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Abstract

Pneumonia is a life-threatening respiratory lung disease. Children are more prone to be
affected by the disease and accurate manual detection is not easy. Generally, chest radio-
graphs are used for the manual detection of pneumonia and expert radiologists are required
for the assessment of the X-ray images. An automatic system would be beneficial for the
diagnosis of pneumonia based on chest radiographs as manual detection is time-consuming
and tedious. Therefore, a method is proposed in this paper for the fast and automatic detec-
tion of pneumonia. A deep learning-based architecture ‘MobileNet’ is proposed for the
automatic detection of pneumonia based on the chest X-ray images. A benchmark dataset
of 5856 chest X-ray images was taken for the training, testing, and evaluation of the pro-
posed deep learning network. The proposed model was trained within 3 Hrs. and achieved
a training accuracy of 97.34%, a validation accuracy of 87.5%, and a testing accuracy
of 94.23% for automatic detection of pneumonia. However, the combined accuracy was
achieved as 97.09% with 0.96 specificity, 0.97 precision, 0.98 recall, and 0.97 F-Score. The
proposed method was found faster and computationally lesser expensive as compared to
other methods in the literature and achieved a promising accuracy.
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1 Introduction

Pneumonia is an immense respiratory lung disease where millions of children lose their life
due to failure of its detection [34]. The chest X-ray is considered the most preferred imag-
ing modality for the diagnosis of pneumonia [20, 29]. The accurate detection of pneumonia
based on the chest radiograph is time-consuming [21]. The manual detection of pneumonia
requires a radiologist to have a good experience. The learning graph of the radiologist also
matters for the correct identification of the disease. As a result, the identification of pneu-
monia is not easy based on the chest radiograph. Still, there are some cases where it is very
difficult to spot the region of interest for pneumonia detection based on chest radiograph.
Therefore, it is considered that computer-aided diagnosis [8, 9] can be evolved to assist
the radiologist in spotting the region of interest and detect the positive or negative cases
of pneumonia. Deep learning neural network methods have demonstrated efficient perfor-
mance for medical aided diagnostics [4-6]. However, these methods will only be useful
for assistance if the accuracy of such methods can be reached to a similar level of human
accuracy.

In recent years, researchers have published various articles which were focused on the
automatic detection of pneumonia. A brief description of such literature is given in Table 1.
The studies by Rajpurkar et al. [31] and Varshni et al. [39] used the dataset ChestX-ray14,
which was released by Wang et al. (2017) [40]. The latter used a subset of those images
as they were focusing on the detection of pneumonia only, however, the former used the
whole dataset as their method was further extended to detect 14 diseases using the dataset.
Varshni et al. [39] had proposed DenseNet-169 as a feature extractor and SVM (Support
Vector Machine) as a classifier for the detection of pneumonia. Many other studies used a
dataset from the Kaggle database [19]. Saraiva et al. [33] presented a convolutional neu-
ral network that comprised of seven convolutional layers, three max-pooling layers, and
three dense layers. K-fold cross-validation (K=35) method was also used to validate the
model and the accuracy was achieved as 95.30%. Okeke Stephen et al. [36] made a Con-
volution Neural Network model and trained it from scratch. Hammoudi et al. [13] trained
ResNet34, ResNet50, DenseNet169, VGG-16, and Inception ResNet V2 and RNN on the
chest X-ray dataset to detect pneumonia [13]. Out of these models, DenseNet169 produced
the best results among the mentioned experiments. El Asnaoui, K. [7] used an ensemble
learning-based method using on fine-tuned versions of InceptionResNet_V2, ResNet50,
and MobileNet_V2. It achieved an F1 score of 94.84% on the task of classifying chest
X-rays images among bacterial, viral, COVID-19, and normal cases [7]. Acharya et al. [18]
used Siamese CNN (convolutional neural network) architecture to classify the images into
three different classes such as bacterial pneumonia, viral pneumonia and normal cases.
M.Togacar et al. [37] performed an experiment for the detection of pneumonia based on
three different deep learning architectures. The study demonstrated three different deep
learning pre-trained architectures (AlexNet, VGG-16 and VGG-19) as feature extractors.
The minimum redundancy along with the maximum relevance algorithm was used for each
model to reduce the number of features to 100 only. The features were then combined and
were feeded to the linear discriminant analysis (LDA) for classification. There are several
studies are available in the literature for the detection of pneumonia. However, there is a
scope of improvement to the available techniques in terms of accuracy and speed of detec-
tion of pneumonia.

