
1209 : RECENT ADVANCES ON SOC IAL MEDIA ANALYT ICS AND
MULT IMEDIA SYSTEMS : ISSUES AND CHALLENGES

FastSS: Fast and smooth segmentation of JPEG
compressed printed text documents using DC and AC
signal analysis

Bulla Rajesh1
& Mohammed Javed1

& P. Nagabhushan1

Received: 30 November 2020 /Revised: 8 September 2021 /Accepted: 23 December 2021 /

The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
With the surge of COVID-19 pandemic, the world is moving towards digitization
and automation more than it was presumed. The Internet is becoming one of the
popular mediums for communication, and multimedia (image, audio, and video)
combined with data compression techniques play a pivotal role in handling a huge
volume of data that is being generated on a daily basis. Developing novel algorithms
for automatic analysis of compressed data without decompression is the need of the
present hour. JPEG is a popular compression algorithm supported in the digital
electronics world that achieves compression by dividing the whole image into non-
overlapping blocks of 8 × 8 pixels, and subsequently transforming each block using
Discrete Cosine Transform (DCT). This research paper proposes to carry out Fast
and Smooth Segmentation (FastSS) directly in JPEG compressed printed text doc-
ument images at text-line and word-level using DC and AC signals. From each 8 ×
8 block, DC and AC signals are analyzed for accomplishing Fast and Smooth
segmentation, and subsequently, two Faster segmentation (MFastSS) algorithms
are also devised using low resolution-images generated by mapping the DC signal
(DC Reduced Image) and encoded DCT (ECM Image) coefficients separately.
Proposed models are tested on various JPEG compressed printed text document
images created with varied space and fonts. The experimental results have demon-
strated that the direct analysis of compressed streams is computationally efficient,
and has achieved speed gain more than 90% when compared to uncompressed
domains.

Keywords Document Image processing . JPEG compressed domain . Printed text-line segmen-
tation . Printedword segmentation . DCT coefficients

https://doi.org/10.1007/s11042-021-11858-0

* Mohammed Javed
javed@iiita.ac.in

Extended author information available on the last page of the article

Published online: 18 January 2022

Multimedia Tools and Applications (2023) 82:8855–8881

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-021-11858-0&domain=pdf
mailto:javed@iiita.ac.in

1 Introduction

Worldwide spread of COVID-19 has brought many changes in human life in order to avoid
person to person physical or surface contact. In such a scenario automation and digitization is
gaining much more importance in order to avoid any sort of human infection. Internet and
digital technologies are being used as frequent mediums of communication. Due to the huge
volume of data that is being generated, various multimedia (image, audio and video) tools
combine data compression techniques for efficiency of storage and transfer. Automatic and
direct analysis of compressed data is becoming an efficient and trending approach in handling
and processing of such a large data, and this research field is termed as compressed domain
processing in the literature [18, 26]. JPEG is one of the widely used digital image compression
formats, and one sixth of the image data on the internet are being transferred in JPEG
compressed file format [14, 31]. It has become the default file format for many digital tools,
and due to which large volumes of printed text documents are being compressed with this file
format [4, 10, 31, 45]. Therefore, this research paper aims at developing novel algorithms for
direct analysis of compressed data in the JPEG compressed domain.

Analysis of text-line and word boundaries in printed text documents is a very significant
problem in Document Image Analysis (DIA) [2, 18]. It is a crucial preprocessing stage for
many important applications like Word Spotting, Document Retrieval and OCR [18, 25].
Although the problem of locating text boundaries in printed texts amidst varying font size and
spacing looks to be an easy task. However, the same task becomes much more challenging
when compressed documents are considered (see Sections 2 and 3). In the literature there are
some attempts for the segmentation of text-lines and words in the pixel domain [1, 18, 22, 27,
30]. Global projection profile techniques have been used to extract the text-line boundaries
[42]. These techniques are challenged with documents containing skew and tilt. To overcome
such challenges piecewise projection profile techniques have been addressed in [27]. Subse-
quently Connected Component based analysis is reported in [22]. Painting based approaches
have been explored in [1], where they smear the foreground portions of the image, and apply
dilation operation on those foreground regions to obtain the single component for each text-
line.

Text-line segmentation based on Hough transform on the subset of the document image is
reported in [24]. Text-line segmentation by marking the central path within the area between
two adjacent lines is discussed in [9]. Arabic handwritten text-line segmentation is proposed in
[5]. Globally matched wavelet filters are used for segmentation of textual areas in document
images [23]. Apart from conventional approaches suggested above, there have been attempts
using Convolutional Neural Network (CNN) based approaches for the segmentation of text-
lines and words [7, 30, 40]. Text-lines are identified by segmenting the baselines of each text-
line which is reported in [30]. Another approach is discussed in [40], where text-lines have
been marked in a handwritten document based on predicting the dense regions. Very recently a
holistic approach for word recognition based on using CNN is addressed in [7]. All the
segmentation techniques discussed above are generally meant to work with uncompressed/
decompressed images, however, this research work proposes to directly analyze the JPEG
compressed stream for the extraction of text-line and word segments in printed text documents.

In the literature, compressed streams of various file formats have been analyzed, and
different segmentation techniques are reported directly on the compressed streams [18]. Some
of them are like Run length [2, 18], JPEG [8, 19, 35], JBIG [28, 39], JPEG2000 [6, 15] and
Fast H.264 [44]. Run length compressed domain approaches for text-line, Word and character

8856 Multimedia Tools and Applications (2023) 82:8855–8881

segmentation are reported in [16, 17]. This algorithm is applied directly on the run length
compressed representation. Tunneling algorithm for tracing the text-line boundaries is pro-
posed in [2]. Document segmentation using block activity is reported in JPEG compressed
domain [8]. Here they made an auxiliary image using Encoding Cost Map (ECM) to segment
different semantic regions in the image. Similarly, many transform coding techniques with
lowest coding memory are discussed. For example, in [21, 37, 38] memory efficient and fast
image coding for wavelet transform are explained. Automatic caption localization in JPEG
compressed representation is reported in [45].

Detection of edges by performing the convolution operation directly on the com-
pressed image is addressed in [33]. Low level feature extraction from the compressed
image is reported in [34], where the edge information is estimated based on analyzing the
AC coefficients values and signs. A recent work for marking the text-line and word
segments in the JPEG domain is reported in [29]. Compressed image restoration is
discussed in [36]. Steganalysis directly in the JPEG domain is reported in [43]. However,
apart from these conventional approaches, different deep learning based models are also
proposed to process the compressed data [13]. Here, instead of feeding pixel values, the
compressed stream (DCT coefficients) is extracted from decompressing the compressed
images, and fed to the convolutional neural network. However, this research paper
proposes to explore the JPEG compressed stream for Fast and Smooth extraction of
text-line and word boundaries in the printed text document images. To the best of our
knowledge, such a work has not been reported in the literature.

This research paper investigates novel algorithms for Fast and Smooth segmentation of
printed text-lines and words using DC and AC signals. DCT stream is extracted after applying
the partial decompression on the JPEG compressed printed text document images. Approxi-
mate text-line and word boundaries are marked using the projection profile of the DC signal
from each 8 × 8 DCT block. With the help of these approximate boundaries and AC signals
different faster and smooth approaches are devised to extract text-line and word boundaries.
All proposed approaches in this paper are categorized into four different techniques as shown
in Fig. 1 (green color). First approach is Fast and Smooth Segmentation (FastSS-1) based on
partial decompression of selected 8 × 8 DCT blocks. Similarly the second approach is Fast
and Smooth Segmentation (FastSS-2) based on analyzing AC coefficients in selected 8 × 8
DCT blocks and without any decompression. Further, two Faster algorithms are proposed for
More Faster and Smooth Segmentation (MFastSS-1 and MFastSS-2) in the JPEG compressed
domain using the idea of extracting low resolution images from compressed data by [8, 29].
Low resolution images are generated by mapping the DC signal (called as DC Reduced image)
and encoded DCT coefficients (called as ECM image). Due to this double compressed
representation of JPEG compressed file, the proposed approaches are faster. This paper is
specifically focused on JPEG compressed printed text document images, however to show the
generality of the proposed segmentation algorithms, their working is also demonstrated on
compressed handwritten text document images (as shown in Section 5).

