a better option
for the final model backbone. According to [54], pneumonia is correlated to other thoracic
findings as shown in Fig. 9.

Considering these correlations, we can use a combination of CheXNet output neurons
to use as the classifier without any fine-tuning. The co-occurrence graph suggests Mass,
Effusion, Infiltration, and other labels to look into.

Fig. 8 A high-level illustration of the base model
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Fig. 9 Co-occurrence of different CXR findings as a circular diagram by [54]

4.4 The proposedmodel: COVID-CXNet

The proposed COVID-CXNet is a CheXNet-based model, fine-tuned on the COVID-19
CXR dataset with 431 layers and ≈ 7M parameters. The architecture of the COVID-CXNet
is presented in Fig. 10.

Our proposed network uses the DenseNet-121 as its backbone. There are different archi-
tectures utilized to build CheXNet, out of which the DenseNet has shown better capabilities

Fig. 10 COVID-CXNet model architecture based on the DenseNet-121 feature extractor as the backbone
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for detecting pulmonary diseases [37]. COVID-CXNet has a fully-connected layer consist-
ing of 10 nodes followed by a dropout layer with a 0.2 dropping rate to prevent overfitting.
The activation function of the last layer is changed from SoftMax to Sigmoid because
the task is a binary classification. Our proposed model’s advantage over the base model
or other custom networks is the training speed as we are fine-tuning a backbone with
pretrained weights. In comparison with other CheXNet-based models, COVID-CXNet is
benefiting from a lung segmentation module and different image enhancements algorithms
within the preprocessing section. Moreover, fine-tuning on a larger dataset along with sev-
eral overfitting-prevention methods such as dropout layer and label smoothing will help our
model outperform in terms of correctly localizing pneumonia in CXRs.

5 Experimental results

To evaluate the performance, different metrics are considered. Accuracy score is the pri-
mary metric used for statistical classification, which is required but inadequate here as we
are more interested in efficiently classifying positive samples. Thus, f1-score for the pos-
itive class is also measured. The main metric here is visualization heatmaps because the
small number of positive samples make the model prone to overfitting by deciding based on
the wrong features. The most common manifestations of COVID-19 pneumonia in CXRs
are air-space opacities in different forms, such as GGOs or consolidations. Opacities are
identified as opaque regions (whiter than usual) in CXRs. They are mostly distinguished as
bilateral, involving both lungs, and multifocal opacifications. Rare findings happen in the
late stages of disease course, which may include pleural effusion and pneumothorax [22].

5.1 Basemodel

In order to train the base model, the optimizer is set to Adam with the optimal learning rate
obtained using exponentially learning rate increasing method [46]. The best learning rate
is where the highest decreasing slope happens (≈ 0.0001). Training the base model using
300 samples resulted in an accuracy of 96.72% on the test-set within 100 epochs. As the
dataset extended, fluctuations in the curves gradually damped. With a training-set of 480
images, it reaches a reasonable accuracy on the test-set of 120 images. Model loss curves
on the training-set and the validation-set (which is test-set here) on different dataset sizes
are plotted in Fig. 11.

The base model hit accuracy of 96.10%, relatively high compared to the number of
images in the training-set, and complexity of pneumonia identification in CXRs. To validate
the performance, CNN architecture is demystified. A popular technique for CNN visual
explanation is Gradient-weighted Class Activation Mapping (Grad-CAM). Grad-CAM con-
cept is to use the gradients of any target concept, flowing into the last convolutional layer to
produce a coarse localization map with a concentration on important regions in the image
for predicting the class [43]. Another visualization is Local Interpretable Model-Agnostic
Explanations (LIME). LIME performs local interpretability on input images, training local
surrogate models on image components to find regions with the highest impact on the deci-
sion [39]. Grad-CAM outputs of the base model for images of both normal and infected
classes are illustrated in Fig. 12.

Although classification is successfully implemented with high accuracy score, extracted
features are wrong. One possible reason could be the fact that normal CXRs are mostly for
pediatrics. To go further about the problem of the model and to prove whether it is because of
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Fig. 11 Learning Curves for base model trained on (a) 450 images, and (b) 600 images

the normal CXR dataset, the model was evaluated on a small external dataset of 60 images.
The confusion matrix in Table 2 shows that the model is not consistent regarding normal
cases.

