
Vol.:(0123456789)

https://doi.org/10.1007/s11042-021-11624-2

1 3

1202: MULTIMEDIA TOOLS FOR DIGITAL T WIN

360◦ real‑time and power‑efficient 3D DAMOT
for autonomous driving applications

Carlos Gómez‑Huélamo1 · Javier Del Egido1 · Luis Miguel Bergasa1 · Rafael Barea1 ·
Elena López‑Guillén1 · Javier Araluce1 · Miguel Antunes1

Received: 2 February 2021 / Revised: 25 August 2021 / Accepted: 23 September 2021 /

© The Author(s) 2021

Abstract
Autonomous Driving (AD) promises an efficient, comfortable and safe driving experi-
ence. Nevertheless, fatalities involving vehicles equipped with Automated Driving Systems
(ADSs) are on the rise, especially those related to the perception module of the vehicle.
This paper presents a real-time and power-efficient 3D Multi-Object Detection and Track-
ing (DAMOT) method proposed for Intelligent Vehicles (IV) applications, allowing the
vehicle to track 360◦ surrounding objects as a preliminary stage to perform trajectory fore-
casting to prevent collisions and anticipate the ego-vehicle to future traffic scenarios. First,
we present our DAMOT pipeline based on Fast Encoders for object detection and a combi-
nation of a 3D Kalman Filter and Hungarian Algorithm, used for state estimation and data
association respectively. We extend our previous work ellaborating a preliminary version
of sensor fusion based DAMOT, merging the extracted features by a Convolutional Neu-
ral Network (CNN) using camera information for long-term re-identification and obsta-
cles retrieved by the 3D object detector. Both pipelines exploit the concepts of lightweight
Linux containers using the Docker approach to provide the system with isolation, flexibility
and portability, and standard communication in robotics using the Robot Operating System
(ROS). Second, both pipelines are validated using the recently proposed KITTI-3DMOT
evaluation tool that demonstrates the full strength of 3D localization and tracking of a
MOT system. Finally, the most efficient architecture is validated in some interesting traffic
scenarios implemented in the CARLA (Car Learning to Act) open-source driving simula-
tor and in our real-world autonomous electric car using the NVIDIA AGX Xavier, an AI
embedded system for autonomous machines, studying its performance in a controlled but
realistic urban environment with real-time execution (results).

Keywords Real-time · CARLA · LiDAR · 3D multi-object tracking · ROS · DAMOT ·
Autonomous navigation

 * Carlos Gómez-Huélamo
 carlos.gomezh@edu.uah.es

Extended author information available on the last page of the article

Published online: 8 January 2022

Multimedia Tools and Applications (2022) 81:26915–26940

http://orcid.org/0000-0002-3819-3747
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-021-11624-2&domain=pdf

1 3

1 Introduction

Autonomous Driving Systems (ADSs) have to perform safe driving behaviours following
conventional traffic rules to achieve a programmed destination.1 In that sense, the percep-
tion layer is one of the most important modules of an AD stack, responsible of analyzing
the online information, also referred as the traffic situation, through the use of a global
perception system [12] which involves different on-board sensors as: Inertial Measure-
ment Unit (IMU), Light Detection And Ranging (LiDAR), RAdio Detection And Rang-
ing (RADAR), Differential-Global Navigation Satellite System (D-GNSS), Wheel odom-
eters or Cameras. Regarding this, one of the most fundamental tasks in perception systems
for AD is the capacity of tracking the most relevant obstacles (traffic participants) around
the vehicle, also known as Multi-Object Tracking (MOT). A real-time and power-efficient
MOT system is essential for self-driving, representing in most cases the preliminary stage
before the prediction of the trajectory of the most relevant obstacles in the scene, allowing
the car a reaction time to avoid critical situations or to anticipate its behaviour for the cor-
responding traffic scenario.

MOT systems aim to estimate the location, orientation and scale of all objects in the
field of view of the vehicle over time. While object detection only captures the informa-
tion of the environment in a single frame, a tracking system, which actually represents the
next stage in the perception layer, must consider temporal information, filtering outliers
(also referred as false positives) in consecutive detections and being robust to full or partial
occlusions. Then, after tracking the most relevant obstacles in the environment (both static
and dynamic), the vehicle can use this evolution of the scene over time to infer motion pat-
terns and driving behaviour for trajectory forecasting (last stage of the perception module).

On the other hand, with the increase in object detection (especially in 3D object detec-
tion) performance in the last years has allowed the research community, especially those
groups related to ADS, to focus on the tracking-by-detection [6] topic, which has become
the dominant paradigm in 3D MOT. Essentially, in this paradigm a MOT system is made
up by an object detector and a data association algorithm to establish the tracking-by-detec-
tion correspondence. The scope of this paper is to design a real-time and power-efficient
3D Multi-Object Tracking system as depicted in Fig. 1, based on the tracking-by-detection
paradigm, for Intelligent Vehicles (IV) applications. This paper is an extension of our previ-
ous conference publication [7]. In this previous work, our results were limited to the analysis
of our 3D MOT pipeline using the KITTI-3DMOT evaluation tool, based on [42], whilst
in the present work we compare against more state-of-the-art methods and also introduce a
preliminary version of our sensor fusion based DAMOT, merging the features extracted by
a Convolutional Neural Network (CNN) using camera information for long-term re-identifi-
cation and the obstacles retrieved by the 3D object detector. Despite we get some promising
results incorporating the re-identification concept for long-term occlusion, specially in ter,
the fusion in this preliminary version is not yet good enough to beat the metrics [2] obtained
by our previous 3D object detection-only MOT pipeline. Implementing the most efficient
pipeline in our real-world prototype is also part of this extension. To summarize, the new
contributions extending our previous work are as following:

1 https:// cutt. ly/ Xkuyp cH

26916 Multimedia Tools and Applications (2022) 81:26915–26940

https://cutt.ly/XkuypcH

1 3

– We carry out a comparison of different LiDAR based 3D object detectors with
different types of input (voxel-based, point-based or combination) to analyze the
tradeoff between Average Precision and Frequency (Hz).

– We introduce a sensor fusion based DAMOT, merging the extracted features by a
Convolutional Neural Network (CNN) using camera information for long-term re-
identification and obstacles retrieved by a LiDAR based 3D object detector.

– Implementation of our final DAMOT configuration in a power-efficient embedded
system for real-world operation in an electric vehicle.

The remaining content of this work is organized as follows. The next section presents
a review of the tracking-by-detection paradigm, covering both the concepts of vision
and laser based 3D/Bird’s Eye View (BEV) scene understanding in terms of Multi-
Object Tracking. Section 3 illustrates a comparison of different 3D object detectors
[40], presents our 3D object detection-only MOT pipeline and a preliminary version
of our fusion with camera using re-identification. Section 4 compares both pipelines
using the KITTI-3DMOT evaluation tool and implements the most accurate in our
modular architecture [13] both in the CARLA (Car Learning to Act) [8] simulator and
our autonomous electric car (see Fig.1b), in particular in an AI embedded system for
autonomous machines such as the NVIDIA Jetson AGX Xavier (Fig. 1a). Finally, sec-
tion 5 deals with the future works and concludes the paper.

Fig. 1 (a) Our real-time and
power-efficient MOT proposal
running on the NVIDIA Jetson
AGX Xavier embedded system
(b) Our autonomous electric
vehicle

26917Multimedia Tools and Applications (2022) 81:26915–26940

1 3

2 Related works

A Multi-Object Tracking system is basically divided in two sequential stages: First, an
object detector must obtain the most relevant obstacles in the scene. Second, a tracking
module, based on a combination of state estimation and data association techniques, is
used to track over time the obstacles throughout the scene. Many different technologies
have been designed to accomplish an optimal environment detector following different
approaches, based on different benchmarks such as KITTI [11], which provides manual
labeled data from urban scenes taken from different cameras and LiDAR mounted on a
vehicle. In this section we briefly cover the concepts of 3D scene understanding using both
cameras and LiDAR.