Moreover, the proposed work provides further scope for many applications such as Word
Spotting, Document Retrieval [11, 12, 17, 46], Optical Character Recognition (OCR) [20] and
so on, directly in the JPEG compressed domain. Rest of the paper is organized as follows:
Section 2 gives brief illustration of JPEG algorithm and DCT encoding on a printed text,
Section 3 gives problem description with suitable illustrations, Section 4 discusses the
proposed model and other relevant approaches, Section 5 reports the experimental results,
Section 6 concludes with brief summary of entire work.

8857Multimedia Tools and Applications (2023) 82:8855–8881

2 Brief illustration of JPEG compression on printed text

For easy comprehension of the techniques proposed in this paper, this section briefly describes
the working of a JPEG compression algorithm, and illustrates how a typical text document gets
compressed when a JPEG algorithm is applied. Original image f (i, j) in the pixel domain is
divided into 8 × 8 non-overlapping blocks. Each block is then transformed using a forward
Discrete Cosine Transform (DCT) into a frequency domain on a block by block basis. The
DCT of an image in the pixel domain is obtained through Eq. (1). Quantization is performed
on each 8 × 8 DCT coefficient block to discard visually insignificant coefficients, and due to
which compression is achieved with the loss of high frequency information. The resulting
quantized DCT blocks become sparse matrices where just few coefficients (commonly F00,
F01, F10, F20, F11, F02 at 50% quality factor) would be left at the top-left corner. Then a lossless
entropy coding (in most cases, Huffman coding) is performed on DC and AC signals
separately to get further compression [26, 41]. During decompression, the same steps (in
reverse order) are applied to reproduce the image from its compressed stream. First the entropy
coded data stream is decoded to get the quantized coefficients. Then dequantization is applied
on these coefficients, and finally Inverse Discrete Cosine Transformation (IDCT) is applied to
obtain the reconstructed image of the compressed image.

Fuv ¼ CuCv
4

P7
i¼0

P7
j¼0 cos 2iþ1ð Þu�

16 cos 2jþ1ð Þv�
16 f i; jð Þ

Where;Cu;Cv ¼
1ffiffi
2

p ; for u; v
1; otherwise;

� ð1Þ

Fig. 1 Showing the summary of different contributions reported in this research paper. FastSS-1 and FastSS-2
are Fast and Smooth Segmentation algorithms that work directly with DC and AC signals. MFastSS-1 and
MFastSS-2 are More Faster Segmentation algorithms that work on compressed images by extracting its low
resolution version

8858 Multimedia Tools and Applications (2023) 82:8855–8881

A sample text image is shown in Fig. 2 to illustrate how JPEG compression is applied
for compressing the pixel image. This figure shows the encoding of 8 × 8 DCT
blocks when the DCT transformation is performed on the printed text document
images (Figs. 3 and 4). In the figure, blocks within the pink color represent the base
region where they cover the maximum text portion of a text-line in the document.
Similarly the blocks between green (top) and pink (down) colors represent the
ascender region. In this region, some of the text portions of the text-line come up
into the above blocks of the base regions. Similarly the blocks within pink (top) and
green (down) are called descender regions. Also here, some of the text-line contents
come down into the below blocks of the base region. It is observed that each 8 × 8
DCT block may cover part of the character, almost full character or very few portions
of character and so on (as shown in some cases in Fig. 5). There are also some
blocks where no text parts are covered, and they are called space blocks. Some of the
space blocks are found between adjacent text-lines which are called text-line separa-
tors (observe the blocks above and below the green line). Similarly there are also
some blocks between adjacent words (observe blocks between blue lines). These
blocks are called word separator space blocks. Most of the text-line separators (8 ×
8 DCT space blocks) are appearing either in the ascender and descender regions, and
these blocks may not be located in one complete row, so that row can be easily
detected as text-line separating row, and without losing and bringing any extra text
contents. In this case, when the projection is calculated, it is sure that one of these
regions becomes an expected text-line separator. Therefore, in order to mark the exact
text-line boundaries, the DCT blocks both in ascender and descender regions need to
be analyzed. Similarly, for words also, just one or half word separating space blocks
are available between characters of two adjacent words as shown in Fig. 2. In order
to segment the word boundaries these separating space blocks should also be ana-
lyzed. Through the illustration of Fig. 2, the challenges of locating space blocks
between text-lines and words are very clear, and therefore it is necessary to investi-
gate novel algorithms for smooth extraction of text-line and word boundaries directly
in the compressed file stream.

To better understand the above illustration, a practical analysis is provided. Here a
sample printed JPEG compressed text document image is shown in Fig. 3(a)
(displayed in uncompressed domain), and the corresponding one 8 × 8 pixel block

Fig. 2 A small text region of a sample document image shown in pixel domain illustrates how an 8 × 8 DCT
block encodes printed text contents during JPEG compression, specifically at line separators and word separators,
leaving no apparent clue for segmentation in the compressed data

8859Multimedia Tools and Applications (2023) 82:8855–8881

(highlighted with green color) of that image is shown on the left side. Similarly the
DCT transformed stream of the same image and the corresponding one 8 × 8 DCT
block is shown in Fig. 3(b). The reason for showing this figure is to depict how the
text content will be arranged in the DCT compressed stream after applying the DCT
transformation. In Fig. 3(b), it can be observed that adjacent text-lines are connected
without leaving any separation gaps between them (observe line 4 and 5) for

Fig. 3 A sample printed JPEG compressed document image (a) shown after decompression in pixel image from
using both DC and AC coefficients. (b) Visualized in original DCT transformation from showing touching of
text-lines, and further it provides no clue for the presence of words and word separator spaces. (c) Visualized after
decompressing with only AC coefficients and leaving the DC signal

Fig. 4 A sample output image depicting how text-line and word boundaries can be easily segmented in the pixel
domain

8860 Multimedia Tools and Applications (2023) 82:8855–8881

segmentation. Similarly in case of words also, there is no visible clue for identifying
the position of the words and also the separating gaps between any two adjacent
words. However, the above image is created with 1.5 line spacing between text-lines.
Imagine, if the image is in single line spacing, then the text contents would be closer,
and smooth segmentation of text-lines and words in such documents become even
more challenging than segmenting them from the earlier document.

Unlike the pixel image, there is no correlation clearly visualized among the
coefficient values in the DCT block so that some information can be obtained.
However, based on the procedure of DCT transformation explained above, some
useful information about the pixel positions should be inferred to perform some
applications in the compressed domain and to reflect them on the image when it is
decompressed. Some useful insights are explained here. In the DCT block in Fig. 3(b)
(left side), the first value (F00) (red color) in the DCT block is called DC value
(signal), and it gives the maximum information about the pixel density or the amount
of content that particular block contains. Usually this value contributes the shade
(with no frequency) information at the time of reconstruction. The whole image can
be reconstructed just by using this one DC value, but this won’t be sufficient to see
the details of the text contents more clearly. Similarly, the remaining 63 coefficient
values are called AC coefficients (signals). Each of these 63 coefficient values give
the information about different frequency levels of pixels in that image. Since text
documents are of high frequency, these frequency coefficient values and their signs
are very important to infer some useful information. The whole image can be
reconstructed with these 63 coefficient values with a reasonable quality. The recon-
structed image in the uncompressed domain with all 63 AC coefficients leaving the

Fig. 5 The pictorial representation shows different block cuttings/encoding of the 8 × 8 DCT blocks during
compression. At the top the cases for text-lines (pink color) and in the bottom for words (blue color) are shown.
Behaviors of the corresponding AC coefficients for each DCT encoding are shown (black color)

8861Multimedia Tools and Applications (2023) 82:8855–8881

DC signal is shown in Fig. 3(c) (displayed in uncompressed domain), and the
corresponding one 8 × 8 AC block coefficients are shown on the left side.

However, one 8 × 8 DCT block in the DCT stream is covering 8 rows of pixel height and 8
columns of pixel width. In case of printed text documents in the pixel domain, the text-line and
word separating spaces between adjacent lines and words would be very small, and sometimes
fall roughly within 3 or 4 rows for text-lines and 3 or 4 columns for words. Based on this
information, and applying projection profile techniques, the smooth segmentation of text-line
and word boundaries becomes an easy task in the uncompressed domain. A sample output
image with text-line and word boundaries segmented smoothly in the uncompressed domain is
shown in Fig. 4.