According to the results, recollecting CXRs from adult lungs is essential. The largest
dataset containing normal cases is the NIH CXR-14 dataset, with almost 17,000 images.
Then, we increased the number of normal CXRs in the dataset to prevent overfitting. The
model is trained on a dataset of 3,400 images, 3,000 from normal and 400 from COVID-
19 pneumonia classes. It is worth mentioning that classes are weighted in loss function
calculation to deal with class imbalance. The results are presented in Fig. 13 and Table 3.

The base model has achieved a high area under the curve (AUC) of 0.9984 and an accu-
racy of 98.68% while reaching a reasonable f-score of 0.94. Model visualization shows
better performance; however, there are still various wrong regions in image explanations
illustrated in Fig. 14.

In LIME explanation, green super-pixels contribute to current predicted class, and red
super-pixels are most contributing to the other class [39]. In Grad-CAM visualization,
region importance decreases from red to blue areas. Due to the complexity of pneumonia

Fig. 12 Grad-CAM heatmaps of the base model for 6 images of positive class. Important regions are wrong
in most images, while classification scores are notably high
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Table 2 Confusion matrix of the base model on external test-set of 60 images

Base model Predicted

Normal COVID-19

Actual Normal 21 (70%) 9 (30%)

COVID-19 3 (10%) 27 (90%)

manifestations in CXRs, robust detection is considered a complicated time-consuming task,
even for domain experts. Recognizing complex image patterns requires deeper neural net-
works to extract higher level image features. As seen in Figs. 14 and 12, shallow network
tends to look at simpler features to reach high classification scores, while target features,
described in Section 5, are opacities observed inside the lung region with different patterns.
Thus, deeper CNNs are needed. Considering the lack of sufficient amount of data, specifi-
cally for the COVID-19 class, training CNNs from scratch is likely to fall into local minima.
The aforementioned hypothesis is evaluated and discussed in Section 6 with details. Conse-
quently, a deep pretrained neural network is taken into account to overcome the complexity
of resolving the problems mentioned above.

5.2 Pretrainedmodels

Convolutional layers of the ImageNet pretrained models are kept and dense layers are added
to match the number of output neurons with the number of classes for our task. Fine-tuned
on the training-set images containing normal pediatric cases is done for 20 epochs. The
learning curve of DenseNet-121 is plotted in Fig. 15 as an example.

Demonstrating bad results, the model is incapable of learning while fine-tuning only
the last fully-connected layer and freezing feature extraction layers and overfits to the
data if retrained for more epochs. As expected, ImageNet categories are everyday objects
which have somewhat non-similar features as pneumonia imaging patterns in CXRs. Hence,
although transfer learning techniques from ImageNet-pretrained models have remarkably
improved segmentation accuracy thanks to their capability of handling complex conditions,
applying them for classification is still challenging due to the limited size of annotated
data and a high chance of overfitting [17]. ResNet-50, Xception, and EfficientNet-B7 have

Fig. 13 Results of the base model trained on 3,400 images; a training loss changes, b training accuracy score
changes, and c receiver operating characteristic (ROC) plot
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Table 3 Confusion matrix of the base model on 683 samples

Base model Predicted

Normal COVID-19

Actual Normal 598 (99.17%) 5 (0.83%)

COVID-19 4 (5%) 76 (95%)

also produced almost the same results. While EfficientNet-B7 demonstrated better results
in comparison with former models, it is highly over-parameterized and time-consuming to
train for each epoch.

Regarding CheXNet pretrained model, we first probe to see if it is capable of correctly
classifying COVID-19 pneumonia with no further improvements. Figure 16 shows results
for two sample CXRs from both classes.

Extracted heatmaps reveal that CheXNet correctly marks chest lobes to determine each
class probability. The output of each class is slightly higher in positive cases for most of
the diseases as well. Some of the drawbacks are extremely high predictions for infiltra-
tion in most of the dataset images, getting stuck in regions outside lung boundaries and
predominantly in corners, and missing some of the opacities particularly in lower lobes.

5.3 COVID-CXNet

To overcome the aforementioned issues and force the model’s attention to the correct
Regions of Interest (ROIs), we introduce the COVID-CXNet. Our model is initialized with
the pretrained weights from CheXNet. A dataset of 3,628 images, 3,200 normal CXRs and
428 COVID-19 CXRs, are divided into 80% as training-set and 20% as test-set. Batch size
is set to 16, rather than 32 in previous models, regarding memory constraints. Grad-CAMs
of the COVID-CXNet for random images are plotted in Fig. 17.