2.1 Vision‑only 3D object detection

Given their availability, widespread and affordability, cameras [47] are commonly used
by nearly all algorithms presented so far as the primary perception modality. Neverthe-
less, in vision-based algorithms, object detection occurs in the projected image space in
such a way the scale of the scene is unknown. In that sense, in order to make use of this
valuable information for dynamic driving tasks (such as the position of pedestrians, traffic
light or road infrastructure), it is required to bridge the gap from the 2D space (image) to
3D (metric or real-world). To do that, depth estimation is necessary, traditional methods
use stereo cameras [9] or multi-view cameras to compute a pseudopointcloud by means
the correspondence problem, in which 3D information can be extracted by examining the
relative positions of objects in two different images. However, this image matching prob-
lem is expensive computationally, which adds an important amount of processing cost to
an already complex perception pipeline. On the other hand, Machine Learning (ML) has
recently taken over vision-only 3D object detection methods. These ML methods (based
on a 3D occupancy grid called voxel grids) have also notably been applied to RGB-D [38]
giving rise to similar, but coloured, pointclouds, though their range is limited and unre-
liability outdoors make RGB-D inpractical for AD applications. Shortly thereafter, 3D
scene understanding through Deep Learning based algorithms is possible by processing
the information using Convolutional Neural Networks (CNN) followed by applying com-
plex projection transforms as in [17, 28] or [23], which first regresses relatively stable 3D
object properties using a Deep CNN and then combines these estimates with geometric
constraints provided by the corresponding 2D bounding box to produce a complete 3D
bounding box. In this context, GPUs may be used to reduce computational cost, getting
well processing time values. Minor pixel mistakes in image detection may produce mean-
ingful differences between the 3D bounding box estimation and reality when the object is
at a relevant distance.

2.2 3D LiDAR object detection

In contrast to vision-based 3D Object Detection, detecting the bounding boxes directly
in 3D has the potential to design the appearance and motion models in 3D space with-
out perspective distortion [42], instead of detecting the obstacles in image plane and then
retrieving their remaining 3D information. 3D LiDAR sensors provide accurate 3D infor-
mation, avoiding precision problems when positioning the objects in the three-dimensional
space, as well as avoiding to well-known associated problems to cameras, such as their

26918 Multimedia Tools and Applications (2022) 81:26915–26940

1 3

poor performance with adverse weather (deep night or fog) or challenging light conditions.
Naturally, the quality of the detected bounding boxes is essential for the final tracking accu-
racy. Modern LiDAR based 3D object detection approaches usually belong to one of the
following two categories [4] or a combination: Point- or Voxel-based. Regarding point-
based methods do not required this quantization step, but they directly apply PointNet++
[27] on the input point cloud for detecting the objects in the 3D space. On the other hand,
voxel-based methods divide the input point cloud (3D space) into equally-sized 3D voxels
to generate 3D feature tensors based on the points inside each voxel. Then, the feature ten-
sors are fed to 3D CNNs to predict the position of the bounding boxes. In this work we
use PointPillars [19], a voxel-based state-of-the-art 3D object detector, due to its compu-
tational efficiency. This end-to-end network analyzes the raw point cloud by clustering it
into upright columns to process the data as a 2D pseudo-image in such a way that highly
efficient 2D convolutions can be applied on GPU, not requiring performing a fine-tuning
process to improve the quality of the network parameters. We trained it by using the KITTI
[11] Multi-Object Tracking dataset, containing information of vehicles, cyclists and pedes-
trians in arbitrarily complex urban environments.

2.3 2D multi‑object tracking

Both 2D and 3D MOT systems can be divided into two branches based on the way data
association is performed: Batch and online methods. While batch methods aim to find the
global optimal solution by using the whole sequence, using network flow graphs that can be
solved by minimum cost flow algorithms [33, 48], online methods consider the data asso-
ciation as a bipartite graph matching problem traditionally solved by a HA. Modern online
methods solve the matching problem using deep association networks [41, 45], which
are able to compute the association using neural networks. On the other hand, regardless
the data association process, the design of a proper cost function for affinity measure is a
crucial step to the MOT system. Some works employ hand-crafted features [26, 48] like
color histograms and spatial distance as the cost function. Recent works apply the motion
model and learn the appearance features [5, 44] to avoid identity switching when crossing
trajectories.

2.4 3D multi‑object tracking

As commented above, most 3D MOT systems present the same features than 2D pipeline.
The point is, as expected, the detection stage. Regarding motion estimation and trajectory
prediction, analyzing the scene with a 3D object detector has the potential to design the
appearance and motion models in 3D space without perspective distortion, that is, a 3D
MOT pipeline allows the system to estimate real velocity, undistorted by bi-dimensional
transformations, being able to perform predictions based on linear and angular velocities
and precise location and size information. Some works attempt to address this problem
from different perspectives. [25] and [14] use an Unscented Kalman Filter (UKF) and a
standard Kalman Filter in the BEV space to estimate both the linear and angular velocity
of the obstacles, which is usually good enough for IV applications, preventing the track-
ing system to experience object occlusion and being computationally more efficient. [31]
proposes an image-based method that estimates the position of objects in image plane as
well as their distance to camera in 3D. Then, a Poisson Multi-Bernoulli Mixture (PMBM)
filter is applied to estimate the velocity of the obstacles in the 3D space. Complexer-yolo

26919Multimedia Tools and Applications (2022) 81:26915–26940

1 3

[37] presents a novel fusion of Deep Learning based state-of-the-art 3D object detection
and visual semantic segmentation in the context of AD, processing voxelized input features
with a variable depth of dimension instead of fixed RGB-maps to perform MOT and real
3D prediction. [1, 10] employ Siamese networks to learn the corresponding filters from
data instead of using hand-crafted filters. [24] proposes the state estimation using a 2D/3D
KF to jointly utilize the observation from the image and 3D world.

3 Our approach

As stated above, the goal of a 3D MOT pipeline is to associate the detected 3D bounding
boxes over time. Previous works use relatively complicated filters to predict, in an accurate
way, the spatial features of the obstacles in the scene. Our method, illustrated in Fig. 3 uses
[42] as baseline, in which only the detection at the current frame and associated trajec-
tories from the previous frame are required, which employs a 3D KF for tracking, where
each obstacle state includes the 3D centroid position, rotation angle and 3D bounding box
dimensions, excluding the angular velocity. Nevertheless, according to the original [42],
the tracking stage is fed by a batch with all the results of the 3D object detector through-
out the whole scene, which does not match with real-time requirements. In our case, our
final objective is to implement the system in a power-efficient embedded system, so actual
real-time operation is required, creating or removing tracklets (trackers associated to the
corresponding objects) along the sequence in order to get a better perspective of what is
happening around the ego-vehicle. Moreover, in this section we extend our previous work
[7] by studying different 3D object detectors from the OpenPCDet [40] framework for the
detection stage, as well as implementing a preliminary version of sensor fusion incorpo-
rating long-term re-identification with camera information. In that sense, both pipelines
merge the concepts of online and real-time DATMO (Deteccion and Tracking of Multiple
Objects), standard communication in robotics using the Robot Operating System (ROS)
[29] and lightweight Linux containers using Docker [22] to enhance the integration of our
MOT systems in fully-autonomous driving architectures [12].

3.1 3D object detection

The first step our MOT algorithm must carry out is to detect the bounding boxes of the
most relevant obstacles in the environment around the vehicle. We study and run (Table 1)
different Deep Learning (DL) based 3D object detectors from the OpenPCDet [40] frame-
work, considering both the average precision for each class and the frequency. Recently,
several neural networks have been applied to analyze the most relevant traffic participants,
such as vehicles, cyclists and pedestrians. As commented above, the most typical classifi-
cation of DL based 3D object detectors is point-based [34, 36], voxel-based [19, 46], which
require preprocessing of the pointcloud, or a combination of both techniques [35]. Based
on the PointNet [27] backbone (which analyzes the pointcloud using the detections com-
puter over the image plane), [34] was the first neural network to analyze the raw point-
cloud without preprocessing to obtain accurate 3D bounding boxes. It divides the cluster-
ing in two stages, being the former (Bottom-up 3D proposal Generation) responsible of
studying the association of a laser point to a particular object and the latter (Canonical 3D
box refinement) computes other features on top of the location of every point such as the
location to the sensor to compensate the lower accuracy for further points. Part-A2 [36]

26920 Multimedia Tools and Applications (2022) 81:26915–26940

1 3

improves the results obtained by PointRCNN focusing on the rays of the sensor that may
impact the interior of the vehicle (for example, going through a windscreen) instead of the
exterior of the vehicle. This network also presents two stages: The former extract the main
features of the object, learning to estimate the interior points of the vehicle while generat-
ing 3D proposals that fit the object. The latter, responsible of encoding the points to iden-
tify the objects, may present to behaviours: anchors-free, saving computational time, or
using anchors in order to retrieve the best bounding boxes, as illustrated in Table 1.