The objective of this study is to detect pneumonia from the chest X-rays images with
improved accuracy, high speed, and less computational power requirement. The related
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articles that focus on detecting pneumonia from the chest X-rays used the models that are
very deep and consist of several convolutional layers. Some of them were able to achieve
precise accuracy but they require a lot of computational power and time to perform their
computations. Thus, to overcome this limitation, we have trained MobileNet architecture
which is very lightweight, fast, and computationally less expensive [14]. A comparison
between few pre-trained models in terms of their memory requirement and number of
parameters is shown in Table 2. There is always a trade-off between accuracy and computa-
tional power, however, in this study, we have tried to achieve a precise accuracy using less
computational power. Moreover, the proposed method has also been validated on an exter-
nal dataset to show that the proposed method works well on other datasets too.

2 Materials and methods
2.1 Materials

We have used two datasets in our study. The first dataset is used to develop a method to
detect pneumonia that includes pre-processing, model selection, and hyperparameter tun-
ing. Another dataset is used to validate this method, i.e., to check if the proposed method
will work on another dataset or not.

The dataset used in the study is publicly available on Kaggle [19]. It consists of three
folders, namely, training, testing, and validation. All these folders are subdivided into two
folders, namely, NORMAL and PNEUMONIA. The training, validation, and testing fold-
ers contain 5216, 16, and 624 X-ray images, respectively. This was termed as ‘Dataset-1’,
using which a model was developed and hyperparameters were tuned.

We also used an external dataset to validate our model [30]. It consists of three folders,
namely, train, test, and validation, which are further subdivided into two folders, namely,
Normal and Pneumonia. There were 5,500 images in the training folder, 325 images in the
validation folder, and 325 images in the test folder. This dataset was termed ‘Dataset-2’.

2.2 Methods

This section describes the applied methodology in detail. This section only uses Data-
set-1 to build the model. The proposed pneumonia detection model using the “MobileNet”
Architecture is described in Fig. 1. The method for the proposed model includes the fol-
lowing several stages such as the dataset handling stage, the pre-processing and augmenta-
tion stage, and the training of the deep learning model. Table 3 demonstrates the list of all
layers used in the proposed deep learning architecture.

Table 2 Comparison between Model

sizes and number of parameters Size Parameters

of various pre-trained models VGG16 528 MB 138,357,544
VGGI19 549 MB 143,667,240
ResNet50 98 MB 25,636,712
MobileNet 16 MB 4,253,864
DenseNet121 33 MB 8,062,504

@ Springer
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Fig. 1 Flow Diagram of the Applied Methodology

PNEUMONIA

Data Augmentation
Training MobileNet Model

Oversampling Normal Class

2.2.1 The Dataset Handling Stage

The training set was highly imbalanced as it contained 3,875 images of the pneumonia
class and only 1,341 images of the normal class. To deal with this, the minority (nor-
mal) class was oversampled by using data augmentation techniques (rotate and shear) to
get 3,876 images of the normal class and a training set of 7,751 images.

2.2.2 The Pre-Processing and Augmentation Stage

The original 3-channel images in the dataset were of different sizes. Since the deep
learning models expect all the images to be of the same size, all the images were resized
to 512512 pixels. Also, to avoid overfitting and to make the training process easier,
training images were augmented and normalized based on their mean and standard devi-
ation. The value of the arguments for the data augmentation is shown in Table 4. Data
augmentation was also used to increase the training dataset virtually by including more
hypotheses of the object variations in images which will boost the accuracy of the pro-
posed model. In the proposed method, the rotation range was kept as 20 degrees for the
inclusion of variations. We did not do any augmentation on the validation and test set
images; however, the normalization techniques were used on them.

2.2.3 The Training of Deep Learning Model

The MobileNet architecture along with a GlobalAveragePooling2D layer and a dense
layer (with sigmoid activation function) was used to train the model. We used MobileNet
as its architecture is lightweight and thus, faster to train as compared to other available
architectures. This architecture was first proposed by Howard et al. [14]. Instead of per-
forming transfer learning, we trained the model from scratch to get better results.