More Grad-CAMs are available in Appendix A. Heatmaps are more accurate than previ-
ous models, while an accuracy of 99.04% and an f-score of 0.96 are achieved. Table 4 is the
confusion matrix of the proposed model.

Proposed CheXNet-based model is capable of correctly classifying images. In many
cases, it can localize pneumonia findings more precisely than the CheXNet. An example is
illustrated in Fig. 18.

Fig. 14 Model interpretability visualization by (a) Grad-CAM and (b) LIME image explanation
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Fig. 15 DenseNet-121 fine-tuning curve over 10 epochs

Figure 18 shows a CXR with an infiltrate in the upper lobe of the left hemithorax [33];
while CheXNet missed the region of pneumonia, the proposed model correctly uncovered
the infiltration area. One concern about COVID-CXNet results is that it has pointed into
other irrelevant regions, even outside the lungs. The same problem happens when there are
frequently-appeared texts and signs, such as dates, present in the image. Figure 19 shows
how text removal can improve model efficiency.

While text removal methods can prevent overfitting, we can simply force the model to
look into the lungs in order to address both problems in one effort. To accomplish this
task, a U-Net based segmentation illustrated in Fig. 7 is applied to the input images before
enhancements. Visualization results for COVID-CXNet with the ROI-segmentation block
are shown in Fig. 20.

A figure with more Grad-CAMs is attached in Appendix B. From Fig. 20, it can be
observed that COVID-CXNet with ROI-segmentation has delivered superior performance

Fig. 16 CheXNet probabilities of different classes for (a) a COVID-19 positive case, and (b) a normal case

30630 Multimedia Tools and Applications (2022) 81:30615–30645



Fig. 17 Grad-CAM visualization of the proposed model over sample cases

regarding the localization of pneumonia features. Worthwhile to mention that image aug-
mentation is expanded by adding zoom-in, zoom-out, and brightness adjustment. Label
smoothing is also applied to the loss function.

The proposed method has shown a negligible drop in metric scores; accuracy is decreased
by 0.42%, and f-score is declined by 0.02. This decrease is a result of training with a larger
dataset and accurately segmented ROIs, which means it has become more robust against
unseen samples. There is a trade-off between catching good features and higher metric
scores; while better features result in a more generalized model, high metric scores may
indicate overfitting.

As an extra step, we expanded COVID-CXNet for multiclass classification between nor-
mal, COVID-19 pneumonia (CP), and non-COVID pneumonia to examine its performance
regarding the differentiation between two types of pneumonia. Pneumonia is a common
infection that inflames air sacs in one or both lungs, and is typically caused by germs like
bacteria or virus. While COVID-19 is a type of virus, its pneumonia manifestations are
usually different with other common viruses or bacteria that can cause pneumonia. Typical
pneumonia caused by bacteria or viruses is also called Community-Acquired Pneumonia

Table 4 Confusion matrix of COVID-CXNet with a test-set of 726 images

COVID-CXNet Predicted

Normal COVID-19

Actual Normal 641 (99.38%) 4 (0.62%)

COVID-19 3 (3.7%) 78 (96.3%)
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Fig. 18 Comparison between the CheXNet and the proposed model; a is the image with patchy opacities in
the upper left zone, b and c are heatmaps of the CheXNet and the proposed COVID-CXNet, respectively

(CAP), which is the most common type. In terms of radiological findings, CP is often
appeared with bilateral findings, whereas non-COVID pneumonia or CAP mostly has unilat-
eral consolidations. Since most images are collected from the CXR-14 dataset, a histogram
matching is applied to adjust histograms according to a base image. The output layer is
changed to have three neurons with the SoftMax activation function. Confusion matrix is
shown in Table 5.

Accuracy score is 85.76%, with f-scores of 0.93 and 0.84 for CP and CAP classes,
respectively. In a number of cases, especially in the first stages of virus progression, CP has
unilateral findings. Also, CAP may cause bilateral consolidations. Therefore, some cases

Fig. 19 Text removal effect on model results. Images on the right have dates and signs, which are concealed
in the images on the left
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Fig. 20 Grad-CAM visualization of the proposed model, trained with lung-segmented CXRs, over sample
cases

are expected to be misclassified between CP and CAP. From the confusion matrix, it could
be seen that a relatively high number of images are misclassified between CAP and normal.
A potential reason for this issue is considered to be related to wrong labeling. Besides, some
CAP CXRs are from patients with early-stage disease development. To confirm the model
performance, Grad-CAMs are plotted in Fig. 21.