On the other hand, we have the voxel-based object detectors. In 3D computer graphics,
a voxel represents a value on a regular grid in three-dimensional space. In that sense, SEC-
OND [46] discretizes the pointcloud in voxels with the final objective of condensing the
whole information from the point cloud into a smaller number of points, keeping the detec-
tion precision but with a remarkably reduced inference time. This network presents four
stages in row to process the pointcloud and return the classifier, box regressor and direction
classifier: Voxel Features and Coordinates , Voxel Feature Extractor, Sparse Conv Layers
and RPN. The first stage discretizes the pointcloud as a set of voxel computing and com-
puting the number of original points that are stored for each voxel. Then, a neural network
extracts the features from each point and voxel, encoding the information in a single vector.
The third stage carrries out the convolutions to transform the three-dimensional informa-
tion into the Bird’s Eye View (BEV) image plane, also referred as pseudo-image. Finally,
SECOND presents a Region Proposal Network (RPN) that analyzes the feature maps to
generate the 3D bounding boxes that fit the corresponding objects. Furthermore, PointPil-
lars [19] continues the work proposed by SECOND, being made up by three sequential
stages: The first one (Pillar Feature Net) clusterizes the original pointcloud in upright col-
umns. The XYZ information and the reflectance of each point, in addition to the distance
of each point to the geometric center of the pillar and the geometric center of the pillar
itself, are employed to encode the information of each pillar in a 9-dimensional vector.
Then, a bi-dimensional image in the BEV plane is obtained (2D pseudo-image). The sec-
ond stage (Backbone - 2D CNN) uses 2D convolutions applied on GPU to process this
BEV pseudo-image in a similar way to VoxelNet [51] and finally the third stage (Detection
Head - SSD) retrieves the 3D bounding boxes that fits the detected objects.

Finally, PV-RCNN [35] proposes a combination between both approaches (raw point-
cloud and discretized pointcloud). First, it discretizes the pointcloud in voxels, applies 2D
convolutions and proposes 3D bounding boxes that contain the corresponding objects, in
a similar way to SECOND and PointPillars. Second, a set of keypoints are identified from

Table 1 Comparative of LiDAR based 3D Object detectors in the KITTI validation set. We bold the best
results in black for each metric and in blue the metrics of our chosen proposal

Method Type Frequency Car Pedestrian Cyclist
of input (Hz) (AP) (AP) (AP)

PointPillars [19] Voxel 41.7 86.46 57.75 80.057
SECOND [46] based 19.8 88.61 56.55 80.59
PointRCNN [34] 6.3 88.94 61.89 85.01
PointRCNN-IoU [34] Point 6.3 89.01 62.69 87.48
Part-A2-Free [36] based 5.6 89.12 70.31 87.65
Part-A2-Anchor [36] 7.5 89.56 65.69 85.50
PV-RCNN [35] Combination 4.6 90.35 63.12 88.34

26921Multimedia Tools and Applications (2022) 81:26915–26940

1 3

the retrieved 3D bounding boxes which are used in the final fine-tuning stage to predict the
final shape of the bouding box. In that sense, this object detector leverages the efficiency
of discretizing the pointcloud in voxels to improve the performance of the network, whilst
it preserves the pointcloud without preprocessing to keep the accuracy of the information.

Table 1 shows an analysis of the previously mentioned 3D object detectors, we ran
them over the KITTI [11] validation test in our PC desktop (Intel Core i7-9700k, 32GB
RAM with CUDA-based NVIDIA GeForce RTX 2080 Ti 11GB VRAM) for the class Car,
Pedestrian and Cyclist, which are the main classes evaluated by KITTI, and actually the
vast majority of road participants in a standard traffic scenario. As it may be observed, PV-
RCNN results beat the performance of the other object detectors, specially in terms of car.
However, the system is relatively complex, specially in the non-processed pointcloud stage,
so its frequency of execution (4.6 Hz) is almost four times slower than SECOND (19.8
Hz) and nine times slower than PointPillars. Then, considering that this work is focused on
autonomous driving, in which the perception systems are expected to work at frequency of
at least 10 Hz, we choose PointPillars for object detection, since it presents the best tradeoff
between accuracy and real-time operation. Fig. 2 shows the different Precision vs Recall
curves obtained with PointPillars in the KITTI validation test for the Car, Pedestrian and
Cyclist class respectively, being clearly focused on the car class.

At a given frame t, the detections provided by PointPillars are given in the following
form:

Where f is the number of detected 3D bounding boxes at a given frame and threshold. Each
detection in eq. 1 is represented as a 9-dimensional vector:

Where x,y,z correspond to the object centroid in LiDAR coordinates, l,w,h correspond to
the length, width and height of the object respectively, � its orientation angle around the
LiDAR Z-axis, the object type (according to KITTI format) and detection confidence.

3.2 3D kalman filter ‑ object state prediction

Once we have each 3D detection as shown in eq. 2, a 3D Kalman Filter is used to track the
objects. Since the average frame rate of PointPillars is above 50 fps, rather than the threshold
recommended for perception systems in IV applications (10 Hz), real-time is considered at the

(1)��� t = [���1
t
,���

2

t
, ...,���

f

t]

(2)���
i
t
= [x, y, z, l,w, h, �, type, score]

Fig. 2 Precision vs Recall curves obtained with PointPillars in the KITTI validation test for the (a) Car ,(b)
Pedestrian and (c) Cyclist class, respectively

26922 Multimedia Tools and Applications (2022) 81:26915–26940

1 3

detection module in such a way the inter-frame displacement of the objects can be approxi-
mated by using the constant velocity model, which is independent of other objects in the scene
and of the LiDAR motion. Regarding this, the estimation of the measured variables in the fol-
lowing frame are:

It is important to note that unlike [42], we do include the angular velocity of the vehicle
in the state space v

�
 in order to predict the future trajectories of the vehicle considering

a CTRV model (Constant Turn rate and Velocity magnitude model), which requires both
the angular and linear velocity of the vehicle. Then, the state of each object trajectory is
modelled as:

As observed in Fig. 3, at every frame, a tuple �� t = [��1
t
,��

2

t
, ...,��

g

t] , with length g is
calculated, where each element corresponds to an association between a detection and a
trajectory tracker. Then, based on the associations of the previous frame and the constant
velocity model, the tuple �� t̂ is calculated, where each element corresponds to the pre-
dicted trajectory (�� j

t̂
) in the current frame t expressed as:

x(t̂) = x(t) + vx

y(t̂) = y(t) + vy

z(t̂) = z(t) + vz

𝜃(t̂) = 𝜃(t) + v
𝜃

(3)��
j

t = [x, y, z, �, l,w, h, vx, vy, vz, v�]

Fig. 3 3DMOTsystempipeline: (1) 3D object detection module provides the detected bounding boxes at
frame t from the raw LiDAR pointcloud using ROS communications; (2) A 3D Kalman Filter predicts
the state of trajectories in frame t-1 to current frame t̂ throughout the prediction step; (3) the detections at
frame t and predicted trajectories at t̂ are matched using the Khun-Munkres (a.k.a Hungarian) algorithm;
(4) matched trajectories are updated based on their corresponding matched detections to obtain update tra-
jectories at frame t; (5) Unmatched trajectories and detections are used to delete disappeared trajectories or
create new ones respectively; (6) Matched predicted trajectories are returned to the system using ROS com-
munications

26923Multimedia Tools and Applications (2022) 81:26915–26940

1 3

Then, the set of detections at frame t and the predicted trajectories based on the previ-
ous frame t-1 associations represent the input to the data association module at frame t , as
shown in Fig. 3.

3.3 Data association

To associate the detections ��� t and the predicted trajectories �� t̂ , the Khun-Munkres
algorithm [18] (also referred as Hungarian algorithm) is used, a simple but accurate data
associations algorithm. The resulting affinity matrix presents f rows (number of detec-
tions at frame t) and g columns, which correspond to the number of predicted trajecto-
ries based on the information of frame t − 1 . Each element of the matrix corresponds to
the 3D-IoU between every pair of predicted trajectory and detection. Then, the bipartite
graph matching problem is solved using the Hungarian algorithm, rejecting the matching
if the 3D-IoU is lower than a given hyperparameter IoUth , giving rise to a set of matched
detections (���matched) and predicted trajectories (��matched) (both sets present the same
number of elements, h, that is, the number of matches), as well as a set of unmatched
detections (���unmatched), where n = f − h is the number of unmatched detections, and a
set of unmatched trajectories (��unmatched), where m = g − h is the number of unmatched
trajectories.