The architecture of MobileNet is mainly based on depthwise separable convolutions
which are faster than the standard convolutions [18]. The convolutional layers consist
of many learnable filters and are responsible for performing the convolution operation
between the input and the filters. The size of the filters that we have used in our model
in the first convolutional layer is 3 X 3. These filters are also called feature detectors. The
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Table 3 Different layers of the proposed Architecture for the automatic detection of pneumonia

S. No Layer (type) Stride Filter Shape Output Shape

1 Input Layer - - (Batch_size, 512, 512, 3)
2 Conv2D 2 (3,3,3,32) (Batch_size, 256, 256, 32)
3 DepthwiseConv2D 1 3,3,32) ( Batch_size, 256, 256, 32)
4 Conv2D 1 (1, 1,32, 64) ( Batch_size, 256, 256, 64)
5 DepthwiseConv2D 2 3,3,64) ( Batch_size, 128, 128, 64)
6 Conv2D 1 (1, 1, 64, 128) ( Batch_size, 128, 128, 128)
7 DepthwiseConv2D 1 (3,3, 128) ( Batch_size, 128, 128, 128)
8 Conv2D 1 (1,1, 128, 128) ( Batch_size, 128, 128, 128)
9 DepthwiseConv2D 2 3, 3,128) ( Batch_size, 64, 64, 128)
10 Conv2D 1 (1, 1, 128, 256) ( Batch_size, 64, 64, 256)
11 DepthwiseConv2D 1 (3, 3,256) ( Batch_size, 64, 64, 256)
12 Conv2D 1 (1, 1, 256, 256) ( Batch_size, 64, 64, 256)
13 DepthwiseConv2D 2 (3, 3, 256) ( Batch_size, 32, 32, 256)
14 Conv2D 1 1, 1,256, 512) ( Batch_size, 32, 32, 512)
15 DepthwiseConv2D 1 3,3,512) ( Batch_size, 32, 32, 512)
16 Conv2D 1 1, 1,512,512) ( Batch_size, 32, 32, 512)
17 DepthwiseConv2D 1 3,3,512) ( Batch_size, 32, 32, 512)
18 Conv2D 1 1, 1,512,512) ( Batch_size, 32, 32, 512)
19 DepthwiseConv2D 1 (3,3,512) ( Batch_size, 32, 32, 512)
20 Conv2D 1 (1, 1,512,512) ( Batch_size, 32, 32, 512)
21 DepthwiseConv2D 1 3, 3,512) ( Batch_size, 32, 32, 512)
22 Conv2D 1 (1, 1,512,512) ( Batch_size, 32, 32, 512)
23 DepthwiseConv2D 1 3,3,512) ( Batch_size, 32, 32, 512)
24 Conv2D 1 (1, 1,512, 512) ( Batch_size, 32, 32, 512)
25 DepthwiseConv2D 2 3,3,512) ( Batch_size, 16, 16, 512)
26 Conv2D 1 (1,1, 512, 1024) ( Batch_size, 16, 16, 1024)
27 DepthwiseConv2D 2 (3,3, 1024) ( Batch_size, 16, 16, 1024)
28 Conv2D 1 (1, 1, 1024, 1024) ( Batch_size, 16, 16, 1024)
29 GlobalAveragePooling2D 1 Pool (16, 16) ( Batch_size, 1024)

30 Sigmoid Classifier - Classifier ( Batch_size, 1)

Total params: 3,229,889
Trainable params: 3,208,001
Non-trainable params: 21,888

Table 4 Parameters used for data

augmentation

Argument Value
Zoom range 0.1
Rotation range 20
Sample wise center True
Sample wise std normalization True

The boldface entry signifies that MobileNet is the architecture that has

been used in this paper
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mathematical convolutional operation between two functions f(t) and g(t) can be defined
as in Eq. (1).

