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Abstract
It has been declared by the World Health Organization (WHO) the novel coronavirus a 
global pandemic due to an exponential spread in COVID-19 in the past months reaching 
over 100 million cases and resulting in approximately 3 million deaths worldwide. Amid 
this pandemic, identification of cyberbullying has become a more evolving area of research 
over posts or comments in social media platforms. In multilingual societies like India, 
code-switched texts comprise the majority of the Internet. Identifying the online bullying 
of the code-switched user is bit challenging than monolingual cases. As a first step towards 
enabling the development of approaches for cyberbullying detection, we developed a new 
code-switched dataset, collected from Twitter utterances annotated with binary labels. To 
demonstrate the utility of the proposed dataset, we build different machine learning (Sup-
port Vector Machine & Logistic Regression) and deep learning (Multilayer Perceptron, 
Convolution Neural Network, BiLSTM, BERT) algorithms to detect cyberbullying of 
English-Hindi (En-Hi) code-switched text. Our proposed model integrates different hand-
crafted features and is enriched by sequential and semantic patterns generated by different 
state-of-the-art deep neural network models. Initial experimental results of the proposed 
deep ensemble model on our code-switched data reveal that our approach yields state-of-
the-art results, i.e., 0.93 in terms of macro-averaged F1 score. The dataset and codes of the 
present study will be made publicly available on the paper’s companion repository [https://​
github.​com/​95say​anta/​COVID-​19-​and-​Cyber​bully​ing].
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1  Introduction

With the viability of internet, online social media platforms have become mediums for 
common people to share and express their thoughts and feelings freely and publicly, which 
broadly include several tech-empowered exercises, e.g., photo sharing, blogging, social 
gaming, social video sharing, business networking, comments & reviews and others. The 
information available over these social media is a rich resource for sentiment analysis or 
inferring other increasing uses and abuses. Reflecting the dark side of this viability, there 
is an exponential growth of harassment and stalking over these online medias which is 
commonly referred to as cyberbullying [23]. Cyberbullying is broadly categorized into dif-
ferent forms as it appears to be, e.g., racism (facial features, skin colour), sexism (male, 
female), physical appearance (ugly, fat), intelligence (ass, stupid) and others. This event 
of cyberbullying is anonymous1, consequently, quite hard to trace, which often ends up 
with devastating effects. Therefore identifying cyberbullying is crucial in order to avoid 
any fatal incident caused by it. Several research activities have been observed on develop-
ing different machine learning and deep learning based methods for addressing the issue of 
cyberbullying in recent years.

Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered 
coronavirus2. A mild to moderate respiratory disorder can be observed if infected with 
COVID-19 and it does not require any kind of special medical treatments but the person 
having any earlier medical issues, e.g., cardiovascular disease, diabetes, chronic respira-
tory disease, and cancer may encounter serious sickness. The virus spreads between peo-
ple when someone has close contact with an infected person through either of droplets of 
saliva or discharge from the nose. It has been observed that people who are having any kind 
of symptoms are being abandoned, dumped completely, disowned and socially deprived as 
well. There have been quite a few instances where people were also disowned their fam-
ily members for testing positive with COVID-19. Those people were bullied over social 
media, instead of spreading awareness, they have been mistreated, refused for medical 
assistance. Therefore, identifying these instances have become utmost important in order to 
prevent cyberbullying to occur any further or for taking any appropriate action against the 
offender. These motivate us to instigate a thorough research over how the phenomenon of 
cyberbullying takes place amid this pandemic and its effective detection.

1  https://​cyber​bully​ing.​org/
2  https://​www.​who.​int/​health-​topics/​coron​avirus#​tab=​tab_1
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Code-switching refers to fluid alternation between multiple languages in a single post/
utterance [16]. In multilingual societies like India, code-switched text is very common 
[17]. Consequently, processing of code-switched text has received an exponential interest 
and attention from the NLP research community [20]. Therefore code-switched text draws 
words and linguistic structures from multiple languages, use of language-specific parallel 
word embeddings for processing such text could be useful and essential. Table 1 illustrates 
our problem definition:

In the aforementioned example, there are existence of two different languages, i.e., Eng-
lish and Hindi. Also, the sample talks about a person being accused of produced corona 
virus as he or she might go to a place called nizamuddin markaz. The focus of our present 
study is to identify these events of cyberbullying from the code-switched languages, which 
is, to the best of our knowledge, is the first of its kind. In order to foster this, we collect, 
develop, annotate and contribute a code-switched corpus to detect cyberbullying, taking 
the ongoing COVID-19 pandemic into account. The main contributions of this work are as 
follows: 

	 i.	 We curate a new annotated code-switched (En-Hi) dataset for facilitating cyberbully-
ing identification in COVID-19 perspective, which is one of the major contributions 
of our work.