3.4 3D kalman filter ‑ object state update

As observed in Fig. 3, once we have the corresponding sets of matched detections and
trajectories, based on the Kalman Filter prediction-update cycle, the state space of each
trajectory is updated based on its corresponding matched detection. To do that, we use
the weighted average [16] between the matched detection values and the state space of
the trajectory tracker. On the other hand, in the same way that [42], we appreciate that this
state update step does not work properly for obstacle orientation. The reason is simple:
Since the object detector is based on point cloud and no vision information is included, the
object detector cannot distinguish if the obstacle is rotated a certain angle � or � + �

2
 around

its Z-axis. That is, the orientation may differ by � in two consecutive frames. Then, if no
orientation correction is applied, the Kalman Filter associated to the tracker can get easily
confused, since it tries to adapts itself to the new orientation value rotating the object by
� in following frames, giving rise to a low 3D-IoU value between new detections and pre-
dicted trajectories. Nevertheless, considering the high frequency of our object detector, we
assume that obstacles must move smoothly and their orientation cannot be modified by � in
one frame, in such a way when this happens the orientation of the corresponding matched
detection or matched tracker can be considered wrong. To solve this problem, our detection
module only considers angle from 0 to � (that is, if an angle exceeds � , � is substracted to
the retrieved angle). Then, if the difference of orientation between a given matched detec-
tion and its corresponding matched trajectory is greater than �

2
 , as stated before, either the

orientation of the detection or the orientation of the tracker is wrong. Then, we add � to the
orientation of the tracker with the aim to be consistent with the matched detection.

(4)��
j

t̂
= [x(t̂), y(t̂), z(t̂), 𝜃(t̂), l,w, h, vx, vy, vz, v𝜃]

26924 Multimedia Tools and Applications (2022) 81:26915–26940

1 3

3.5 Deletion and creation of track identities

When obstacles enter and leave the LiDAR grid, unique identities must be created or
destroyed accordingly. In most tracking algorithms this is referred as the B/D (Birth and
Death) Memory, which is based on the set of unmatched trackers and detections provided
by the data association algorithm, where the unmatched trackers represent potential objects
leaving the LiDAR grid, in the same way that unmatched detections represent potential
objects entering in the analyzed environment. In order to avoid tracking of false positives
(that is, clusters in the point cloud that actually do not represent a relevant obstacle, such a
vehicle or a pedestrian), a new trajectory is not created until the unmatched detection has
been continuously detected in the next fmin frames. Then, the tracker is initialised with the
features of the detected bounding box, and the associated velocities set to zero. Note that,
as stated in [3], since the velocity associated to the measured variables is unobserved at
this moment (i.e., tracker initialization), the covariance initialises the value of the veloci-
ties (in the present work, vx, vy, vz, v�) with large values, reflecting their uncertainty. To
avoid removing true positives trajectories from the scene, they are not deleted unless they
are not detected during amax consecutive frames. This assumption prevents an unbounded
growth in the number of localisation errors and trackers due to predictions over long dura-
tion where the object detector does not provide any correction. As shown in Fig. 3, the
inputs to the Matched Trackers module are the updated matched trajectories from the 3D
Kalman Filter and a set of created and deleted trackers, which jointly represent the input
trajectories for the prediction step in the next frame.

3.6 Long‑term re‑identification

The previous points of this section represent the workflow illustrated in Fig. 3, which is
summarized on the combination of a powerful 3D object detector and the Simple Online
and Real Time [3] algorithm. As observed, our first pipeline represents a lean implemen-
tation of a tracking-by-detection framework for the problem of MOT where objects are
detected in each frame and represented as bounding boxes. However, while achieving over-
all good performance in terms of accuracy and tracking precision, the SORT algorithm
returns a high number of identity switches since the employed association metric is only
accurate when state estimation uncertainty is low, for example, in the presence of a fast
object detector, or when the scene does not present quite common situations such as occlu-
sions or false negatives due to weather conditions (either considering camera or LiDAR
information). To overcome this drawback, we propose a preliminary second version of our
pipeline, where sensor fusion is added in order to improve the reliability of our system, in
particular incorporating camera information.

The aim of sensor fusion is to use the advantages of each sensor so as to improve the
robustness and redundancy of the system, being confident even if the performance of a
particular sensor is noticeable reduced due to the road conditions. In the this second pipe-
line we try to solve problem of long-term occlusions or false detections due to road condi-
tions incorporating Re-ID (Reidentification) to our second pipeline (Fig. 5). In particular,
we make use of the DeepSORT [44], which is one of the most widely and elegant Visual
Object Tracking (VOT) frameworks, as an extension of the SORT algorithm, depicted in
Fig. 4. In summary, considering the VOT task, given an input image and a 2D object detec-
tor which returns the most relevant obstacles of the image, the DeepSORT algorithm uses

26925Multimedia Tools and Applications (2022) 81:26915–26940

1 3

this bounding box information between the projection of the track distribution (Kalman
Filter) and bounding boxes detection to compute the Mahalanobis distance (motion metric)
between them. On the other hand, DeepSORT incorporates a CNN based feature extractor
to replace the simple association metric formulated in SORT by a more informed met-
ric that combines appearance information (fundamental for long-term re-identification)
and motion information. The idea of this CNN based feature extractor is to compute a
128-dimensional feature vector for each detected bounding box. Then, by using a weighted
sum of these motion and appareance metrics, DeepSORT is able to deal with long-term
occlusions and predict in a very accurate way the feature pose of tracked objects.

We do not compute Visual Object Tracking using camera information since tracking
objects in the 2D image plane and then retrieving the remaining 3D information present per-
spective distortion, even if the information is fused with a depth map prone to failure over long
distances. In contrast, as observed in Fig. 5, using the corresponding calibration matrices the
3D bounding boxes are projected into the RGB image plane. On the other hand, 2D object
detections are returned by our object detector (in this case, CenterNet [50] and then a 2D-IoU

Fig. 4 Our Visual-Object Tracking flowchart based CenterNet [50] as object detector and DeepSORT as the
tracking-by-detection algorithm

Fig. 5 3D MOT system pipeline with long − term re − id : Additional implementation over the pipeline
illustrated in Fig. 3. In this case, we project the 3D object detections in the image plane at frame t, and
2D-IoU is computed between these projections and the 2D detections. Feature extraction is computed for
each obstacle which IoU > IoUDS , incorporating this information to the 3D Kalman Filter for long-term re-
identification

26926 Multimedia Tools and Applications (2022) 81:26915–26940

1 3

is computed between the 3D projections and the 2D detections. The CenterNet algorithm is a
CNN that detects each object as a triplet (topleft corner, center estimation and bottom-right
corner), rather than a pair (only the corners) of keypoints, which improves both precision and
recall. This technique is based on the CornerNet approach [20]. CornerNet represents each
object by a pair of corner keypoints, which bypassed the need of anchor boxes and achieves the
state of-the-art-one-stage object detection accuracy. Nevertheless, the CornerNet performance
is restricted by its relatively weak ability of referring to the global information of an object. On
top of that, since each object bounding box is constructed by a pair of corners, the algorithm
is sensitive to detect the boundary of objects so not being aware of which pairs of keypoints
should be grouped into objects. This weakness gives rise to some incorrect bounding boxes,
most of which could be easily filtered out with complementary information, such as the aspect
ratio. To address this weakness, CornerNet is equipped with the ability of perceiving the vis-
ual patterns within each proposed region in order to identify the correctness of each bounding
box by itself. In that sense, CenterNet is a variation of CornerNet that explores the central
part of a proposal (region that is close to the geometric center) with one extra keypoint. The
statement is very simple: If a predicted bounding box has a high IoU (Intersection over Union)
with respect to the groundtruth box, then, the probability that the center keypoint in its central
region is predicted as the same class id is high, and vice versa. In other words, if is determined
if the proposal is indeed an object by checking if there is a center keypoint of the same class
falling within its central region. Since the approach only pays attention to the center informa-
tion, the cost in minimal. In summary, we use CenterNet as our 2D object detector since it
is simple (uses a keypoint detection technique to detect the bounding box center point and
regress to all other object properties such as bounding box, pose or 3D information), versatile
(works for standard object detection, multi-person pose estimation with minor modification
and 3D bounding box estimation), fast (the whole process is included in a single network feed-
forward) and strong (the best single model achieves 45.1 AP (Average Precision) on COCO
test-dev). Moreover, it is important to consider that defining the bounding box and detecting
the object largely depends on the size of the associated central region. For example, smaller
central regions lead to a low recall rate for small bounding boxes, while larger central regions
lead to a low precision for large bounding boxes. Both in simulation and of course in the real-
world, an object must be tracked (and so previously detected) until it disappears from scene.
Even if it is at a certain distance (small size in the scene) but still on-road, it must be detected
since is relevant. In that sense, CenterNet is excellent because it proposes a scale-aware cen-
tral region to adaptively fit the size of bounding boxes. The scale-aware central region tends
to generate a relatively large central region for a small bounding box, while a relatively small
central region for a large bounding box. Once 2D detections and image-projected 3D bound-
ing boxes are matched using the Intersection-over-Union (IoU) metric, those bounding boxes
with IoU value greater than a certain threshold IoUDS are accepted and feature extraction is
computed, in order to incorporate this 128-dimensional vector to the 3D object information for
long-term re-identification, but maintaining the tracking in the 3D space to avoid perspective
distortion.