But finding such 3 or 4 lines and word separating space rows and columns (in case
of pixels) in the DCT compressed stream is challenging. In a DCT compressed stream
it needs at least 8 rows of space (in pixels) to identify the text-line separating space
block. Similarly for words, at least 8 columns of space are needed to have one 8 × 8
DCT space block between two adjacent words. As there won’t be any clue regarding
how text gets compressed after applying the DCT transformation, segmentation of
text-line and word boundaries in this domain becomes a challenging task. After
observing the various standard document images, it is noticed that there exist at least
1 space block between adjacent text-lines and half space for words at different
positions in the ascender and descender regions as also shown in Fig. 2. This may
not be true and applicable for all kinds of documents. Different standard document
images have been analyzed to identify the behavior of 8 × 8 DCT encoding over the
text in these documents. The space block activity has been tabulated in Table 1. This
table may be helpful for developing various applications in future directly in the
JPEG compressed domain. Overall in this paper, since compressed representation is
the input, there has to be an approach which can intelligently deal with these
challenging problems for segmenting the text-line and word boundaries smoothly.
The next section will describe the problem of text-line and word segmentation in
detail.

Table 1 Demonstration of an average 8 × 8 DCT activity on various standard compressed printed text
documents (font size and font style) involving JPEG compression algorithm

DPI Document type Image size Font style Font size No of DCT block

In space On char

96 Research article 160×124 TNR 10 pt 1 1
News 120×134 Helvetica 12 pt 1.5 2
Magazines 147×153 Garamond 12 pt 1.5 2
Other blogs 142×121 Tahoma 12 pt 1.5 2

200 Research article 160×124 TNR 10 pt 1.5 2
News 120×134 Helvetica 12 pt 1.5 2
Magazines 147×153 Garamond 12 pt 1.5 2
Other blogs 142×121 Tahoma 12 pt 1.5 2

300 Research article 160×124 TNR 12 pt 1.5 2
News 120×134 Helvetica 12 pt 2 2
Magazines 147×153 Garamond 12 pt 2 2
Other blogs 142×121 Tahoma 12 pt 2 2

8862 Multimedia Tools and Applications (2023) 82:8855–8881

3 Problem description

Unlike text-line characters in the handwritten document, characters in the printed documents are
very straight, uniform in leaving the space, containing no overlapping and skew. Therefore, as
explained in Section 2, because of encoding the 8 × 8 region, it is certain that some characters
would be encoded with separation spaces, and some parts of characters in adjacent text-lines
and words come into one block. However, characters in English alphabets like a, c, e, i, m, n,
and so on, are smaller in size, and comparatively characters j, g, p, b, d, f, h and so on, are larger
in size. Moreover, in English printed alphabets, there are certain cases like different font size
and font style, different types of spacing in case of a paragraph, text-line, word and characters.

Usually official documents have text-lines and words with single keyword spacing, and it is
noticed by us that a single keyword space spans just one and half DCT blocks (at 300 DPI).
During compression, 8 × 8 DCT block encoding for big letters and small letters would be
different. Observe the text-lines in the base region of Fig. 2 where, 8 × 8 DCT encoding in
case of big letter ‘p’ is observed in the base region and part of its portions is in the below
region. Similarly, for another big letter ‘d’ 8 × 8 DCT encoding is seen in the base region and
part of its portion is in the above region.

However, for small letters like ‘o’, the 8 × 8 DCT block encoding is almost within the 8 ×
8 block size. Apart from these examples, the encoding of characters can be in any form.
Therefore, segmentation of text-lines with the help of DCT blocks in the base region alone
cannot be done and it loses some text-line contents or may bring extra contents from other text-
lines (observe base region blocks in Fig. 2). For a smooth extraction, all the blocks above and
below the base region are required to be analyzed, and the relationship of those blocks with the
current and adjacent text-lines should be decided. During compression, there can be many
combinations of encoding text contents and space regions between them. Some important
combinations can be seen through Fig. 5 (Pink color represents the text-line cases and blue
color represents the word cases). At some positions, due to less space between text-lines some
part of the characters may be encoded (L-Case-2, L-Case-3), and at another positions because
of sufficient separation space, a single 8 × 8 block can cut it and be as a text-line separating
space block (L-Case-4); and sometimes only one block may cut the text from the both the text-
lines which indicates no space between them (L-Case-5). Similarly, for word segmentation
also, different cases can be observed in Fig. 5 (blue color), where a full 8 × 8 block may cover
one letter (W-Case-1) or half of the letter (W-Case-2 and W-Case-3), and sometime letters
from both the adjacent words (W-Case-5). In Order to segment text-lines and words, all the 8
× 8 DCT blocks need not be considered. With the detailed observation, the 8 × 8 DCT block
is categorized into different cases which need to be analyzed are shown in Fig. 5. For each
combination, the behavior of the AC signal F00 , F01, F11 ,F10 is shown for text-line and words
separately. Except L-Case-4 and W-Case-4, which are empty space blocks, all 8 × 8 DCT
blocks are required to be analyzed to recognize what type of block encoding it is, and thereby
text-line and word boundaries can be decided as shown in the below cases.

Line ¼
above; if F10 > 0
below; if F10 < 0
both; if j F11 j> 0

8<
: word ¼

left; if F01 > 0
right; if F01 < 0
both; if j F11 j> 0

8<
:

8863Multimedia Tools and Applications (2023) 82:8855–8881

The challenges of text-line and word boundary detection with the analysis of DCT blocks are
resolved through two strategies which are discussed in the following section.

4 Proposed model

Various stages in the proposed model are shown in Fig. 6. At the beginning DCT coefficients
are extracted by applying partial decompression on the JPEG compressed printed text docu-
ments. As explained in Section 2, since the DC signal represents the average background shade
of the block, during compression if an 8 × 8 block passes through text, then it will be reflected
in the single DC coefficient value (F00). Based on this observation, all the DC coefficients from
each 8 × 8 DCT block are added horizontally to obtain the vertical DC projection profile as
represented mathematically in Eq. (2).

DCk ¼
Xm

i�1;8

Xn

j¼1;8
F i; jð Þ ð2Þ

Where, we used the standard block size of 8 × 8.
The profile provides significant information about the position of text and the

separation space. If DCk > 0 indicates the existence of text in the block and DCk

= 0 indicates the presence of no text, which in other words hints for the separator
position. However, as explained in Section 3, in many cases, the line separators for
all the text-lines may not be clearly visible due to spacing, overlapping and font
constraints. In such a case, the expected line separators are predicted using peaks of
the DC projection profile that is obtained at the base region of each text-line. Mid-

Fig. 6 Flow diagram of the proposed techniques for fast and smooth analysis of printed text-line and word
segments directly in JPEG compressed domain

8864 Multimedia Tools and Applications (2023) 82:8855–8881

block between any two peaks is taken as expected text-line separator which is also
called as hard segmentation, and the strategies (FastSS-1 and FastSS-2) to be dis-
cussed next are applied to detect the exact smooth boundary of the text-line.

Both F10, F11 coefficients are needed for smooth analysis of text-line boundaries.
Similarly for word segmentation also, after getting the exact line boundaries, the
horizontal projection profile is calculated for each line. With the help of projection
valleys, the approximate word boundaries are marked. Now, the exact word boundary
is identified by processing the F01, F11 coefficients from each block in the column of
the expected word boundary. The two segmentation strategies, one is using partial
decompression of selected blocks (FastSS-1), and second one is based on using AC
coefficients (FastSS-2) and without involving any decompression are explained in
detail below (Tables 2 and 3).

4.1 FastSS-1: partial decompression of selected blocks

After marking the expected text-line and word separators using the projection profile
of DC signal, this strategy proposes to decompress only those 8 × 8 DCT blocks that
are in the expected text-line and word separators, and make the decision regarding the
boundary of the text-lines in the pixel domain by analyzing the vertical projection
profile of pixels. Since this technique does decompression of only those 8 × 8 DCT
blocks that are located along the expected line and word separators, and hence it is
efficient in comparison to decompression of the entire document in pixel domain for
processing (see Table 4). But in the case of L-Case-5 and W-Case-5 as shown in Fig.
4, this strategy, though it locates the exact horizontal partition between two characters,
the boundary mapping will be in 8 × 8 blocks only. Therefore, in order to avoid any
loss of information from both adjacent text-lines and words, such blocks will get
boundary membership of both the text-lines and words.