(f = &)@®) = / f(r)g(t — r)dr. (1)

The convolution operation is performed between the input and the feature detectors,
which results a feature map. The convolutional operation calculates the sum of element-
wise multiplication of the input and the filter, and returns a scalar. This operation is contin-
ued by sliding the filter over the input with a stride. If the size of the input is ny X ny X n,,
the numbers of filters used are ng, the stride is s, the padding is p, and the size of the filters
is fXfxXn, then the size of the output of the convolutional layer is
[(@ + 1)J X [(w + 1)J X ng, where |x] is the floor of x. In the proposed model,
after the input layer, a convolutional layer is used. The size of the input image is
512 x 512 x 3, the number of filters used is 32, the size of the filters is 3 X 3 X 3, padding is
1 and the stride value is 2. Consequently, it results in an output of shape 256 X 256 x 32.
For one convolution operation, the number of multiplications performed is the number of
elements in the input, i.e., f X f X n.. Since the filter is slid over the input, the number of
multiplications per filter for padding of O and a stride of 1 becomes
(nyg —f+ DXy —f+ 1) XfXfXn, Total number of multiplications using n, number
of filters in a standard convolution is in Eq. (2).

Mgc =n X (ng —f+ DX (ny —f+ D XfX[fXn,. 2)

This standard convolutional operation is computationally expensive and slow. However,
this process can speed up by using depth-wise separable convolution.

The depth-wise separable convolution involves two stages: Depth-wise Convolution and
Point-wise Convolution. In the depth-wise convolution, the convolution operation is applied to
a single input channel at a time. This is not the case with standard convolution as it applies
convolution to all the channels. The filters used at this stage have a shape of f X f x 1 and
since each channel requires a filter, a total of n, filters are used. For a single filter, the output
shape is l(@ + I)J X l("wzﬂ + I)J X 1 for a stride of s. When the outputs of all
the filters are stacked together, the resulting output shape becomes
[(@ + I)J X l(w +1)| X n. Depth-wise convolution is performed in our
model using the DepthwiseConv2D layer of the TensorFlow framework. The 1% DepthwiseC-
onv2D layer in our model has an input of shape 256 x 256 x 32, a filter size of 3 X 3 X 1, pad-
ding of 1, and a stride value of 1. Consequently, it results in an output of shape 256 X 256 x 32.
This is the end of the first stage and from here, the point-wise convolution begins. The output
of the depth-wise convolution is the input for point-wise convolution. This stage performs the
linear combination of each of the layers. In this stage, the filters of shape 1 X 1 X n, are used
and hence, 1 X 1 convolution is performed over all the n, layers. If the number of filters used is
. the output size is | (WL 1| x| 4 1)T
performed in our model using the Conv2D layer of the TensorFlow framework, where the
value of f is kept 1 and padding is set to ‘same’ (p = f_Tl). In the proposed model, for the 1%
convolutional layer in which the point-wise convolution is performed, the input shape is
256 % 256 x 32, the filter size is 1 X 1 X 32, the number of filters used is 64, the padding value
is 0, and the stride value is 1. It results in an output of 256 X 256 x 64. The total number of
multiplications performed in a depth-wise separable convolution can be calculated by adding

X ny. Point-wise convolution is
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together the number of multiplications performed in the depth-wise convolution stage and the
point-wise convolution stage. In the depth-wise convolution stage, for a padding of 0 and a
stride of 1, the number of multiplications performedisn, X (ny —f + 1) X (ny, = f + D) X f X f
and in the pointwise convolution stage, the number of multiplications performed when using
ny filters is ne X (ng —f +1) X (ny — f+ 1) xn,. Thus, the total number of multiplications
using n, number of filters in a depth-wise separable convolution is:

Mpse = (ng —f+ 1) x (n, = f + 1) X [(f Xf) + ;] X n,. 3)

The ratio of the number of multiplications performed in a depth-wise separable convolu-
tion to the number of multiplications in a standard convolution is [18]:

Number of Multiplications in Depthwise Separable Convolution 1 1
Number of Multiplications in Standard Convolution - n_f ny—f+D)x@m,—f+1)
“

Equation (4) confirms that the number of multiplications and hence, computations per-
formed in a depth-wise separable convolution is less than that in a standard convolution. Due
to this property of depth-wise separable convolutions, the MobileNet architecture is faster as
compared to other deep learning models.