4 Experimental results

In order to evaluate our proposed 3D DAMOT pipelines before implementing in our
real prototype, we use the KITTI dataset, which provide LiDAR point cloud and 3D
bounding box trajectories. Nevertheless, as the KITTI test set only supports 2D MOT

26927Multimedia Tools and Applications (2022) 81:26915–26940

1 3

evaluation (3D tracklets are projected onto the image plane for MOT evaluation using
the corresponding calibration matrices) and its groundtruth is not released to users, the
KITTI val set must be used for 3D MOT evaluation. Moreover, the evaluation is carried
out using the MOT evaluation tool proposed by [42] also referred as KITTI-3DMOT.
Mainstream metrics applied to MOT systems are extracted from CLEAR MOT met-
rics [2], such as MOTA (Multi-Object Tracking Accuracy), MOTP (Multi-Object Track-
ing Precision), ML/MT (Number of Mostly Lost / Tracked trajectories), IDS (Number
of identity swutches), FRAG (Number of fragmentations generated by false negatives)
and FN/FP (Number of false negatives / positives). The two most important metrics are
MOTP and MOTA:

MOTP measures the precision by analyzing the total error in the estimated position
for each object and its associated ground-truth.

On the other hand, MOTA considers all errors made by the system, such as false positives,
false negatives and identity switching.

where numgt is the number of ground truth objects in all frames.
Nevertheless, these metrics analyze the DAMOT system performance at a given

threshold, not taking into account the confidence provided by the object detector and
possibly misunderstanding the capability of the method. That means they do not take
into account the full spectrum of precision and accuracy over different thresholds.
Moreover, these traditional metrics evaluate the performance of the MOT system on
the image plane (by projecting the detected 3D bounding box onto the image plane),
which does not demonstrate the full strength of 3D DATMO. In that sense, AB3DMOT
[42] recently presented a 3D extension of the KITTI 2D MOT evaluation, known as
KITTI-3DMOT, which focuses on the dimensions, orientation and centroid position of
the 3D bounding box instead of the projection onto the image plane to evaluate the per-
formance of the MOT system. Moreover, two new integral MOT metrics are introduced
in order to solve the problem of evaluating the MOTA and MOTP of the system across
all thresholds, known as AMOTA and AMOTP (Average MOTA and MOTP), as shown
in eq. 7:

Where L is the number of different recall values. Note that IDS, FP and FN are modified
according to the results of each threshold value. Likewise, AMOTP can be estimated by
integrating MOTP across all recall values.

4.1 3D MOT pipelines evaluation

We compare our two proposed DATMO pipelines (the former, 3D SORT, based on a Deep
Learning object detector and the SORT algorithm extended to the 3D space, and the latter,

(5)MOTP =
d

numgt

(6)MOTA = 1 −
FP + FN + IDS

numgt

(7)AMOTA =
1

L

∑

{
1

L
,
2

L
,...,1}

(1 −
FP + FN + IDS

numgt

)

26928 Multimedia Tools and Applications (2022) 81:26915–26940

1 3

3D DeepSORT, including sensor fusion with camera and a feature extractor to achieve
long-term re-identification) against modern open-sourced 3D MOT systems such as
mmMOT [49], FANTrack [1] and Monocular3D [43] using the proposed KITTI-3DMOT.
Results are observed in Table 2. Note that these results were obtained with default values
of the hyperparameters in the tracking stage (agemax = 1, minhits = 1, IoUthr = 0.1). For a
deeper information of these hyperparameters, we refer the reader to the next subsection.

We can observe that our proposed 3D MOT systems outperform other modern 3D
MOT systems (mmMOT, FANTrack and Monocular 3D), in particular 3D SORT using
PointPillars as 3D object detector. Our second system (3D DeepSORT) presents slight
errors when incorporating the camera information and the feature extraction and must be
improved, specially in terms of identity switching and false negatives which directly affect
to the MOTA and AMOTA metrics, in such a way a deeper analysis of the fusion process
between the 3D projected bounding boxes and 2D object detections, as well as the incor-
poration of the encoded detector for long-term re-identification, must be conducted. In that
sense, our final configuration for this work is the classic 3D SORT algorithm fed by the
detections provided by PointPillars.

4.2 Ablation study over 3D SORT

Once we decide to implement the 3D SORT pipeline in our real-world prototype, we carry
out an ablation study that allows us to observe the performance in function of the tracking
hyperparameters. These are:

– agemax : Maximum number of frames for a tracker (Kalman Filter) to be associated again
to a certain detection

– minhits : Minimum number of consecutive frames in which a tentative tracker must be
associated to a detection to be considered as an actual tracker

– IoUthr : Threshold to match a predicted trajectory and a detection in the data association
module

Table 3 shows an ablation study by modifying these parameters. With a threshold IoUthr
of 0.01 we get quite similar results in terms of MOTA and MOTP, decreasing by 36 %

Table 2 Comparative of 3D Multi-Object Tracking pipelines using the KITTI-3DMOT evaluation tool in
the validation set (car class) using the traditional pipeline and incorporating long-term re-identification
using camera information. We bold in black the best results for each category

Method AMOTA AMOTP MOTA MOTP IDs
(%) (%) (%) (%)

3D DeepSORT (Ours) 27.84 69.09 79.87 84.13 43
3D SORT [42] 39.90 79.31 94.20 82.06 150
using PointPillars [19] (Ours)
mmMOT [49] 33.08 72.45 74.07 78.16 10
FANTrack [1] 40.03 75.01 74.30 75.24 35
Monocular 3D [43] 31.37 64.29 62.38 68.26 1

26929Multimedia Tools and Applications (2022) 81:26915–26940

1 3

the number of identity switches (150 to 54). On the other hand, increasing the minimum
number of hits allows us to reduce the identity switching noticeably, overcoming one of the
main drawbacks associated to the motion metric proposed by SORT. Moreover, modify-
ing the maximum age to consider a tracker has left the scene barely modifies the studied
metrics. Finally, we bold in black the best values for each metric and in blue our final con-
figuration (agemax = 1, minhits = 3, IoUthr = 0.1) that achieves an impressive number of 2
identity switches and quite acceptable CLEAR and integral metrics, which are key as a pre-
liminary stage to predict the short-term for each trajectory in the motion prediction stage.

4.3 Qualitative KITTI evaluation

In order to evaluate our final configuration (3D SORT, using PointPillars as objects detec-
tor and Agemax , minhits and IoUthr hyperparameters equal to 1, 3 and 0.1 respectively), firstly
we carry out the evaluation in the KITTI MOT benchmark based on the method proposed
by [42]. The KITTI MOT benchmark is composed of 29 testing and 21 training video
sequences, where each sequence is provided with the corresponding RGB images (left and
right camera of the stereo pair), LiDAR point cloud and the corresponding calibration file.
Using this information, we obtain some interesting qualitative results in the KITTI tracking
dataset as a preliminary stage before implementing our final configuration in our real-world
prototype. Results are shown in Fig. 6. We both create 3D bounding boxes (Fig. 6b) in the
RVIZ simulator (ROS), here shown in BEV perspective, related to the LiDAR sensor, as
well as projecting these 3D proposals to the front-view RGB image (Fig. 6a) in order to
understand the output of the pipeline in a better way. It is important to highlight how our
algorithm is able to perform 360o DATMO (Fig. 6b), instead of only tracking the most rel-
evant objects that fall in the Field of View (FoV) of the camera.

4.4 CARLA autonomous driving simulator

Despite the impressive efforts made by AB3DMOT [42], where a tool for evaluating
3D DAMOT systems directly in 3D space is designed, it is based on KITTI dataset
[11], which provides prerecorded sequences over which the user cannot interact with
the environment. Moreover, these sequences are usually based on common driving sce-
narios, such as a daily quiet street or a highway in which no challenging traffic scenarios
as pedestrian crossing, give way, etc. takes place.