	 ii.	 We study and investigate the role of individual language-specific word embeddings, 
e.g., English & Hindi; also using the concatenation of these embeddings by projecting 
them into similar dimension, to handle the code-switched texts.

	 iii.	 We empirically experimented and introduced several baselines (both ML and DL 
models) for the curated corpus and showed that deep ensemble model is significantly 
more effective when compared to their base classifiers.

The rest of the paper is organized as follows: Section 2 represents a brief survey of previ-
ous works solving the objective task. Section 3 defines the details of the proposed dataset 
to accomplish the task. The proposed frameworks have been explained in Sect. 4. Section 5 
presents experimental evaluation along with the obtained results. Conclusion of the work is 
elucidated in Sect. 6.

2 � Related works

In this section, we have presented different research activities concerned NLP-based detec-
tion of cyberbullying, as well as computational models of code-switching.

Al-Garadi et al. [1] proposed a framework for cyberbullying detection based on a set of 
unique features derived from Twitter, e.g., network, activity, user, and tweet content. Subse-
quently, they developed a supervised machine learning model for detecting cyberbullying. 

Table 1   Code-switched tweet instances of cyberbullying

Tweet utterance Data sample

Code-switched tweet sample O godi media ke dalal nahi h. Kya nizamuddin markaz ki laboratory me hi 
corona virus produced huwa tha. Don’t be such fool.
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The performance of their proposed framework, in terms of area under the receiver-operating 
characteristic curve is 0.943 and a F-measure of 0.936, which is quite significant for such 
kind of feature-driven model. In 2016, Zhao et al. [27] developed a cyberbullying identi-
fication model based on representation learning approach. Along with a pre-defined list 
of insulting words, they have taken both Bag-of-words and latent semantic features under 
consideration. As a text classifier they employed SVM and achieved a F1-score of 0.78. 
Authors also used Twitter data for the task. Again, a predictive model of cyberbullying inci-
dents has been proposed by Hosseinmardi et al. [11], where the authors considered text cap-
tions along with comments of an Instagram post. Subsequently, they extracted profanity and 
linguistic contents of the text caption, and also the social graph parameters and temporal 
content behavior. Using logistic regression classifier, the model had attained a F1-score of 
0.85. It has often been observed that there is a trend of using non-standard forms of words 
while posting or commenting in social media, which is also an influencing reason behind 
the high misclassification error. Keeping the aforesaid in mind, Zhang et al. [26] proposed a 
pronunciation based convolutional neural network (PCNN) to address this issue. They have 
considered both non-standard form of words and misspelled words and used their phoneme 
codes as input to the deep convolution neural network. Authors have evaluated their novel 
model over two different social media, e.g., Twitter and FormSpring. This PCNN network 
achieved 0.56 in terms of F1-score. Following this deep learning based approach, Rosa et al. 
[19] proposed a hybrid deep network consisting of CNN and LSTM for solving the objec-
tive task. Authors had experimented over a FormSpring dataset. Also they had tested using 
three different text representations, namely, Google-News word embedding, FormSpring 
word embedd503ing and Twitter word embedding. Experimental results had shown that the 
hybrid model of CNN-LSTM outperformed other deep learning and machine learning mod-
els used in the experiment by scoring 0.84 as F1-score.