The final model used is defined in Table 3. The first element of the output shape, i.e., the
batch size was set to 1. All layers are followed by a batch norm and ReLU (Rectified Linear
Unit) nonlinearity except for the final Global AveragePooling2D layer which feeds directly into
the sigmoid classifier. All the layers of the model are shown in Fig. 2. Batch normalization
contributes to speeding up the training of neural networks by normalizing the output of a pre-
vious activation layer [15]. It speeds up training by smoothing the optimization landscape in a
significant amount. Because of this smoothness, a more predictive and stable behavior of the
gradients is induced, which allows faster training [32]. The equations used in batch normaliza-
tion are shown through Eq. (5)-(8).

1 m
He =" Zi:l Kis )
1 m
‘7123 - Zi:l (; = Hg)", ©
2= (xi - /43)
ol+e @
y; = y}i +p= BN”,GC\,«). (8)

("NN NNNNN NNNNN NONNN NEONN NNONN NNONN NNGNN NNGEN NNONE NNONN NNONN NEONN EEONED |

I Standard Convolution l Depthwise Convolution

D Batch Normalization D Pointwise Convolution
|:| ReLU Activation I Sigmoid Classifier
Iil Global Average Pooling

Fig.2 Proposed Architecture for the Automatic Detection of Pneumonia
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Normalization is done by subtracting the batch mean (y5) and dividing by the batch stand-
ard deviation (012;). In Eq. (7), € (a small constant) is added in the denominator to avoid divi-
sion by zero variance. However, after performing this normalization, the weights in the next
layer are not optimal [3]. Stochastic gradient descent optimizer undoes this normalization if
it’s a way for it to reduce the loss function. So, two trainable parameters are added by batch
normalization to each layer, so that the normalized output (%) is multiplied by a “standard
deviation” parameter (y) and add a “mean” parameter (). Because of these parameters, the
stochastic gradient descent optimizer used in the model can do the denormalization by chang-
ing only f and y for each activation. ReLU (Rectified Linear Unit) activation is defined for an
input x in Eq. (9) and is zero for a value less than zero. For values greater than or equal to zero,
the ReLU activation is the value itself [28].

R(x) = max(0, x). &)

When an input of shape ny X ny, X n, is passed to a global average pooling layer, it calcu-
lates the average of each activation map and returns that average at the output. Since we have
n, number of activation maps, the output shape is 1 X 1 X n,. This output is then passed to a
sigmoid layer which outputs the probability that the input image belongs to the pneumonia
class. If the probability is less than 0.5, the normal class is predicted and if it is greater than or
equal to 0.5, the pneumonia class is predicted.

The model was trained with Stochastic Gradient Descent as the optimizer. The objective of
the optimizers is to keep updating the weights at every layer until the best learning of param-
eters in CNN (convolutional neural network) is realized. In the Stochastic Gradient Descent
(SGD) method, the weights are updated for every single training set [7]. The formula for SGD
optimizer is given in Eq. (10). Here, 6 is the vector of weights to be updated, « is the learning
rate and V,J(0) is the loss function.

0,=0,_, —aVyJ(O:x', ). (10)

We set the number of epochs to 10 and used ModelCheckpoint callback to save the model’s
weights for which the validation accuracy was maximum. The learning rate («) was initially
set to 0.1 and Exponential Decay was used as the Learning Rate Scheduler. The Learning Rate
Scheduler allows reducing the learning rate as the number of epochs increases, which helps
train deep learning models. The arguments decay steps, decay rate, and staircase of exponen-
tial decay were set to 1,00,000, 0.96, and true respectively. Here, the learning rate is decayed
by following a staircase function. Binary Cross Entropy was used as the loss function as given
in Eq. (11):

1 N ~ ~
Loss === ¥ lvlogy, + (1 =y,)log(1 =3,)], (11)
where N is the number of examples, y, is the actual label, and 37" is the prediction made
by the model. The model tries to minimize this loss. The model was trained using GPU

(graphics processing unit) on Google Colab for approximately 3 h and we got a training
accuracy of 97.34%, a validation accuracy of 87.5%, and a testing accuracy of 94.23%.
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3 Results

To evaluate a model’s performance, we cannot depend on the accuracy only. Various other
metrics along with accuracy, were also derived from the confusion matrix to measure the
model’s performance, such as specificity, precision, recall, and F1-score. The formulae to
compute these metrics are shown through Eq. (12)-(16)

Accuracy = (TN + TP)/(TN + TP + FN + FP), 12)
Specificity = TN/(TN + FP), (13)

Precision = TP/(TP + FP), (14)