Table 3 Ablation study of the
final DAMOT configuration
using the KITTI-3DMOT
evaluation tool in the validation
set (car class). We bold the best
results in black and the second
best in blue for each metric

agemax minhits IoUthr AMOTA AMOTP MOTA MOTP IDs
(%) (%) (%) (%)

1 1 0.1 39.90 79.31 94.20 82.06 150
1 1 0.01 39.84 70.96 95.13 81.84 54
1 1 0.25 39.37 79.35 89.10 82.42 682
1 3 0.1 39.54 71.24 91.38 83.23 2
1 5 0.1 39.26 71.36 88.84 83.68 3
2 1 0.1 39.49 79.24 94.91 81.48 154
3 1 0.1 39.50 79.15 95.16 81.15 152

26930 Multimedia Tools and Applications (2022) 81:26915–26940

1 3

Regarding levels of automation, no industry organization has demonstrated a ratified
testing methodology for L4/L5 (being identified the level 5 with a fully-autonomous
navigation architecture, according to J3016 SAE document [39]) autonomous vehicles.
The reason is quite simple: even though some regulations have been defined for these
L4/L5 levels, simulation is a critical aspect to build safe autonomous vehicles. Never-
theless, in spite of the fact that current automotive companies are very good at testing
the individual components of the navigation architecture, these tests are not powerful
enough to validate a fully-autonomous navigation architecture on the road, so there is a
need to figure out how to test intelligent vehicles full of advanced sensors and sharing
information among them [32].

In terms of 3D Multi-Object Detection and Tracking, the answer is quite similar.
Since the urban environment is highly complex, the whole architecture and particularly
the 3D DAMOT system must be tested in countless traffic scenarios and environments,
which would escalate the development time and cost exponentially with the physical
approach, either testing at the real-wold or waiting for using new sequences of KITTI
(recorded by a physical system), not studying the global advantages and drawbacks of
the DAMOT system. For that reason, virtual testing (simulation) and an appropriate
design of the traffic scenarios are the keys to build robust and safe autonomous vehicles
in the future, as shown in [12]. Since the proposed 3D DAMOT architecture of this
work is open-source, we decided to validate the ability to detect and track the most rel-
evant objects around the vehicle in CARLA (Car Learning to Act) [8], an open-source
hyper-realistic autonomous driving simulator that offers an outstanding environment in
terms of perception, flexibility, traffic situations and real-time, which are key concepts
for our system.

CARLA is an open-source autonomous driving simulator implemented as a layer over
Unreal Engine 4 (UE4) [30]. This simulation engine provides to CARLA an ecosystem

Fig. 6 Detection and Tracking
of Multiple Obstacles evaluated
in the (a) RGB left camera (b)
LiDAR sensor

26931Multimedia Tools and Applications (2022) 81:26915–26940

1 3

of interoperable plugins, a realistic physics and a state-of-the-art image quality. CARLA
is designed as a server-client system so as to support this functionality provided by UE4,
where the simulation is rendered and run by the server. The environment is composed
of 3D models of static objects, such as buildings, infrastructure or vegetation, as well as
dynamic objects like pedestrians, cyclists or vehicles. These objects are designed using
low-weight geometric textures and models though maintaining visual realism by mak-
ing use of variable level of detail and carefully crafting the materials. Moreover, one of
the main advantages when using CARLA is the possibility to modify in an easy way the
vehicle on-board sensors and their features in order to obtain accurate data, the weather
and even the possibility to create realistic traffic scenarios as in Fig. 7.

In order to obtain the point cloud required by our 3D object detector, we use the
CARLA ROS bridge, associated to the CARLA simulator. The CARLA ROS bridge is a
ROS package that aims at providing a bridge between CARLA and ROS (Robot Operating
System [29]), sending the information captured by the on-board sensors and other variables
of interest to the vehicle in the form of parameters and topics understood by ROS. In this
paper we use the 0.9.9 version of CARLA in such a way the ROS bridge was configured
according to this version. In terms of the sensors perspective, the agent sensor suite can be
modified in a flexible way. Most common sensors in CARLA world are GPS, RGB cam-
eras and LiDAR (in addition to their corresponding pseudo-sensors, such us the semantic
segmentation and the ground-truth associated to the RGB information of a camera). Since
our final configuration is only LiDAR based, we configure the sensor as shown in Table 4.
Based on the bridge, the 3D point cloud captured by the LiDAR is published in ROS for-
mat as PointCloud2, with the X axe inwards, Y left and Z pointing up.

As shown, CARLA provides a straightforward way to add or remove sensors from the
vehicle or even modify their parameters, to adjust the simulation to the real-world as best
as possible.

Fig. 7 CARLA driving simulator

Table 4 LiDAR configuration in
CARLA simulator

Parameter Value

X (m) 0.0
Y (m) 0.0
Z (m) 2.5
Points per second 640,000
Upper FoV (o) 2.0
Lower FoV (o) -26.0
Rotation frequency (Hz) 20

26932 Multimedia Tools and Applications (2022) 81:26915–26940

1 3

4.5 Qualitative DAMOT evaluation in CARLA

One of the best advantages of CARLA is the possibility to create ad-hoc urban layouts,
helpful to validate the 3D DAMOT system under different traffic and weather conditions.
CARLA Scenario Runner module can be downloaded from the CARLA GitHub, obtain-
ing an execution engine for CARLA and traffic scenario definition. These scenarios can
be modified by editing an OpenSCENARIO [15] script definition where town, vehicles,
climate conditions and also driving behaviours are defined. Fig. 7 depicts an scenario on
Town10 with the ego_vehicle and a predefined route, showing waypoints on a curved street
to achieve the destination point. Furthermore, DAMOT evaluation in KITTI is mainly car-
ried out along daily streets where many cars are parked on the road, so it mostly evaluate
the system performance to track static vehicles when the main difficult is found in dynamic
obstacles, such as pedestrians, vans, trucks or cars. Then, we design several traffic sce-
narios in the CARLA driving simulator to observe how the pipeline faces these more chal-
lenging situations. Nevertheless, we do not provide a quantitative evaluation of our MOT
pipeline since CARLA does not offer a benchmark with labelled data and a validation tool.
In that sense, we are developing a tool, referred as AB4COGT, that stands for A Baseline
for CARLA Groundtruth generation, which aims to extract the groundtruth information of
the CARLA objects and store the corresponding pointcloud frames, so as to be used as a
tracking and detection benchmark in a similar way to KITTI. Fig. 8 illustrates this ongoing
research. Hereafter, as an example of the power of our tool, two scenarios designed with it
are described.

Scenario 1. Roundabout in a rainy day. This scenario represents a roundabout in a rainy
day with low traffic density. One of the main problems on LiDAR sensors is their per-
formance when they face bad weather conditions. Nevertheless, the quality of our object
detector and our pipeline are able to overcome this drawback, as shown in Fig. 9a (BEV
RGB image with the 3D proposals projected) and Fig. 9b (3D proposals in the RVIZ 3D
visualization tool).

Scenario 2. Parked aside vehicles at night. In this scenario we reproduce a very com-
mon situation (as observed in the KITTI dataset) which is the ego_vehicle driving in nar-
row streets full of parked obstacles aside, evaluating its performance in night conditions.
Despite this is probably the major disadvantage when using camera information (very poor
performance in night conditions), we get impressive results in this situation, as illustrated
in Fig. 10. This is pretty much coherent since LiDAR sensors are not passive sensors like
cameras but they supply their own illumination source, which hits objects the reflected
energy is detected and measured by the sensor in order to compute the distance to the
object.

A video demo of the working of our proposal in the above scenarios and any others can
be found in (video)2.

2 https://youtu.be/t5Dp4fbGUAw

26933Multimedia Tools and Applications (2022) 81:26915–26940

https://youtu.be/t5Dp4fbGUAw

1 3

4.6 Real‑World evaluation in a power‑efficient embedded system

The main objective of this paper is the design of a 360o real-time and power-efficient
DATMO pipeline, in order to run it on our real-world prototype. Perception systems in
autonomous driving must process a huge amount of information coming from at least one

Fig. 8 DAMOT validation through AB4COGT and KITTI-3DMOT

Fig. 9 DATMO in the rounda-
bout with rain traffic scenario
evaluated in (a) RGB left camera
(b) LiDAR sensor

26934 Multimedia Tools and Applications (2022) 81:26915–26940

1 3

sensor in order to understand the environment. However, the physical space occupied by
the processing units in the vehicle or their power consumption are metrics to be deeply ana-
lyzed, even more if these processing units will be integrated in an electric vehicle, where
the state of the batteries is crucial. In that sense, the current approach is to use powerful but
power-efficient AI embedded systems as computation devices for autonomous machines,
since they present a remarkable ratio between performance and power consumption in a
reduced-size hardware. Regarding the advantage of using neural networks in GPU, these
embedded systems present a powerful GPU unit as well as fast storages based on solid state
disks and a large RAM memory size. At the time of writing this paper, the best ratio of per-
formance vs power consumption and size is represented by the NVIDIA Jetson embedded

Fig. 10 DATMO in the parked
aside vehicles at night traffic
scenario considering a curved
trajectory (a,b) and straight
trajectory (c,d)

26935Multimedia Tools and Applications (2022) 81:26915–26940

1 3

computing boards. NVIDIA Jetson is the world’s leading AI computing platform for GPU-
accelerated parallel processing in mobile embedded systems. These kits allow to imple-
ment state-of-the-art frameworks and libraries to conduct accelerated computing, such as
CUDA, cuDNN or TensorRT (Tensor RealTime).