4.2 FastSS-2: using AC coefficients and without decompressing the selected blocks

As already discussed, the AC coefficient values and their signs in the 8 × 8 DCT
block are generated by the linear combination of all the 64 pixels in that block [34].
For example, the F10 coefficient shown mathematically in Eq. (3) and pictorially
visualized in Fig. 7, is the summation of differences between pixel values in the first
row from the eight row, second row from the seventh row and so on. Similarly, F01
coefficient value is the summation of differences between pixel values in the first four
columns and the next four columns. Therefore, by using the F10 and F01 coefficients

Table 2 Demonstrating the significance and advantages of working with low resolution images, variation of the
compressed document image with reduction in file size and processing time (hard segmentation)

Image size DC_Reduced
image size

ECM
image
size

DCT image
size

Processing time on
DC_Reduced image
(sec)

Processing time
on ECM image
(sec)

Processing time
on DCT image
(sec)

600×624 53×70 53×70 424×560 0.00040 0.00043 0.1027
256×320 32×40 32×40 256×320 0.00021 0.00022 0.0339
256×664 32×83 32×83 256×664 0.00027 0.00033 0.0774

8865Multimedia Tools and Applications (2023) 82:8855–8881

the L-Case-2 and W-Case-1 as shown in Fig. 5 can be identified and based on their
signs text-line and word boundaries can be resolved. Which means, unlike the
handwritten text, in printed text-lines the text characters would be horizontally and
vertically aligned. At the expected separators, it can be seen that the big sized letters
occupy either the above portion or below portion of the 8 × 8 blocks. During
compression, if text falls on the above portion of the block then the F10 coefficient
in that block becomes positive, and if text falls on the below portion of block the F10

is becoming negative. Similarly, if text falls on the left side of the block then F01

becomes positive, and text falls on the right side of the block then F01 becomes
negative.

Table 3 The overall experimental results of all the proposed methods (FastSS-1, FastSS-2, MFastSS-1,
MFastSS-2) for the extraction of text-line and word boundaries in JPEG compressed printed documents tested
on self-created dataset. The results of the same operations in the pixel domain are also shown for comparison

Different methods Image (DPI) Text-line segmentation Word segmentation F-measure (%)

Precision Recall (%) Precision Recall (%) Text-line Word

FastSS-1 96 92 100 80 100 95.83 88.88
200 98 100 96 100 98.98 97.95
300 100 100 100 100 100 100

FastSS-2 96 90 100 80 100 94.73 84.75
200 95 100 91 100 97.43 95.28
300 99 100 98 100 99.49 98.98

MFastSS-1 96 90 100 80 100 94.73 88.88
200 93 100 89 100 96.37 94.17
300 99 100 98 100 99.49 98.98

MFastSS-2 96 90 100 80 100 94.73 84.75
200 93 100 89 100 96.37 94.17
300 99 100 98 100 99.49 98.98

Pixel domain 96 100 100 99 100 100 99.5
200 100 100 99 100 100 99.5
300 100 100 100 100 100 100

Table 4 Comparison of the performance of the proposed methods (tested on 300 DPI documents) in the JPEG
domain with other methods existing in various compressed domains

Methods Parameters count Text-line
segmentation (%)

Word segmentation
(%)

F-measure (%)

(Lines) (Words) (Precision) (Recall) (Precision) (Recall) (Precision) (Recall)

Amarnath [2] (runlength
& handwritten)

2649 – 95.88 89.2 - - 92.41 –

Rajesh [29] (JPEG &
handwritten)

4034 29,717 98.40 96.7 96.3 99.41 97.54 97.83

Javed [16] (runlength &
printed)

434 1409 99.09 100 96.96 99.54 99.43 98.18

Proposed (200 DPI)
(JPEG & printed)

1073 8420 99 100 98 100 99.49 98.98

8866 Multimedia Tools and Applications (2023) 82:8855–8881

F10 ¼ c1c0
4

cos
�

16

X7

j¼0
f 0; jð Þ �

X7

j¼0
f 7; jð Þ

� �
þ cos

3�

16

X7
j¼0

f
�
1; j

 !
�
X7

j¼0
f 6; jð Þ þ cos

�

16

X7

j¼0
f 2; jð Þ �

X7

j¼0
f 7; jð Þ

� �
þ cos

7�

16

X7
j¼0

f
�
3; j

 !
�
X7

j¼0
f 4; j

�� �" #

ð3Þ
Therefore to resolve such a DCT block and to separate text-line and word boundaries
it simply checks F10 and F01 coefficients. If F10 > 0 then that character/block belongs
to the above text-line, and if F10 < 0 then that character/block belongs to the below
text-line. Similarly, if F01 > 0, then it belongs to the word on the left side, and if F01

< 0, then it belongs to the word on the right side. But in the base region, this may
not be the case every time, like in case of L-Case-5 and W-Case-5 as shown in Fig.
5. These cases will appear when the two characters of the adjacent text-lines or words
are very close to each other, and the 8 × 8 pixel block will have partial characters
from both the adjacent text-lines and words. Because characters are just like edges
having high frequency, it is observed that letters in such blocks will be just like a
sudden frequency change. In the basis function of a 8 × 8 DCT block, if tracing is
done in a zig-zag fashion from left upper triangular matrix to right lower triangular
matrix, the frequency level is in increasing order [26]. Therefore, in order to recog-
nize blocks partially containing text contents of two adjacent text-lines and words, use
of F11 coefficient is proposed. As displayed in the L-Case-5 and W-Case-5 in Fig. 5,
where above letter occupies the first four rows and below letter takes last four rows
of pixels. Similarly for words also, the left side letter occupies the first four columns
and the right letter occupies the last four columns. Here, there is sudden frequency
change in both parts of the block. Using the F11 coefficient the L-Case-5 and W-Case-
5 blocks can be identified that are usually anticipated along the position of expected
line and word separators. In order to identify the L-Case-5 and W-Case-5 cases in the
approximate boundaries the absolute value of the F11 coefficient is used to check the
frequency in that block. If |F11| > 0, then it confirms that the block has information
from both the adjacent text-lines and words. However, because it is the summation of
the difference between first four columns and next four columns of the first four rows
(1-4 in pixel block) and difference between first four columns and next four columns
of the next four rows (4-8 in pixel block), for L-Case-1, L-case-2, W-case-1 and W-
case-2 also the |F11| coefficient is getting some value. But in most cases |F11| value is
very high when L-Case-5 and W-Case-5 occur in the expected separators. In order to
locate such blocks exactly, based on the experimental observation, the |F11| value is
set to be more than 50% of F00 value. If a block along the expected line and word

Fig. 7 Pictorial visualization of 8 × 8 DCT block AC coefficients F00, F10, F11, F01

8867Multimedia Tools and Applications (2023) 82:8855–8881

separators contains such blocks, then we cannot have a hard partition for the exact
text-line and word boundary between the adjacent text-lines and words. In order to
avoid the loss of text information, the current block itself represents boundaries for
both the text-lines and words. Therefore these selected blocks need to be decom-
pressed to find the exact boundaries of text-lines and words using vertical and
horizontal projection profiles of pixel values for text-line and words. This type of
case occurs when there is not enough space block in the approximate separator.
However an attempt has been made to avoid |F11| > 0 decompression also, and
perform the segmentation fully in the compressed domain. This process is explained
in detail in below