The phenomenon of code-switched language is constantly getting attention of NLP 
research community over the last few years. In any multilingual society, the existence of 
code-switched language can be observed. In various research domains like detecting sar-
casm, offensive and hatespeech detection, sentiment analysis, rumor detection; the exist-
ence of code-switched language has drawn the research recognition. In [18], Rao & Devi 
have shown entity extraction from code-switched data. In their work, they have demon-
strated the challenges of processing code-switched data such as ambiguity, occurrence of 
non-standard words and also, existence of low resource languages for entity extraction. 
Authors have introduced different machine learning and deep learning bases approaches 
such as Conditional Random Field(CRF) along with rule based system, LSTMs have been 
used to extract entities from both Hindi-English and Tamil-English code-switched data. 
Jaech et al. proposed a character-word model which is hierarchical in nature for identifying 
language from code-switched data in [13]. The proposed work is able to provide a label, 
i.e., the language from code-switched text by applying a CNN to a whitespace-delimited 
word’s Unicode character sequence and assigning a word vector. Subsequently, a bidirec-
tional LSTM recurrent neural network (RNN) maps a sequence of such word vectors to a 
label (a language). The model is able to identify a language from such text at word level 
with 0.95 and 0.94 in terms of F1 score for English and Spanish language, respectively. 
Involvement of code-switched text has also observed in case of user intent classification 
and slot filling. In [14], Krishnan et al. presented a zero-shot learning approach for joint 
intent classification and slot filling from multilingual code-switched text. To accom-
plish the objective task, authors have proposed by augmenting monolingual data making 
use of multilingual code-switched text through random translations to enhance the neu-
trality of transformer’s language. All the experiments have been done over English and 
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Haitian Creole code-switched dataset, which is human annotated and collected from Twit-
ter. Authors achieved 87.92% and 91.03% of F1 score for the task of intent classification 
and slot filling, respectively. Sentiment analysis from code-switched text have also been 
an evolving research area. Shakeel et al. proposed a deep learning based approach for clas-
sifying sentiment from code-switched short text [22]. Authors have also developed a Urdu-
English code-switched corpus collected from Twitter for the intended task. Stacked-CNN 
and Stacked-LSTM have been used for classifying sentiment and reported F1 score is 0.65 
using ELMo. In [3], Bansal et al. presented a study of humour, sarcasm and hate speech 
detection from code-switched text. Their approach involves encoding different switch-
ing features in order to improve the performance of detecting humour, sarcasm and hate 
speech. The reported results clearly indicates the significant performance improvement 
over the baseline models.

3 � Data description

To enable the exploration of cyberbullying detection on code-switched data during this 
current pandemic, we introduce a new dataset consisting of tweet utterances.

3.1 � Data collection

We have collected tweets from January 28, 2020, leveraging Twitter’s streaming API3 
and Tweepy4 to follow specific keywords and account that are trending at this current 
pandemic. While collecting tweets, we have also used Twitter’s search API5 on the same 
keywords to gather related historical tweets. We have collected over 22k tweets from the 
inception until April, 2020. As mentioned earlier, our fundamental motivation is two-fold, 
i.e., detection of cyberbullying instances from code-switched text and also amid this ongo-
ing pandemic, COVID-19. Therefore, we capture conversations associated with coronavi-
rus outbreak using the following hashtags: 

1.	 Coronavirus
2.	 COVID19
3.	 Lockdown
4.	 CoronavirusDelhi
5.	 CoronavirusOutbreak
6.	 CoronavirusPandemic

Note that, some hashtag overlapping can be seen as inclusion of a particular hashtag can 
be a substring of another. We keep all these occurrences for having a good measurement. 
Also, while collecting the data, there have been instances where monolingual texts, i.e., 
texts entirely either in English or in Hindi, scrapped too. In those cases, we have excluded 
such samples as our primary objective is to identify cyberbullying from code-switched text. 
Table 2 shows our data inclusion or exclusion criteria with example. Also, there are many 

3  https://​devel​oper.​twitt​er.​com/​en/​docs/​tutor​ials/​consu​ming-​strea​ming-​data
4  https://​www.​tweepy.​org/
5  https://​devel​oper.​twitt​er.​com/​en/​docs/​tweets/​search/​api-​refer​ence/​get-​search-​tweets
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variations that may exist in case of any occurrence of code-switched text, for example, a 
text may contain Hindi but written in English text, Hindi written in Hindi text which we 
have included but we excluded such text which are only in Hindi and also written in Hindi 
or entire sentence is in English, i.e., monolingual.

3.2 � Annotation process

The entire data annotation process we opted is using Active Learning [21]. We, first, manu-
ally annotate 2k randomly selected tweet utterances into two classes, namely, bully and 
nonbully. Then the step-by-step annotation process is as follows: 

1.	 Start with manually annotated small set of tweet instances
2.	 Train text classifiers on these annotated instances
3.	 For n-steps: 

(a)	 Select the next set of the most promising instances of tweets using entropy, where 
we rank the instances by their prediction entropy and only pick the top instances 
which have highest entropy values. These tweets are manually annotated. Tweets 
with entropy below a threshold are labeled by the predicted tags of the model.

(b)	 Trained the model on all tweet instances selected so far.
(c)	 Evaluate the trained model on the test set.