Recall = TP/(TP + FN), (15)

F1 — score = (2 X Precision X Recall)/(Precision + Recall), (16)

where TP, TN, FP, and FN are represented as true positive, true negative, false positive,
and false negative respectively. The specificity answers the question that if the actual label
for a chest x-ray is “normal”, how often the model predicts it to be “normal”. Precision
tells how often the prediction is correct if the predicted label is “pneumonia”. Recall tells
us that if the actual label is “pneumonia”, how often the model is correct. Since there is a
trade-off between precision and recall, we have also used the Fl-score, which is the har-
monic mean of precision and recall. The maximum possible value of specificity, precision,
recall, and F1-score is 1. This section displays the results obtained for dataset-1 after train-
ing the model, the results obtained for dataset-2 without training the model, and the results
obtained for dataset-2 after training the model.

3.1 Results on Dataset-1 after training the model on a training set of Dataset-1

The confusion matrices for the predictions made by our model on training, validation, and
test sets of dataset-1 are shown in Fig. 3.

The accuracy, specificity, precision, recall, and Fl-score for the proposed model
were computed separately for training, validation, and test sets of dataset-1, and shown
in Table 5. Also, it demonstrates the combined metrics for the same model. The ROC
(receiver operating characteristic) curves is shown in Fig. 4. The model was trained using
GPU (graphics processing unit) on Google Colab for approximately 3 h and we got a train-
ing accuracy of 97.34%, a validation accuracy of 87.5%, and a testing accuracy of 94.23%.
However, the combined accuracy was achieved as 97.09% with 0.96 specificity, 0.97 preci-
sion, 0.98 recall, and 0.97 F-Score.

3.2 Results on Dataset-2 after training the model on training set of Dataset-1
To see that if our proposed model performs well on other chest X-ray datasets too, we used

an external dataset (Dataset-2) to validate our model [30]. This dataset has 4,000 images of
the pneumonia class and 1,500 images of the normal class in its training set. We applied

@ Springer



5526 Multimedia Tools and Applications (2022) 81:5515-5536

Confusion Matrix Confusion Matrix

Negative Negative 1

Tue label
Tue label

Positive Positive

<& 2 R\ 2
Q@"‘ & 0‘9@ Qo.,w‘“
¥ < W
Predicted label Predicted label

(a) (b)

Confusion Matrix

Negative

Tue label

Positive

@o
3 N
& &
Predicted label

(©)

Fig.3 Confusion matrix for Dataset-1 after training the model on training set of Dataset-1 (a) Training set
predictions, (b) Validation set predictions, and (c) Test set predictions

Table 5 Accuracy, specificity,

L Metrics Training Validation Test Combined

precision, recall, and F1-score

metrics for our model obtained -y oyey () 9734 87.50 9423 97.09

on Dataset-1 after training o

the model on a training set of Specificity 0.97 0.75 0.91 0.96

Dataset-1 Precision 0.97 0.80 0.95 0.97
Recall 0.98 1.00 0.96 0.98
F1-score 0.97 0.89 0.95 0.97
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Fig.4 ROC curves for Dataset-1 after training the model on training set of Dataset-1 (a) Training set pre-

dictions, (b) Validation set predictions, and (c¢) Test set predictions

the same methods (oversampling normal class, data augmentation) on this dataset as we
did on Dataset-1, and increased the number of images in the normal class to 4,000. A pre-
trained model (as trained on Dataset-1) was used to validate on the training, validation and
test image set of Dataset-2. Section 3.2 demonstrates the results when the proposed model
was trained only on the training set images of Dataset-1 and validated on all image sets
of Dataset-2. The confusion matrices are shown in Fig. 5. The derived metrics from these
confusion matrices are shown in Table 6 and the ROC curves are shown in Fig. 6.