In this particular work we make use of the NVIDIA Jetson AGX Xavier, as observed in
Fig. 1, which is as far as we know one of the most powerful AI embedded system specially
designed for autonomous machines. Table 5 shows a comparative between the embedded
system and our PC frequency in the inference stage, where the detection (PointPillars) is
reduced by almost 6 times and the tracking by almost 7 times. Nervertheless, although the
detection and tracking frequencies are on the border to be considered real-time accord-
ing to the requirements of the perception systems for autonomous machines, the embed-
ded system consumes 30 W whilst only the 1080 Ti GPU consumes 250 W at full power
respectively. Considering that the embedded system computation power is reduced by 6.2
times (average between the detection and tracking frequency ratios) but only the GPU (not
considering the whole PC desktop) presents a power consumption 8.3 higher, makes the

Table 5 Comparative of inference frequency between the NVIDIA Jetson AGX Xavier and our PC desktop
(Intel Core i7-9700, 16GB RAM) with CUDA-based NVIDIA GeForce RTX 1080 Ti 11GB VRAM

Stage Frequency AGX Frequency PC Ratio
Xavier (Hz) desktop (Hz)

Detection 7.3 41.7 5.7x
Tracking 15 101.9 6.7x

Fig. 11 DATMO in our campus with our real-world vehicle

26936 Multimedia Tools and Applications (2022) 81:26915–26940

1 3

current NVIDIA Jetson AGX Xavier a better suitable option for large scale-deployment in
the autonomous driving field rather than using desktop graphic cards. Distributing several
sensor processing across multiple embedded systems for parallelization will result in lower
power consumption than using conventional GPUs in future autonomous driving proto-
types. Qualitative results of running our DAMOT pipeline in our own vehicle, equipped
with a VLP-16 LiDAR instead of the HDL-64 shown in CARLA and KITTI, are illus-
trated in Fig. 11. It can be appreciated that although the obtained results are slightly worse
than with the KITTI dataset (equipped with a HDL-64 sensor), we obtain quite promising
results, validating the pipeline studied in this work both in terms of accuracy and real-time
operation.

5 Conclusions and future works

This paper presents an extension of our previous work, which studies the paradigm of 360o
real-time DAMOT for Intelligent Vehicles applications. Furthermore, we focus in this
work in the power-efficient concept to design an optimal system which can be implemented
in a embedded system for autonomous electric vehicles, with a remarkable ratio between
power consumption and computing power. We first carry out an interesting review of dif-
ferent state-of-the-art Deep Learning based 3D object detectors, in which we opt for the
voxel-based approach since it presents an impressive accuracy and rather meets the real-
time requirements in the autonomous driving field. We formulate a second pipeline incor-
porating camera information in which a CNN feature extractor aims to help in the long-
term re-identification to avoid identity switching throughout the route. Then, we compare
our previous work with the new proposal using the KITTI-3DMOT evaluation tool and
concludes that the sensor fusion is yet well formulated. The best pipeline allows to track
static and dynamic objects around an autonomous car in real-time to enhance its safety sys-
tem by only using a 3D LiDAR point cloud as input. Then, we design some interesting sce-
narios in CARLA and use our NVIDIA Jetson AGX Xavier to get some interesting qualita-
tive results in simulation and real-world respectively. Further information can be found in
attached (resul ts)3, showing the performance of the proposed method in different environ-
ments and situations. As future works, we will evaluate our DATMO model with higher
order metric for evaluating MOT [21], in addition to use more complex datasets, such as
KITTI-360, NuScenes, Waymo or AIODRIVE (CARLA simulator based). Moreover, we
plan to analyze the effect of several 2D object detectors regarding our proposal of 3D MOT
system pipeline with long-term re-id. In terms of embedded processor for real-time opera-
tion, we will thoroughly make a comparison between running the 3D MOT pipeline in a
Jetson AGX Xavier, our PC desktop and our MSI laptop used in real-world tests. Regard-
ing domain adaption, we will focus on reformulating our sensor fusion proposal using
long-term re-identification in order to beat the results exposed throughout this work as well
as studying the effects of Generative Adversarial Networks (GANs) in the long-term re-id
process when analyzing camera raw data taken to adverse conditions such as nighttime or
fog. To do that, we plan to formulate an optimal tool to carry out the quantitative DAMOT
evaluation in CARLA by storing the groundtruth of the objects which fall in the grid of the
object detector as well as the corresponding pointclouds, covering the concept of detection,

3 https://cutt.ly/XkuypcH

26937Multimedia Tools and Applications (2022) 81:26915–26940

https://cutt.ly/XkuypcH

1 3

tracking and motion prediction benchmarking in CARLA. Finally, the enhanced DAMOT
pipeline will be integrated in our autonomous driving project, as a preliminary stage before
conducting motion forecasting, in order to help the behavioural decision-making and the
planning modules to improve the robustness and reliability of our system.

Acknowledgements This work has been funded in part from the Spanish MICINN/FEDER through the
Techs4AgeCar project (RTI2018-099263-B-C21)and from the RoboCity2030-DIH-CM project (P2018/
NMT- 4331)), funded by Programas de actividades I+D (CAM) and cofunded by EU Structural Funds.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Baser E, Balasubramanian V, Bhattacharyya P, Czarnecki K (2019) Fantrack: 3d multi-object track-
ing with feature association network. In: 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE
1426–1433

 2. Bernardin K, Stiefelhagen R (2008) Evaluating multiple object tracking performance: The clear mot
metrics. EURASIP J Ima Video Proc 2008. https:// doi. org/ 10. 1155/ 2008/ 246309

 3. Bewley A, Ge Z, Ott L, Ramos F, Upcroft B (2016) Simple online and realtime tracking. 1602.00763
 4. Chiu Hk, Prioletti A, Li J, Bohg J (2020) Probabilistic 3d multi-object tracking for autonomous driv-

ing. arXiv preprint arXiv:200105673
 5. Choi W (2015) Near-online multi-target tracking with aggregated local flow descriptor. In: Proceed-

ings of the IEEE international conference on computer vision. 3029–3037
 6. Dao MQ, Frémont V (2021) A two-stage data association approach for 3d multi-object tracking. arXiv

preprint arXiv:210108684
 7. Del Egido J, Gómez-Huélamo C, Bergasa LM, Barea R, López-Guillén E, Araluce J, Gutiérrez R,

Antunes M (2020) 360 real-time 3d multi-object detection and tracking for autonomous vehicle navi-
gation. In: Workshop of Physical Agents, Springer 241–255

 8. Dosovitskiy A, Ros G, Codevilla F, Lopez A, Koltun V (2017) Carla: An open urban driving simula-
tor. 1711.03938

 9. Fan R, Wang L, Bocus MJ, Pitas I (2020) Computer stereo vision for autonomous driving. arXiv
preprint arXiv:201203194

 10. Frossard D, Urtasun R (2018) End-to-end learning of multi-sensor 3d tracking by detection. In: 2018
IEEE international conference on robotics and automation (ICRA). IEEE 635–642

 11. Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? the kitti vision benchmark
suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE 3354–3361

 12. Gómez-Huelamo C, Bergasa LM, Barea R, López-Guillén E, Arango F, Sánchez P (2019) Simulating
use cases for the uah autonomous electric car. In: 2019 IEEE Intelligent Transportation Systems Con-
ference (ITSC). IEEE. 2305–2311

 13. Gómez-Huélamo C, Del Egido J, Bergasa LM, Barea R, López-Guillén E, Arango F, Araluce J, López
J (2020) Train here, drive there: Simulating real-world use cases with fully-autonomous driving archi-
tecture in carla simulator. In: Workshop of Physical Agents, Springer. 44–59

 14. Gómez-Huelamo C, del Egido J, Bergasa LM, Barea R, Ocaa M, Arango F, Gútierrez R (2020) Real-
time bird’s eye view multi-object tracking system based on fast encoders for object detection. In: 2020
IEEE Intelligent Transportation Systems Conference (ITSC). IEEE