4.	 End of the annotation process.

In order to maintain the quality of annotations, we processed this Active Learning approach 
with the help of different ML and DL frameworks (please refer to Sect. 4). Thus, we obtain 
our fully annotated code-switched dataset. In order to show that our annotation is effective, 
we compare this approach with the random annotation strategy. Figure 1 illustrates the effi-
ciency of our adopted Active Learning method.

The very detail of our final code-switched dataset can be seen in Table 3. Also Fig. 2 
shows class-wise distribution of tweet utterances.

Presence of Profane words:  Use of abusive words has been repeatedly observed to cyber-
bullying. Initial analysis of our proposed dataset shows that depending on profane words 
usage can neither lead to high precision nor high recall for identifying cyberbullying. For 
this, we have calculated P(B ∣ Pr) and P(Pr ∣ B) , where B indicates Bully and Pr indicates 

Table 2   Data inclusion and exclusion example

Activity Data sample

Data inclusion 
(Code-switched 
text)

hey why you such an asshole? why thank yuh to friends! Sale chutiye ek number ka!

Data exclusion 
(Monolingual text)

National capital is reporting hospitalisations like other cities, but the proportion of 
people requiring in ICU bed is much higher

8778 Multimedia Tools and Applications (2023) 82:8773–8789
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Profane. This method will have low precision as P(B ∣ Pr) is not close to 1. Profane word 
list based methods will also have a low recall as P(Pr ∣ B) is not close to 1.

4 � Proposed methodologies

In this section, we have described different machine learning and deep learning architec-
tures developed and accordingly their ensemble frameworks for accomplishing the objec-
tive task. For machine learning classifiers, we have used Support Vector Machine (SVM) 
and Logistic Regression (LR). Also, Multi-Layer Perceptron (MLP), Convolution Neural 

Fig. 1   Active Learning vs. Randomly annotated instances

Table 3   Dataset Statistics # bully post # nonbully post Total no. of instances

9921 12759 22,680
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Network (CNN), BiLSTM with attention layer and BERT have been chosen as deep learn-
ing classifiers.

4.1 � Word embeddings

In Natural Language Processing, word embedding plays crucial role as it provides a way to 
utilize a dense and efficient representation in which similar words have similar encodings. 
Note that, these embeddings are dense vectors of real numbers which are able to reveal 
hidden relationships between words. In recent years, the concepts of multilingual or bilin-
gual word embeddings have gained much attention as words from two different source lan-
guages can be embedded into a same space which can solve certain tasks that involve rea-
soning across two or multiple languages.

We have experimented with two different language specific fasttext6 word embeddings, 
i.e., English and Hindi as our code-switched corpus contains aforementioned two languages 
which are trained on Common Crawl and Wikipedia using fastText [10]. These models 
were trained using CBOW with position-weights which are helpful to capture positional 

Fig. 2   Dataset Statistics

6  https://​fastt​ext.​cc/​docs/​en/​crawl-​vecto​rs.​html
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information, in fixed-size dimension 300, with character n-grams of length 5, a window of 
size 5 and 10 negatives. In our case, a vector of a word is being predicted based on context 
words. For example, we want to predict the vector of a particular word w0 based on its con-
text words w−n, ...,w−1,w1, ...,wn . A vector representation h of this context is obtained by 
considering the average of the corresponding word vectors, which can be defined as:

However, code-switched text is indistinct in its syntactic, semantic and statistical prop-
erties, e.g., grammatical and syntactic constraints might introduce a collocation in word 
space. In order to achieve a synthetic presentation for En-Hi code-switched text, we there-
fore concatenate both the embeddings while utilizing word-level alignments, by perform-
ing canonical correlation analysis7 (CCA) on two embeddings and project these into shared 
vector space where they are maximally correlated, as described in [7].

Let Σ ∈ ℝ
n1×d and Ω ∈ ℝ

n2×d be vector space embeddings for two different languages, 
where each row corresponds to words. Since two embeddings are of different sizes, it 
may be noted that there might not exist translation for each and every word of Σ in Ω . Let 
Σ� ⊆ Σ , where each word in Σ� is translated to another word in Ω� ⊆ Ω . Let x and y be two 
corresponding vectors from Σ� and Ω� , and v, w be the two projection directions, respec-
tively. Then the projected vectors are:

and, the correlation between projected vectors can be as follows:

4.2 � Architectures

4.2.1 � Machine learning architectures

For the purpose of classification and active learning, several machine learning and deep 
learning based standard classifiers are first employed. Finally the outputs of these classi-
fiers are combined together with the help of ensemble techniques to further improve the 
classification accuracy which in turn helps in improving the annotation process. 