4.2.1 Without decompression of F11

This subsection explains the segmentation of text contents in case of L-Case-5 and
W-Case-5 directly in the compressed domain. As explained above, In an 8 × 8 DCT
block, if |F11| > 0, then 8 × 8 DCT block contains text from both the adjacent text-
lines as shown in Fig. 8(a) (which is the cross section view of L-Case-5), where text
content is in black color and white color is the background of the document. On one
side this block should be given to both the text-lines and at the same time content
from the top text-line should not be there when it is moved to the bottom text-line
and vice versa. This case, experimenting by changing various coefficient values and
signs, proposed to use 70% of DC value to solve this segmentation problem. As
explained above, the significance of the magnitude of the DC signal is that during
compression it preserves the average background color which is suitable to that block,
and F10 and F01 also preserve the first level of frequency which exists in the block.
Therefore the DC value can be used to replace the F10 and F01 values to switch the
colors of the top portion and bottom portion of the block for text-lines and left
portion and right portion of the block for words. When F10 value is replaced by 70%
positive DC value then the top portion is converted to background color of the
document as shown in the Fig. 8(b). Similarly, if F10 value is replaced by 70% of
negative DC value then the bottom portion of the block is converted to background
color. However, since F10 and F01 do not give complete black and white shades at the
middle (observe F10 and F01 positions in the basis image of JPEG compression in

Fig. 8 Pictorial illustration of segmenting the text contents in L-Case-5 DCT block. (a) DCT block having text
content from both lines, where black color represents the text content and white color represents the background
of the document. (b) DCT block (top portion is converted as background) after replacing the F10 with 70% of F00
coefficient value. (c) DCT block (bottom portion is converted as background) after replacing the F10 with
negative 70% of F00 coefficient value

8868 Multimedia Tools and Applications (2023) 82:8855–8881

[26]), certain shortcomings are observed in using F00 value in place of F10 F01

coefficients.

8869Multimedia Tools and Applications (2023) 82:8855–8881

First shortcoming is, after decompressing that block the background color for the half
portion is coming up with shades (more black to white shade) as can be observed at the top
portion in Fig. 8(b) when F10 is replaced by negative of F00 in the case of text-line (Figs. 9 and
10). Because of that, after decompression, some text contents can be observed at the peripheral
portions of the text-lines and words. The second side effect of using this in the FastSS-2
algorithm is that, during compression, the DCT encoding will not be limited to the half portion
of the block alone. Encoding of text may cross more than half as can be observed in line
separator 7 in Fig. 11(a). Because of this problem, although the text portion is from the same
block, because of applying this strategy in the FastSS-2 algorithm the appearances of partial
text contents at the peripheral portions of text-lines are increased. However, though there is no
space between the adjacent text-lines and words, by using DC projection profile and F10, F01
and F11 AC coefficients, and selected blocks decompression the compressed document can be
analyzed to segment printed text-lines and words directly in the compressed domain with
reasonable quality as shown in Fig. 11. The DC coefficients shall be further investigated to
design the better segmentation approaches in the future. The text-line segmentation process
based on using FastSS-2 technique is given in the form of an algorithm (see Algorithm 1). The
algorithm processes documents from top to bottom and left to right in the compressed stream,
and maps the text-contents into a new document called Well Separated Image (WSI) where all
the text-lines are well separated with two full 8 × 8 space blocks for clear visualization of
boundaries. When it comes to the approximate line separator block, it first checks F11 value,
and if the absolute value is greater than 50% of DC value then it adjusts that block to both
lines. Then it checks the sign of the F10 coefficient in that block. If it is negative, that means the
character belongs to below text-line, and then it shifts that current block below by two blocks
and replaces that current position with separation space. Similarly, if it is positive then it maps
the current block there only and creates the space block below that block in the WSI. Finally if
the block is empty, since it is a space block, then it does not do any operation. The output of
this algorithm (WSI) is shown in Fig. 11(c) in the experiments section.

Some challenges have been identified when word segmentation algorithm has been
applied on documents having smaller font sizes and not having enough separating
space between words. In these documents, one 8 × 8 block is spanning one full

Fig. 9 Pictorial illustration to show the word boundaries (blue color) at the approximate word separators
identified using horizontal projection profile. Due to low projection wrong word separators (green color) are
calculated. Corresponding uncompressed image is shown at the top to visualize the corresponding characters

8870 Multimedia Tools and Applications (2023) 82:8855–8881

character and sometimes two characters, if they are of smaller size in width and
height. Due to this, the horizontal projection profile for word segmentation is not
weighing appropriately so that word blocks and their separating space blocks can be
seen clearly. It is because of two reasons. One is because of the DC value, which is
calculated for the whole 8 × 8 pixel block, which get some value even when the 8 ×
8 DCT block encodes the small portion of the text and large portion of the separating
gaps between words. The second reason is when 8 × 8 DCT block encoding happens
on the space within the characters. Because of this reason, some of the other areas in
the middle of words are also marked as word separation gaps as shown in Fig. 9,
where blue color represents the actual word gaps and green color represents the non-
word separating gaps. Because of some of these practical challenges identifying the
words and word separation gaps is becoming very difficult. However, rest of the word
separation gaps which are marked correctly have been properly analyzed for the
extraction of word boundaries smoothly. Some of the other segmentation approaches
in the literature have been explored in the process of finding a better solution to these
challenges, and though they could not solve these problems, they located expected
separators in less time. they are explained in the below sections.

A JPEG compressed printed text document image decompressed with only DC
values, and mapped to 0 (represents space) and 1 (represents text content) called as
DC_Reduced Image as shown in Fig. 10(a). Another kind of representation called the
Encoding Cost Map (ECM) is addressed in [8]. Here all the DCT blocks are
decompressed, and each 8 × 8 DCT block is encoded to one single value and
mapped on to the other file called as ECM Image. With this encoding the temporary
image is generated as shown in the Fig. 10(b). Based on the activity of the block,
most of the objects in the image are highlighted. Usually ECM representation is used
for segmenting the larger objects in the document images. However, each representa-
tion of compressed stream makes a clear distinction with respect to practical analysis.
With respect to DC_Reduced image, from each DCT block extracting DC value alone
makes huge reduction in the image size. For example the DCT image of size 16 × 16
contains 4 DCT 8 × 8 block. Extracting one DC value from each block makes the
DC_Reduced image of size 4 × 4. There is 98.43% reduction in the size. Similarly
apart from the encoding costs, same reduction would be there in the ECM image also.
However, if 10 AC coefficients are kept then there would 85.29% reduction in the
image size. Therefore analyzing the different representation of the image make huge
difference in practical implementations. The detailed information about all these
representations is shown in Table 2.

Fig. 10 Displaying the text-lines and words in low resolution images generated by further compressing the DCT
compressed stream. (a) A sample image generated using DC_Reduced strategy. (b) A sample image generated
using ECM strategy

8871Multimedia Tools and Applications (2023) 82:8855–8881

4.3 Approaches for more fast and smooth segmentation (MFastSS) of text-line
and word boundaries

The advantages that we achieve due to compression of large volumes of data are better storage
(low memory) and efficient transmission (less time). For instance image f (i, j) is compressed
with x% ratio using C compression, CI = C(f) then compressed image f‘(k, l) size gets reduced
to x% of its original size. Because of these reasons, according to compressed domain

Fig. 11 Pictorial illustration of output image with smooth segmented and well separated text-lines after applying
the FastSS-2 technique for analyzing the AC coefficients along the expected text-line separators. (a) Expected
text-line separators (blue color) calculated using vertical projection of DC values in each 8 × 8 block in DCT
image of size 168 × 640 (displayed in uncompressed domain). (b) Showing the various cases of 8 × 8 DCT
encoding of text contents in the corresponding uncompressed image with the help of colors, text contents
between magenta (top) and blue (bottom) contain the L-Case-2 encoding, blue (top) and pink (bottom) represents
the L-Case-3 encoding, magenta (top) and pink (bottom) contains both L-Case-2 and L-Case-3 encodings, blocks
between blue color does not have any encoding of text (line separator 8), and finally the portion in the red color
shows the L-Case-5 case. (c) The final output image of size 272 × 640 with sell separated text-lines, blue color
shows the same expected text-line separators, pink color with arrows shows the previous and current positions L-
Case-2 blocks replaced as space after sending the contents to below line (showed for first two text-lines only),
similarly blocks within the magenta color shows the L-Case-3 blocks shifted down by one block and finally red
color show the L-case-5 block

8872 Multimedia Tools and Applications (2023) 82:8855–8881

processing, performing any computation on the compressed data takes comparatively less
computation time and memory. In that process, if the compressed representation is further
compressed then performing any operation on that data is even more efficient. For instance, If
f’(k, l) has further reduced with y% then the total reduction of size is (x + y + (x+y)/100) . Two
such approaches [8, 29] are considered from the literature to apply them for the segmentation
of JPEG compressed documents into text-lines and words. Moreover, though these types of
approaches in the literature are proposed for segmenting large objects, the proposed models in
this paper are applied to achieve more faster and smoother segmentation of text-line and word
boundaries.