26938 Multimedia Tools and Applications (2022) 81:26915–26940

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2008/246309

1 3

 15. Jullien JM, Martel C, Vignollet L, Wentland M (2009) Openscenario: a flexible integrated environment
to develop educational activities based on pedagogical scenarios. In: 2009 Ninth IEEE International
Conference on Advanced Learning Technologies. IEEE 509–513

 16. Kalman RE et al (1960) A new approach to linear filtering and prediction problems. J basic Eng
82(1):35–45

 17. Konigshof H, Salscheider N, Stiller C (2019) Realtime 3d object detection for automated driving using
stereo vision and semantic information. 1405–1410. https:// doi. org/ 10. 1109/ ITSC. 2019. 89173 30

 18. Kuhn HW, Yaw B (1955) The hungarian method for the assignment problem. Naval Res Logist Quart
83–97

 19. Lang AH, Vora S, Caesar H, Zhou L, Yang J, Beijbom O (2019) Pointpillars: Fast encoders for object
detection from point clouds. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). http:// dx. doi. org/ 10. 1109/ CVPR. 2019. 01298

 20. Law H, Deng J (2018) Cornernet: Detecting objects as paired keypoints. In: Proceedings of the Euro-
pean conference on computer vision (ECCV). 734–750

 21. Luiten J, Osep A, Dendorfer P, Torr P, Geiger A, Leal-Taixé L, Leibe B (2021) Hota: A higher order
metric for evaluating multi-object tracking. Int j comp vision 129(2):548–578

 22. Merkel D (2014) Docker: lightweight linux containers for consistent development and deployment.
Linux j 2014(239):2

 23. Mousavian A, Anguelov D, Flynn J, Kosecka J (2017) 3d bounding box estimation using deep learning
and geometry. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition.
7074–7082

 24. Osep A, Mehner W, Mathias M, Leibe B (2017) Combined image-and world-space tracking in traf-
fic scenes. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
1988–1995

 25. Patil A, Malla S, Gang H, Chen YT (2019) The h3d dataset for full-surround 3d multi-object detection
and tracking in crowded urban scenes. 1903.01568

 26. Pirsiavash H, Ramanan D, Fowlkes CC (2011) Globally-optimal greedy algorithms for tracking a vari-
able number of objects. In: CVPR 2011. IEEE 1201–1208

 27. Qi CR, Yi L, Su H, Guibas LJ (2017) Pointnet++: Deep hierarchical feature learning on point sets in a
metric space. In: Advances in neural information processing systems. 5099–5108

 28. Qin Z, Wang J, Lu Y (2019) Triangulation learning network: From monocular to stereo 3d object
detection. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

 29. Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, Wheeler R, Ng A (2009) Ros: an open-
source robot operating system. vol 3

 30. Sanders A (2016) An introduction to unreal engine 4. AK Peters/CRC Press
 31. Scheidegger S, Benjaminsson J, Rosenberg E, Krishnan A, Granström K (2018) Mono-camera 3d

multi-object tracking using deep learning detections and pmbm filtering. In: 2018 IEEE Intelligent
Vehicles Symposium (IV). IEEE 433–440

 32. Schöner H (2017) The role of simulation in development and testing of autonomous vehicles. In: Driv-
ing Simulation Conference, Stuttgart

 33. Schulter S, Vernaza P, Choi W, Chandraker M (2017) Deep network flow for multi-object tracking. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 6951–6960

 34. Shi S, Wang X, Li H (2018) Pointrcnn: 3d object proposal generation and detection from point cloud.
1812.04244

 35. Shi S, Guo C, Jiang L, Wang Z, Shi J, Wang X, Li H (2020a) Pv-rcnn: Point-voxel feature set abstrac-
tion for 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 10529–10538

 36. Shi S, Wang Z, Shi J, Wang X, Li H (2020b) From points to parts: 3d object detection from point cloud
with part-aware and part-aggregation network. IEEE transactions on pattern analysis and machine
intelligence

 37. Simon M, Amende K, Kraus A, Honer J, Samann T, Kaulbersch H, Milz S, Michael Gross H (2019)
Complexer-yolo: Real-time 3d object detection and tracking on semantic point clouds. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 0–0

 38. Song S, Xiao J (2014) Sliding shapes for 3d object detection in depth images. In: European conference
on computer vision, Springer. 634–651

 39. Taxonomy S (2016) Definitions for terms related to driving automation systems for on-road motor
vehicles (j3016). Tech. rep., Technical report, Society for Automotive Engineering

 40. Team OD (2020) Openpcdet: An open-source toolbox for 3d object detection from point clouds.
https:// github. com/ open- mmlab/ OpenP CDet

26939Multimedia Tools and Applications (2022) 81:26915–26940

https://doi.org/10.1109/ITSC.2019.8917330
http://dx.doi.org/10.1109/CVPR.2019.01298
https://github.com/open-mmlab/OpenPCDet

1 3

 41. Voigtlaender P, Krause M, Osep A, Luiten J, Sekar BBG, Geiger A, Leibe B (2019) Mots: Multi-
object tracking and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 7942–7951

 42. Weng X, Kitani K (2019a) A baseline for 3d multi-object tracking. 1907.03961
 43. Weng X, Kitani K (2019b) Monocular 3d object detection with pseudo-lidar point cloud. In: Proceed-

ings of the IEEE/CVF International Conference on Computer Vision Workshops. 0–0
 44. Wojke N, Bewley A, Paulus D (2017) Simple online and realtime tracking with a deep association met-

ric. 1703.07402
 45. Xu Y, Ban Y, Alameda-Pineda X, Horaud R (2019) Deepmot: A differentiable framework for training

multiple object trackers. arXiv preprint arXiv:190606618
 46. Yan Y, Mao Y, Li B (2018) Second: Sparsely embedded convolutional detection. Sensors 18(10):3337
 47. Yurtsever E, Lambert J, Carballo A, Takeda K (2020) A survey of autonomous driving: Common prac-

tices and emerging technologies. IEEE access 8:58443–58469
 48. Zhang L, Li Y, Nevatia R (2008) Global data association for multi-object tracking using network flows.

In: 2008 IEEE Conference on Computer Vision and Pattern Recognition IEEE. 1–8
 49. Zhang W, Zhou H, Sun S, Wang Z, Shi J, Loy CC (2019) Robust multi-modality multi-object tracking.

In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2365–2374
 50. Zhou X, Wang D, Krähenbühl P (2019) Objects as points. In: arXiv preprint arXiv:1904.07850
 51. Zhou Y, Tuzel O (2018) Voxelnet: End-to-end learning for point cloud based 3d object detection.

4490–4499. https:// doi. org/ 10. 1109/ CVPR. 2018. 00472

Authors and Affiliations

Carlos Gómez‑Huélamo1 · Javier Del Egido1 · Luis Miguel Bergasa1 · Rafael Barea1 ·
Elena López‑Guillén1 · Javier Araluce1 · Miguel Antunes1

 Javier Del Egido
 javier.egido@edu.uah.es

 Luis Miguel Bergasa
 luism.bergasa@uah.es

 Rafael Barea
 rafael.barea@uah.es

 Elena López-Guillén
 elena.lopezg@uah.es

 Javier Araluce
 javier.araluce@edu.uah.es

 Miguel Antunes
 miguel.antunes@edu.uah.es

1 Department of Electronics, University of Alcalá (UAH), Madrid, Spain

26940 Multimedia Tools and Applications (2022) 81:26915–26940

https://doi.org/10.1109/CVPR.2018.00472
http://orcid.org/0000-0002-3819-3747

	 real-time and power-efficient 3D DAMOT for autonomous driving applications
	Abstract
	1 Introduction
	2 Related works
	2.1 Vision-only 3D object detection
	2.2 3D LiDAR object detection
	2.3 2D multi-object tracking
	2.4 3D multi-object tracking

	3 Our approach
	3.1 3D object detection
	3.2 3D kalman filter - object state prediction
	3.3 Data association
	3.4 3D kalman filter - object state update
	3.5 Deletion and creation of track identities
	3.6 Long-term re-identification

	4 Experimental results
	4.1 3D MOT pipelines evaluation
	4.2 Ablation study over 3D SORT
	4.3 Qualitative KITTI evaluation
	4.4 CARLA autonomous driving simulator
	4.5 Qualitative DAMOT evaluation in CARLA
	4.6 Real-World evaluation in a power-efficient embedded system

	5 Conclusions and future works
	Acknowledgements
	References