The model is properly looking at one lobe for detecting CAP and both lobes for CAP and
normal images. There are some wrong labels, nevertheless. A figure containing more visu-
alizations is found in Appendix C. In order to confirm the superiority of CheXNet weights
over ImageNet weights or even using a network with random kernel initialization, sev-
eral experiments are conducted with same DenseNet-121 model and hyperparameters, and
the initial weights as the only difference. Statistically, models with same architecture and
different initialization are expected to reach into the same results. However, using better pre-
trained models for fine-tuning leads to faster training and better generalization. Untrained
models are generally prone to getting stuck in a local minimum during the iterative optimiza-
tion procedure. To evaluate such hypothesis, three different types of weight initialization
are compared in terms of learning curve, loss values, and accuracy score improvement
throughout 30 epochs. Results are illustrated in Table 6 and Fig. 22.

While models with different pretrained weights achieve roughly close results, untrained
model is unable to properly generalize for validation data. The average elapsed time for

Table 5 Confusion matrix of multiclass COVID-CXNet on 1700 images

COVID-CXNet Predicted

Normal CAP CP

Actual Normal 629 (85.58%) 96 (13.06%) 10 (1.36%)

CAP 110 (15.71%) 585 (83.57%) 5 (0.71%)

CP 8 (3.02%) 13 (4.9%) 244 (92.08%)
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Fig. 21 COVID-CXNet multiclass classification visualization results

training the models is 68.3 minutes using an NVIDIA Telsa T4 Cloud GPU provided by
Google Colab. To further enhance statistical scores, a hierarchical approach is implemented.
In the first level, we classify images into normal and pneumonia classes. In the second level,
pneumonia images are categorized into CP and CAP. Final confusion matrix is illustrated in
Table 7.

A slight improvement is observed. Overall accuracy is 87.88%, while f-scores are 0.97
for CP class and 0.86 for CAP class. Although visualizations and metrics demonstrate
promising performance, the effect of dataset bias is non-negligible for wrong predictions
between CAP and normal images. A dataset of 8,500 images containing 1326 CP, 3,500
CAP and 3,674 normal CXRs is used in both multiclass approaches.

6 Discussion

Throughout this study, several model architectures are introduced and applied to differ-
ent amounts of images. Bias to pediatric CXRs and lung segmentation module are also
addressed in different models. A comparison between these models is shown in Table 8.

Accuracy score ranges are achieved by running models ten different times. With the
expansion of the dataset, confidence intervals shrink, and metric scores slightly decline
while pneumonia symptoms localization improves. Furthermore, the proposed model is
compared to other research studies discussed in Section 2 regarding several criteria, such as
dataset size and f-score. The comparison is illustrated in Table 9.

α Visualization maps are confirmed by a radiologist, based on paper images, regardless of the number of
provided samples.
β Datasets used in this study partially overlap with each other.

While other models have higher f-scores, they have different issues. For example, Coro-
Net [28] has a small dataset in which most images are from pediatrics. The pruned ensemble
method [36] also suffers from over-parameterization and a lack of proper visualization dis-
cussion in the paper. Considering the significant number of parameters of the model and
their small dataset, Grad-CAM visualizations must be investigated to a certain extent. Our
proposed model is the only study to use a lung segmentation module with a CheXNet-
based fine-tuning on a relatively large dataset of CP CXRs. Besides, our model benefits
from different approaches, such as label smoothing and hierarchical strategy, to enhance its
performance and prevent overfitting.
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Fig. 22 Comparison of learning curves for (a) training loss and (b) validation loss. Note that curves of the
validation loss are smoothed for better intuition

6.1 Dataset

Data: While DL-based methods have demonstrated promising results in medical image
classification, a significant challenge is data shortage. Since COVID-19 diagnosis using
CXR images is recently becoming an interesting topic, accessible data is limited. Data aug-
mentation is an essential method of coping with data shortcomings. However, designing a
pneumonia detection model still needs much more CXR data. Most COVID-19 pneumo-
nia detection articles have very small datasets. Although [53] has claimed to introduce the
largest open-access dataset of 385 CXRs, to the best of our knowledge, our dataset of 1326
COVID-19 CXRs has the most number of images.