3.3 Results on Dataset-2 after training the model on training set of Dataset-2

There was a huge drop in the model’s performance while making predictions on an exter-
nal dataset using the pre-trained weights. This was because both the datasets (Dataset-1
and Dataset-2) were of entirely different distributions, i.e., taken at different places using
different equipment and of people of different age groups. So, we trained the same model
(without changing any hyper-parameter) on the external dataset and achieved improved
performance. The confusion matrices for the predictions made by our model on the train-
ing, validation, and test sets of the external dataset after training are shown in Fig. 7 and
other derived metrics from these confusion matrices are shown in Table 7. The ROC curves
are shown in Fig. 8.
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Fig.5 Confusion matrix for Dataset-2 after training the model on training set of Dataset-1 (a) Training set
predictions, (b) Validation set predictions and (c) Test set predictions

Table 6 Accuracy, specificity,
precision, recall and F1-score
metrics for our model when
validated on Dataset-2 after

training the model on training set

of Dataset-1

@ Springer

Metrics Training Validation Test Combined
Accuracy (%) 62.30 77.23 82.46 63.69
Specificity 0.35 0.62 0.71 0.37
Precision 0.58 0.78 0.83 0.59
Recall 0.89 0.87 0.89 0.89
Fl-score 0.70 0.82 0.86 0.71
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Fig.6 ROC curves for Dataset-2 after training the model on training set of Dataset-1 (a) Training set pre-
dictions, (b) Validation set predictions, and (c¢) Test set predictions

A comparison of the performance of the model on Dataset-1 (using which its hyper-param-
eters were tuned) and the external dataset (with and without training) is shown in Table 8. It
is evident from Table 8 that our model might not work well on external datasets if they are
of different distribution (acquired by different X-ray machines and of people with different
age groups and geographical locations) as compared to the dataset using which it was trained.
However, when trained on a dataset having similar distribution as the chest x-rays on which
the predictions are to be made, our model predicts pneumonia cases with high accuracy. It is
recommendable that training should be completed on the similar dataset on which testing is
desired. Here, similar dataset means similarity of data acquisition through the X-ray machine,
age group of the patients, and geographical location of the patients, etc. However, it is not
always mandatory to have the similarity in all these conditions. But, more similarity in these
conditions shall improve the accuracy of the detection of pneumonia.
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Fig.7 Confusion matrix for Dataset-2 after training the model on training set of Dataset-2 (a) Training set
predictions, (b) Validation set predictions, and (c¢) Test set predictions

Table 7 Accuracy, specificity,
precision, recall, and F1-score
metrics for our model when
validated on Dataset-2 after
training the model on training set
of Dataset-2
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Metrics Training Validation Test Combined
Accuracy (%) 94.63 89.53 90.15 94.31
Specificity 0.94 0.83 0.81 0.93
Precision 0.94 0.89 0.88 0.93
Recall 0.95 0.93 0.96 0.95
Fl-score 0.94 0.91 0.92 0.94
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Fig.8 ROC curves for Dataset-2 after training the model on training set of Dataset-2 (a) Training set pre-
dictions, (b) Validation set predictions, and (c¢) Test set predictions

4 Discussion

Numerous studies in the field of deep learning have been published that focus on the
automatic detection of pneumonia. The deep learning techniques are well established
and can be used for solving multiple applications in the medical domain [1, 2, 12] as
well as in the non-medical domain [38]. Similarly, image processing techniques are also
available to solve similar kinds of problems to design an automation system using medi-
cal images [10, 11, 27]. There are many advanced schemes to access the relevant data
from different sources [17, 24-26].

Livieris et al. [22] proposed a study that introduced a new ensemble semi-supervised
learning algorithm based on a new weighted voting scheme to classify abnormalities
of lungs from chest X-rays. The pneumonia classification accuracy achieved by their
algorithm was 83.49%. However, the same dataset [19] was used in our experiment also,
and achieved better accuracy from their experiment. It was observed that Livieris et al.
[22] did not mentioned any method to deal with the problem of class imbalance. There-
fore, their model did not achieved precise accuracy in detecting pneumonia. Their accu-
racy may improve if they oversample the minority (normal) class using data augmenta-
tion or any other technique to make the number of examples of normal and pneumonia
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classes equal. However, oversampling is used in our study to avoid the problem of class
imbalance.

Jakhar et al. [16] used deep convolutional neural networks (DCNN) for detecting pneu-
monia from chest X-ray images. They used the dataset from Kaggle [19] which is the same
data as we have used. They tried different classifiers with DCNN to perform the classifica-
tion task but the best results were obtained by using the DCNN model. They used Syn-
thetic Minority Over-sampling Technique (SMOTE) to solve the problem of the imbal-
anced dataset. They performed K-fold cross-validation (K=10) and achieved an accuracy
of 84%. Our model performs better than their model because they didn’t use data augmen-
tation which prevents overfitting and helps in boosting test accuracy.