4.3.1 DC_Reduced image technique (MFastSS-1)

As explained in Section 3 that the DC value in a typical 8 × 8 block carries significant
information about the content in the block. DC_Reduced is obtained by mapping each 8 × 8
DCT block into one value. Using this DC value the block activity can be estimated. Based on
this fact, from a typical DCT image of size f (i, j) all the DC values from each 8 × 8 DCT
block are extracted and mapped onto the another file by preserving their positions and order as
it is. This newly mapped file is called the DC_Reduced image [29]. Because of this mapping
the original image of size f (i, j) gets reduced to a low resolution of size f (i/8, j/8). Upon this
low resolution image the projection profile techniques are applied to detect the expected text-
line and word separators. Because of locating the expected separators on the low resolution
image, this method is more faster when compared to the DCT image. The DC_Reduced model
in [29] is proposed for segmenting the text-lines and words in handwritten documents. But,
since printed text-lines and words are very close in nature, and one full DCT block is replaced
by just one DC value the DC_Reduced image of printed text document does not show the
separation gaps clearly for estimating the clear boundaries of text-lines and words. A sample
image of DC_Reduced image produced from Fig. 2 is shown in Fig. 10(a). After detecting the
expected text-line and word separators, the low resolution image is mapped back to its DCT
image for locating the exact boundaries based on using the FastSS-2 technique.

EC ¼
X8
i¼1

X8

j¼1
j DCT i; jð Þ j ð4Þ

Where EC means Encoding Cost

4.3.2 ECM image technique (MFastSS-2)

Similarly, instead of mapping the DC value directly, each 8 × 8 block from the DCT
compressed representation is encoded to a single value [8]. This single value is mapped on
to another file to represent each block. Which means that the absolute values of all the 64
coefficients are summed up to one value as shown in Eq. 4, where ECmeans Encoding Cost of
DCT a block. This sum is again encoded into a total number of bits required to represent that
number. For example the sum value 100 gets converted into 7 bits, using this system 10010 =
11001002, and mapped onto the other file. The number of these total bits represents the block
activity in the whole document. For example, due to JPEG’s compression strategy, smooth
areas produce the low ECM values, whereas edges generate the high ECM values. Wherever

8873Multimedia Tools and Applications (2023) 82:8855–8881

high frequency signal is found in the document, then such blocks will turn out to be higher in
bit length. This process is suitable and efficient for segmenting the large objects like text, non-
text, graphical content and other regions on a typical document image. After ECM mapping
the original image of size f (i, j) is converted into a low resolution image of size f (i/8, j/8). A
sample ECM image of Fig. 4 is shown in Fig. 10(b). Except for the extra encoding cost for
each 8 × 8 DCT block, the ECM mapping also converts the high resolution image into low
resolution, and because of this locating the expected text-lines and word boundaries upon the
low resolution images becomes faster compared to high resolution images. Once the expected
boundaries are detected the low resolution image is mapped to the DCT image to get the exact
boundaries of text-lines and words using the FastSS-2 technique.

5 Experiments and results

100 JPEG compressed document images are extracted by capturing various standard sources
of print media like single column conference and journal papers, text books and magazines,
similar to the work of [28]. The DPI (Dots Per Inch) and text spacing in the document images
were manually adjusted to make it more complex and suitable for our requirement.

Precision ¼ TP
TP þ FP

� 100 ð5Þ

Recall ¼ TP
TP þ FN

� 100 ð6Þ

F ¼ 2� Precision*Recall
Precision*Recall

� 100 ð7Þ

Total 300 images are created where 100 documents are there for each category (300 DPI, 200
DPI and 96 DPI). All the proposed methods have been tested on this dataset. However, three
well known metrics which are Precision (P), Recall (R) and F-Measure (F), have been used to
evaluate the performance of the proposed methods [30]. These metrics are also represented
mathematically in Eqs. (5), (6) and (7) respectively. Where TP is the total number text-lines or
words that are correctly segmented and FP is the number of text-lines and words that are false
segmented. Similarly FN is the total number of text-lines or words that are not segmented. The
experimental results of all the proposed models are shown in Table 3. The first approach
(FastSS-1) which is through partial decompression of selected 8 × 8 DCT blocks along the
expected text-line and word separators is shown in first row, and the experimental results using
the second approach (FastSS-2) which involved the usage of AC coefficients such as F10, F01
and F11 coefficients are shown in second row. Similarly, the third approach (MFastSS-1) is
tested on the DC_Reduced images produced using the above dataset, and the results are shown
in the third row. Finally, the results of the fourth approach, (MFastSS-2) tested on ECM
images produced from the same dataset are reported in the fourth row. However, proposed
models are compared with the other techniques reported in the literature. Proposed models are
compared with the compressed domain techniques as shown in Table 4. Similarly, the
proposed model is compared with the uncompressed domain techniques as shown in Table 5.

8874 Multimedia Tools and Applications (2023) 82:8855–8881

In all the methods, it was observed that when the dpi of the text document increased, the size of
the text and the gaps between them increased, and due to which the DC projection profile
produced at least one space block between text-lines and words. When there is enough space
(at least one 8 × 8 space block) between contents, it locates the exact boundary with projection
profiles itself. Then the analysis of AC coefficients is not needed. However, for a typical input
image f (i, j) containing, for example, P text-lines and Q words on average per line takes O (i ×
j) time to generate a Well Separated Image. But in the DCT domain, since the algorithm
outputs a Well Separated Image by copying the whole 8 × 8 block at a time, the time
complexity for copying all the blocks onto the Well Separated Image reduces to O (i/8 × j/8).
In addition to that, it only takes a constant time to check coefficient signs in the blocks at each
expected text-line and word separators to decide the exact text-line and word boundaries. The
total constant time for both text-line and words are calculated approximately as ((P × (j/8) + P
× Q × (j/8)). A sample image is created in Microsoft Word with a single line spacing option
between text-lines, font size 12, Times New Roman font style and 96 DPI. The text-line
segmentation output of that image is shown in Fig. 11(c), which is called a well separated
image where all the text-line and their boundaries are well separated. To avoid any sort of
confusion and to understand various cases of 8 × 8 DCT encodings, the overall output has
been illustrated with the help of two more figures, Fig. 11(a) and (b). In the figure, the
expected line separator 8 × 8 DCT blocks on the input image Fig. 11(a) (displayed in the
uncompressed domain) are shown within the blue color lines. This is also called hard
segmentation, where DCT blocks encode both text contents and separation spaces exist
between contents. Here, different kinds of DCT encodings (as already shown in Fig. 5) can
be observed in Fig. 11(b).

The blocks within the blue (top) and pink (bottom) colors represents the line separator
having L-Case-3 DCT blocks (observe line separator 1 in Fig. 11(b)), and the blocks within the
magenta (top) and blue (bottom) colors represents line separator having the L-Case-2 DCT
blocks. Similarly, the blocks within the magenta (top) and pink (bottom) colors represent line
separators having DCT blocks of both L-Case-3 and L-Case-2 blocks. Finally a block within
the red square in line separator 5 represents the L-Case-5 DCT block. Well separated text-lines
and exact line separators based on using the second approach (FastSS-2) are shown in Fig.
11(c) (displayed in uncompressed domain), where L-Case-3 blocks are moved to bottom line
(indicated by pink color arrows for just first two text-lines) and replaced that block with text-

Table 5 Comparison of the performance of the proposed methods (tested on 300 DPI printed documents in
JPEG domain) with existing methods in spatial domain

Methods Parameters count Text-line
segmentation (%)

Word segmentation
(%)

F-measure (%)

(Lines) (Words) (Precision) (Recall) (Precision) (Recall) (Precision) (Recall)

Alaei [1] 4034 - 98.35 98.76 - - 98.55 -
Fernández-Mota [9] 4034 – 98.40 95.00 – – 96.67 –
Papavassiliou [27] 1771 13,311 98.46 98.20 93.57 92.46 98.33 93.01
Renton [30] – – 94.90 88.10 – – 91.30 –
Louloudis [24] 1773 1331 97.40 97.40 93.90 90.80 97.40 92.30
Ryu [32] – – 98.64 98.68 – – 98.66 –
Arivazhagan [3] 78,902 – – – – – 98.81 –
Proposed (JPEG) (com-

pressed domain)
1073 8420 99 100 98 100 99.49 98.98

8875Multimedia Tools and Applications (2023) 82:8855–8881

line separator space blocks. Similarly, L-Case-2 blocks remain there in the same place but the
below blocks are marked as text-line separator space blocks. Except L-Case-5, all blocks are
smoothly segmented based on the analysis of AC coefficients. However, we admit that the
coefficient based analysis may fail with handwritten and noisy images, in order to test the
robustness of the proposed algorithms, the model is experimented with a sample handwritten
document, and a sample output is shown in Fig. 12(a).