Pediatric Bias: Many research papers have benefited from databases built upon the
proposed dataset by [27]. Children have different pulmonary anatomy. Hence, developed
models based on normal pediatric and adult pneumonia images are highly vulnerable to
the “right decision with wrong reason” problem. Besides, previous studies have proved that
using various datasets containing images from different hospitals improves the pneumonia-
detection results [51]. To prevent pediatric bias, we not only collected normal CXRs from
different sources, but also meticulously filtered images of [27]. Furthermore, COVID-
19 pneumonia CXRs were collected from 9 different sources to improve cross-dataset
robustness.

In the future, other information regarding patient status can be used alongside x-rays.
Clinical symptoms can remarkably help radiologists in COVID-19 differential diagnosis.
Metadata could be concatenated with the input CXR and be fed into the model to help
increase its decision certainty. Providing the metadata, it is possible to have more detailed

Table 7 Confusion matrix of hierarchical multiclass COVID-CXNet on 1700 images

COVID-CXNet Predicted

Normal CAP CP

Actual Normal 643 (87.49%) 83 (11.29%) 9 (1.22%)

CAP 101 (14.43%) 597 (85.28%) 2 (0.29%)

CP 6 (2.26%) 5 (1.89%) 254 (95.85%)
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predictions, e.g. the chance of patient survival, based on clinical symptoms and the severity
of pneumonia features presented by CXR.

6.2 Architecture

Metrics: In Section 4.2 we introduced a simple base model. The purpose was to show how
it can achieve very high accuracy scores. Digging into explainability, the model revealed
wrong features responsible for its excellent metric scores. Therefore, high accuracy scores
of sophisticated models from a small number of CXRs, which have high texture complexity,
are tricky. Investigation of model performance based upon confusion matrices and accu-
racy scores could not be usually validated unless demonstrating appropriate localization of
imaging features.

Transfer Learning: Using pretrained models with ImageNet weights, some studies such
as [36] showed acceptable heatmaps, but only a few images were visualized. While these
pretrained models may help, having small dataset sizes suggested us to fine-tune models
previously trained on similar data. Our CheXNet-based model shows better performance
over ImageNet-pretrained models, while not hindered by problems like overparameter-
ization. Besides, lung segmentation was also performed by a U-Net based architecture
previously trained on similar frontal CXRs. Among studies conducted, there was only one
article to use CheXNet as its backbone [31], which applied the model on a fewer number of
images and without lung segmentation as its image preprocessing procedure.

CheXNet: CheXNet is trained on a very large dataset of CXRs and has been used for trans-
fer learning by some other thoracic disease identification studies [3, 48]. However, it has its
own deficiencies, such as individual sample variability as a result of data ordering changes
[58] and vulnerability to adversarial attacks [14]. Enhancing thoracic abnormality detection
in CXRs using CheXNet requires the development of ensemble models, which is currently
prone to overfitting due to the number of images from COVID-19 positive patients.

7 Conclusion

In this paper, we firstly collected a dataset of CXR images from normal lungs and COVID-
19 infected patients. The constructed dataset is made from images of different datasets from
multiple hospitals and radiologists and is the one of the largest public datasets to the best of
our knowledge. Next, we designed and trained an individual CNN and also investigated the
results of ImageNet-pretrained models. Then, a DenseNet-based model is designed and fine-
tuned with weights initially set from the CheXNet model. Comparing model visualization
over a batch of samples as well as accuracy scores, we denoted the significance of Grad-
CAM heatmaps and its priority to be considered as the primary model validation metric.
Finally, we discussed several points like data shortage and the importance of transfer learn-
ing for tackling similar tasks. In three-class classification, COVID-CXNet achieved final
f-scores of 0.8621 and 0.9658 for community-acquired pneumonia and COVID pneumonia
classes, respectively, while the total accuracy was 87.88%. The proposed model develop-
ment procedure is visualization-oriented as it is the best method to confirm its generalization
as a medical decision support system.
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Appendix

AMore Grad-CAMs of the COVID-CXNet Model

Fig. 23 Grad-CAMs from COVID-CXNet
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BMore Grad-CAMs of the COVID-CXNet Model with Lung
Segmentation Preprocessing

Fig. 24 Grad-CAMs from COVID-CXNet with lung segmentation module
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CMore Grad-CAMs of theMulticlass COVID-CXNet fromDifferent
Classes

Fig. 25 Grad-CAMs from multiclass COVID-CXNet
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Data and Code Availability A dataset of COVID-19 positive CXR images, used in this study, as well
as source codes and the pretrained network weights are hosted on a public repository on GitHub to help
accelerate further research studies. https://github.com/armiro/COVID-CXNet
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