Togacar et al. [37] had used three pre-trained convolutional neural network models-
AlexNet, VGG-16, and VGG-19 for the task of detecting pneumonia from chest X-rays.
The features extracted by each model were then reduced to 100 by using the maximum
redundancy theorem and concatenated to feed into the classifier. They used the same data-
set as ours and achieved a testing accuracy of 98.21%, which is higher than that achieved
by our model. This may be because they have used three models to extract features, each
of which has a lot more parameters as compared to our model and hence, extract more
information. However, their method is computationally very expensive compared to our
model. Therefore, our model is recommended in such applications which are already very
expensive and need to reduce the significant time. Our model is also helpful in cases where
resources are very limited to use.

Stephen et al. [36] made a convolutional neural network from scratch and trained it for
the task of pneumonia detection from chest X-ray. They used the same dataset as ours and
rearranged it to get 3,722 images in the training set and 2,134 images in the test set. They
achieved a training accuracy of 95.31% and a testing accuracy of 93.73%. We achieved
a training accuracy of 97.34%, a validation accuracy of 87.5%, and a testing accuracy of
94.23% which is significantly higher than that achieved by the model proposed by Stephen
et al. [36]. Stephen et al. [36] had also used data augmentation which helped in achieving
higher testing accuracy. The possible reason for a lower training accuracy may be observed
that they had used a dropout of 0.5 before the dense_5 layer, it can be interpreted that the
drop of the input units of the dense_5 layer is half. However, the dropout also contributed
to preventing overfitting and achieving a decent testing accuracy.

The facts that MobileNet architecture is based on depthwise separable convolution and
uses batch normalization after every layer contribute significantly to its high speed and
less computational power requirement. Other deep learning architectures that are used in
other studies are based on standard convolution, which needs to perform a greater number
of multiplications as compared to depthwise separable convolution and hence, is computa-
tionally more expensive than our proposed model. The model architecture used by Stephen
et al. [36] is purely based on standard convolution. Also, it does not include a batch nor-
malization layer and thus, is slower than our model.

We have proposed a model which can detect pneumonia from chest X-rays with high
accuracy. Furthermore, our model performs well on other metrics (specificity, precision,
recall, and Fl-score) too. The metric on which our model performed the lowest, is spec-
ificity but there is a trade-off between sensitivity (also called recall) and specificity and
for this particular problem of detecting pneumonia, a higher sensitivity is more important
than a higher specificity. This is because failure in detecting the presence of pneumonia is
more dangerous than incorrectly diagnosed with pneumonia. Moreover, since we have used
data augmentation techniques, our model is quite robust. Additionally, as we have used
MobileNet architecture, our model is computationally less expensive and faster than those
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which use architectures like VGG-16, DenseNet-121, Inception, etc. We have also vali-
dated our model on an external dataset using pre-trained model’s weights, which showed
that our model might not work well on external datasets if they are of different distribution
(acquired by different x-ray machines and of people with different age groups and geo-
graphical locations) as compared to the dataset using which it was trained. However, when
trained on a dataset having similar distribution as the chest x-rays on which the predictions
are to be made, our model predicts pneumonia with high accuracy. Thus, the proposed
model can be used without any hyperparameter tuning to predict pneumonia in external
datasets after training. Furthermore, the proposed model can also be applicable for applica-
tions where a number of parameters/variables are very high and want to reduce the training
expenses.

5 Conclusion

We have proposed a fast and computationally less expensive method for automatic detec-
tion of pneumonia. The proposed method is based on MobileNet architecture which is a
lightweight but achieves a promising accuracy compared to the methods in the literature.
This model can be used to predict pneumonia using chest x-rays with high accuracy by
training it on a dataset with similar distribution as the data on which the predictions are to
be made.

In the future, the proposed model can be trained using a large dataset that contains
chest X-ray images of people belonging to different geographical locations and age groups.
Training on such a dataset will be useful in using this model for a large-scale purpose.
Moreover, since the model is very fast and computationally less expensive, it can also be
deployed in a browser or an app.

Data availability The benchmarked dataset is used and the respective source has been provided.

Code availability Code can be made available as per request.
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