Due the presence of skew and touching, expected text-line separators between two adjacent
text-line using projection profile techniques are not inserted properly, and some of them have
fallen on the text contents. The skew problem can be reduced by using the piecewise projection
profile technique to insert the text-line separators between the adjacent text-lines as shown in
Fig. 12(b) [29]. Similarly, the proposed algorithms are tested on the printed documents
containing noise. Here, 5% of Salt & and Pepper noise is added to the input image as
shown in Fig. 13(a). It can be observed that the proposed algorithms are able to segment
the text-lines in the noisy documents also, as shown in Fig. 13(b). Because of the
presence of noise in some of the 8 × 8 pixel blocks, during compression of such noisy
documents the coefficient values and signs may be changed. Because of that and in
comparison to Fig. 11(c), more blocks in Fig. 13(b) have changed their positions
(observe last line separator in Fig. 13(b)). Similarly, the noisy handwritten image is also
tested on the proposed model. The noisy input image and segmented text-lines of the

Fig. 13 Sample outputs of the proposed method tested on the printed text and noisy image. (a) JPEG compressed
printed text document image with 5% of Salt & Pepper noise. (b) Text-line boundaries after applying the FastSS-
2 method on the noisy JPEG compressed printed text document

Fig. 12 Sample outputs of the proposed method for JPEG compressed printed text documents tested on JPEG
compressed handwritten documents. (a) Text-line boundaries in a handwritten document (028.tiff, in
ICDAR2013 dataset) after applying the FastSS-2 technique. (b) Text-line boundaries after applying the
FastSS-2 method on the same image decomposed into vertical stripes to overcome the problem of skew

8876 Multimedia Tools and Applications (2023) 82:8855–8881

noisy image are shown in Fig. 14(a) and (b). However, since it focuses more on the
edges of the characters in the expected separators, the proposed model performed well on
the documents having different font styles and large fonts. Moreover, Because of using
projection profile techniques, the proposed algorithm does not work on more tilted
documents. Similarly, proposed algorithms do not work on the documents with very
low font sizes, where two characters may come into the same block. In this case,
segmentation based on using the proposed algorithms cannot be done.

Fig. 14 Sample outputs of the proposed methods tested on the handwritten text and noisy image. (a) JPEG
compressed handwritten text document image with 5% of Salt & Pepper noise. (b) Text-line boundaries after
applying the FastSS-2 method on the noisy JPEG compressed handwritten text document image3)

8877Multimedia Tools and Applications (2023) 82:8855–8881

However this is not the case with standard documents, where at least half or full
space blocks are available. Performing segmentation just by checking a few AC
coefficient values in a 8 × 8 DCT block, the proposed algorithms work faster in
comparison with conventional decompression based text-line segmentation methods.
For a typical document of size 600 × 624 pixels, 96 dpi size, and 27 text-lines and
414 words, we tested our algorithm in MatLab 2019a software with system configu-
rations of 8GB RAM, i5 processors. The segmentation performance of the proposed
methods are shown graphically in Fig. 15. Similarly, the efficacy in terms of execu-
tion time of each proposed model, and corresponding speed gained through the
proposed methods with respect to pixel domain are shown in Table 6. It is found
that the proposed algorithm performs much faster than the existing conventional
methods and has achieved the segmentation accuracy more than 90% directly in the
JPEG compressed domain.

Fig. 15 A graph plot of the performance of the proposed methods for the extraction of text-line and word
boundaries in JPEG compressed printed document image along with pixel domain result

Table 6 Execution times and speed gains of the proposed methods for the extraction of text-line and word
boundaries in the JPEG compressed domain with respect to pixel domain

Different methods Text-line & word segmentation time
(sec)

Speed gain
(%)

Pixel domain: decompression + processing 0.2027 –
FastSS-1: using partial decompression (DCT image) 0.0144 92.89
FastSS-2: using AC coefficients (DCT image) 0.00110 99.45
MFastSS-1: using AC coefficients (DC_reduced

image)
0.00074 99.63

MFastSS-2: using AC coefficients (ECM image) 0.00099 99.51

8878 Multimedia Tools and Applications (2023) 82:8855–8881

6 Conclusion

This paper has investigated the possibility of Fast and Smooth Segmentation of text-line and
word boundaries in JPEG compressed printed text document images. The compressed stream
is extracted using partial decompression. The approximate text-line and word separators are
marked by taking the projection profile of DC signal in each 8 × 8 DCT block. These
approximate separators are further analyzed to segment the text-line and word boundaries
smoothly based on using two proposed methods (FastSS-1 and FastSS-2). First method
(FastSS-1) is based on partial decompression of selected DCT blocks. Second method is
based on using direct AC coefficient values and without involving any decompression.
Similarly two further faster methods (MFastSS) are devised on the low resolution images
obtained by mapping the compressed stream. The first technique is developed on
DC_Reduced image, and second on is developed on ECM image. Because of performing
segmentation directly in the compressed domain, based on the experimental results, the
proposed techniques have accomplished the segmentation with low computation time.

However, we are sure that the proposed JPEG compressed domain methods shall be utilized
for realizing significant applications like word spotting, OCR and retrieval at faster rate.
Finally, this would also open scope for developing many transform coding techniques and
limitations of domain, and this would be our future work.

References

1. Alaei A, Pal U, Nagabhushan P (2011) A new scheme for unconstrained handwritten text-line segmentation.
Pattern Recogn 44(4):917–928

2. Amarnath R, Nagabhushan P (2018) Text line segmentation in compressed representation of handwritten
document using tunneling algorithm. Int J Intell Syst Appl Eng 6(4):251–261

3. Arivazhagan M, Srinivasan H, Srihari S (2007) A statistical approach to line segmentation in handwritten
documents. Proc. SPIE 6500, Document Recognition and Retrieval XIV 65000T. https://doi.org/10.1117/
12.704538

4. Bhowmik S, Sarkar R, Nasipuri M, Doermann D (2018) Text and non-text separation in offline document
images: a survey. IJDAR 21(1–2):1–20

5. Boulid Y, Souhar A, Elkettani MY (2015) Arabic handwritten text line extraction using connected
component analysis from a multi agent perspective. IEEE Proceedings of International Conference on
Intelligent Systems Design and Applications, pp 80–87

6. Chebil F, Hadj Miled MKB, Islam A, Willner K (2005) Compressed domain editing of jpeg2000 images.
IEEE Trans Consum Electron 51(2):710–717

7. Das D, Nayak D, Dash R, Majhi B, Zhang Y-D (2020) H-wordnet: a holistic convolutional neural network
approach for handwritten word recognition. IET Image Process 14(9):1794–1805

8. de Queiroz RL, Eschbach R (1998) Fast segmentation of the jpeg-compressed documents. J Electron
Imaging 7(2):367–378

9. Fernández-Mota D, Lladós J, Fornés A (2014) A graph-based approach for segmenting touching lines in
historical handwritten documents. Int J Doc Anal Recognit 17(3):293–312

10. Florea C, Gordan M, Orza B, Vlaicu A (2013) Compressed domain computationally efficient processing
scheme for jpeg image filtering. Adv Eng Forum 8-9:480–489

11. Frinken V, Fischer A, Manmatha R, Bunke H (2012) A novel word spotting method based on recurrent
neural networks. IEEE Trans Pattern Anal Mach Intell 34(2):211–224

12. Giotis AP, Sfikas G, Gatos B, Nikou C (2017) A survey of document image word spotting techniques.
Pattern Recogn 68:310–332. https://doi.org/10.1016/j.patcog.2017.02.023

13. Gueguen L, Sergeev A, Kadlec B, Liu R, Yosinski J (2018) Faster neural networks straight from jpeg.
NIPS18: Proceedings of the Advances in Neural Information Processing Systems, pp 3933–3944

8879Multimedia Tools and Applications (2023) 82:8855–8881

https://doi.org/10.1117/12.704538
https://doi.org/10.1117/12.704538
https://doi.org/10.1016/j.patcog.2017.02.023

14. Hopkins M, Mitzenmacher M, Wagner-Carena S (2018) Simulated annealing for jpeg quantization. IEEE
Proceedings of Data Compression Conference, pp 412–412

15. Hsin H, Sung T (2011) Image segmentation in the jpeg2000 domain. IEEE Proceedings of International
Conference on Wavelet Analysis and Pattern Recognition, pp 24–28

16. Javed M, Nagabhushan P, Chaudhuri BB (2013) Extraction of line-word-character segments directly from
run-length compressed printed text-documents. IEEE Proceedings of National Conference on Computer
Vision, Pattern Recognition, Image Processing and Graphics, pp 1–4

17. Javed M, Nagabhushan P, Chaudhuri BB (2015) A direct approach for word and character segmentation in
run-length compressed documents with an application to word spotting. IEEE Proceedings of International
Conference on Document Analysis and Recognition, pp 216–220

18. Javed M, Nagabhushan P, Chaudhuri BB (2018) A review on document image analysis techniques directly
in the compressed domain. Artif Intell Rev 50(4):539–568. https://doi.org/10.1007/s10462-017-9551-9

19. Javed M, Nagabhushan P, Chaudhuri BB, Singh SK (2019) Edge based enhancement of retinal images
using an efficient jpeg-compressed domain technique. J Intell Fuzzy Syst 36(1):541–556

20. Kasturi R, O’gorman L, Govindaraju V (2002) Document image analysis: a primer. Sadhana 27(1):3–22
21. Kidwai NR, Khan E, Reisslein M (2016) Zm-speck: a fast and memory less image coder for multimedia

sensor networks. IEEE Sensors J 16(8):2575–2587
22. Kiumarsi E, Alaei A (2018) A hybrid method for text line extraction in handwritten document images. IEEE

Proceedings of International Conference on Frontiers in Handwriting Recognition, pp 241–246
23. Kumar S, Gupta R, Khanna N, Chaudhury S, Joshi SD (2007) Text extraction and document image

segmentation using matched wavelets and mrf model. IEEE Trans Image Process 16(8):2117–2128
24. Louloudis G, Gatos B, Pratikakis I, Halatsis C (2009) Text line and word segmentation of handwritten

documents. Pattern Recogn 42(12):3169–3183
25. Lu Y, Tan CL (2003) Document retrieval from compressed images. Pattern Recogn 36(4):987–996
26. Mukhopadhyay J (2011) Image and video processing in the compressed domain. Chapman and Hall, Boca

Raton
27. Papavassiliou V, Stafylakis T, Katsouros V, Carayannis G (2010) Handwritten document image segmen-

tation into text lines and words. Pattern Recogn 43(1):369–377
28. Rajesh B, Javed M, Nagabhushan P (2019) Automatic text line segmentation directly in jpeg compressed

document images. IEEE Proceedings of Global Conference on Consumer Electronics, pp 1067–1068
29. Rajesh B, Javed M, Nagabhushan P (2020) Automatic tracing and extraction of text-line and word segments

directly in jpeg compressed document images. IET Image Process 14(9):1909–1919
30. Renton G, Soullard Y, Chatelain C, Adam S, Kermorvant C, Paquet T (2018) Fully convolutional network

with dilated convolutions for handwritten text line segmentation. Int J Doc Anal Recognit 21(3):177–186
31. Retraint F, Zitzmann C (2020) Quality factor estimation of jpeg images using a statistical model. Digit

Signal Process 103(102759):102759. https://doi.org/10.1016/j.dsp.2020.102759
32. Ryu J, Koo HI, Cho NI (2014) Language-independent text-line extraction algorithm for handwritten

documents. IEEE Signal Process Lett 21(9):1115–1119
33. Shen B, Sethi IK (1996) Convolution-based edge detection for image/video in block dct domain. J Vis

Commun Image Represent 7(4):411–423
34. Shen B, Sethi IK (1996) Direct feature extraction from compressed images. In: Storage and retrieval for still

image and video databases IV. vol. 2670, pp 404–415. https://doi.org/10.1117/12.234779
35. Smith BC, Rowe LA (1993) Algorithms for manipulating compressed images. IEEE Comput Graph Appl

13(5):34–42
36. Song Q, Xiong R, Fan X, Liu X, Huang T, GaoW (2018) Compressed image restoration via external-image

assisted band adaptive pca model learning. IEEE Proceedings of Data Compression Conference, pp 97–106
37. Tausif M, Kidwai NR, Khan E, Reisslein M (2015) Frwf-based lmbtc: memory-efficient image coding for

visual sensors. IEEE Sensors J 15(11):6218–6228
38. Tausif M, Jain A, Khan E, Hasan M (2020) Low memory architectures of fractional wavelet filters for low-

cost visual sensors and wearable devices. IEEE Sensors J 20(13):6863–6871
39. Tompkins DA, Kossentini F (1999) A fast segmentation algorithm for bi-level image compression using

jbig2. IEEE Proceedings of International Conference on Image Processing, pp 224–228
40. Vo QN, Lee G (2016) Dense prediction for text line segmentation in handwritten document images. IEEE

Proceedings of International Conference on Image Processing, pp 3264–3268
41. Wallace GK (1992) The jpeg still picture compression standard. IEEE Trans Consum Electron 38(1):xviii–

xxxiv
42. Yanikoglu BA, Sandon PA (1998) Segmentation of off-line cursive handwriting using linear programming.

Pattern Recogn 31:1825–1833
43. Yousfi Y, Fridrich J (2020) An intriguing struggle of cnns in jpeg steganalysis and the oneHot solution.

IEEE Signal Process Lett 27:830–834

8880 Multimedia Tools and Applications (2023) 82:8855–8881

https://doi.org/10.1007/s10462-017-9551-9
https://doi.org/10.1016/j.dsp.2020.102759
https://doi.org/10.1117/12.234779

44. Zhang Y, Zha J, Chao H (2018) Fast h. 264/avc to hevc transcoding based on compressed domain
information. IEEE Proceedings of Data Compression Conference, pp 207–216

45. Zhong Y, Zhang H, Jain AK (2000) Automatic caption localization in compressed video. IEEE Trans
Pattern Anal Mach Intell 22(4):385–392

46. Zhu N, Shen J, Niu X (2019) Double jpeg compression detection based on noise-free dct coefficients
mixture histogram model. Symmetry 11(9):1119. https://doi.org/10.3390/sym11091119

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Bulla Rajesh1 & Mohammed Javed1 & P. Nagabhushan1

Bulla Rajesh
rajesh091106@gmail.com

P. Nagabhushan
pnagabhushan@iiita.ac.in

1 Department of Information Technology, Indian Institute of Information Technology Allahabad, Prayagraj,
U.P., India

8881Multimedia Tools and Applications (2023) 82:8855–8881

https://doi.org/10.3390/sym11091119

	FastSS: Fast and smooth segmentation of JPEG compressed printed text documents using DC and AC signal analysis
	Abstract
	Introduction
	Brief illustration of JPEG compression on printed text
	Problem description
	Proposed model
	FastSS-1: partial decompression of selected blocks
	FastSS-2: using AC coefficients and without decompressing the selected blocks
	Without decompression of F11

	Approaches for more fast and smooth segmentation (MFastSS) of text-line and word boundaries
	DC_Reduced image technique (MFastSS-1)
	ECM image technique (MFastSS-2)

	Experiments and results
	Conclusion
	References