1.	 Support Vector Machine: (SVM) is considered as a competitive machine learning clas-
sification algorithm and was proposed in [4]. The objective of this algorithm is to find a 
hyperplane in an n-dimensional space (n indicates the number of features) that distinctly 
classifies the data points into pre-define categories. SVM is widely used for text catego-
rization as described in [24]. The linear kernel is recommended for text categorization 

(1)h =

n
∑

i=−n;i≠0

uwi

(2)x� = xv

(3)y� = yw

(4)�(x�, y�) =
E[ x�y�]

√

E[ x
�2]E[ y

�2]

7  http://​www.​mathw​orks.​com/​help/​stats/​canon​corr.​html
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as the linear kernel performs efficiently when there are a lot of features [6]. Hence linear 
SVM has been used in our experiments.

2.	 Logistic Regression: (LR) performs well for binary class classification problem [8]. 
We have implemented logistic regression using liblinear, a library for large scale linear 
classification [6].

4.2.2 � Deep learning architectures

1.	 Multi-Layer Perceptron: (MLP) is supposed to be the most intuitive neural network. In a 
typical supervised learning algorithm like classification, each of the input vectors has pre-
defined class-label. The output of the perceptron network provides a class-belongingness 
probability. A loss function is also defined in order to measure the network performance. 
The function produces a high value whenever misclassification occurs, otherwise it gen-
erates a low value. Overfitting is an associated issue with this kind of network. To avoid 
this, a dropout layer is also employed.

2.	 Convolution Neural Network: (CNN) originally invented for computer vision, has been 
shown to achieve significant performance on text classification tasks [2]. CNN cat-
egorises text into a particular class based on the following intermediate computations: 
firstly, 1-dimensional convolving filters are used as n-gram detectors, where each of the 
filters is specialized in a closely-related family of n-grams. Then, for making a decision, 
max-pooling extracts the relevant n-grams. Therefore, based on the obtained informa-
tion, network classifies the text [12].

3.	 BiLSTM with attention layer ( BiLSTMattn. ): Bidirectional LSTM network intensifies 
the amount of available input information by encoding it in both forward and backward 
directions [28]. Attention mechanism [25] allows the model to learn what to attend based 
on the input sequence and what the model has computed yet.

4.	 Bidirectional Encoder Representations from Transformers: (BERT) has been used 
widely as it produces state-of-the-art results on a wide variety of NLP tasks, which 
include question answering (SQuAD v1.1), natural language inference (MNLI), text 
classification and others [5]. Unlike uni-directional models, the Transformer encoder 
considers the entire sequence of words at once. Therefore it is considered bidirectional, 
though it would be more accurate to conclude that it’s non-directional. This unique 
feature allows the model to learn the context of a word based on all of its surroundings 
(left and right contexts of the word).

Please refer to Fig. 3 for general architecture that we have used across all deep learning 
models.

4.3 � Ensembling

Ensemble learning combines several machine learning or deep learning techniques into 
one predictive model in order to decrease the variance, bias, or improve predictions. The 
fundamental aim of ensemble methods is to combine the predictions of different meta clas-
sifiers built using different learning algorithms in order to improve robustness over a single 
classifier.
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4.3.1 � Ensemble: machine learning approach

We propose a weighted majority voting based ensemble approach to leverage the efficiency 
of various state-of-the-art machine learning classifiers. Here, we have developed two fea-
ture-driven models, viz. Support Vector Machine (SVM) [4] and Logistic Regression (LR) 
[8]. We have used language specific word embedding models of embedding dimension 300 
for each of the language corpora along with some TF-IDF/Count models. The language 
specific embeddings are trained on Common Crawl and Wikipedia using fastText8. These 
models were trained using CBOW (as described in [15]) with position-weights, in dimen-
sion 300, with character n-grams of length 5 as shown in [10]. As our proposed corpus 
contains English-Hindi (En-Hi) code-switched text, we have deployed English and Hindi 
embeddings separately and then we frame their ensemble model using weighted majority 
voting.

In this case, we predict the class label y by computing a weighted majority vote by asso-
ciating a weight wj with classifier Cj , precisely, weight implies the macro averaged f1 score 
(calculated over training data) of the corresponding classifier for the class label, y, (the 
idea is to assign priority to that classifier which was good in detecting that class). It can be 
defined as follows:

where �A is the characteristic function [ Cj(x) = i ∈ A]   and A is the set of unique class 
labels, which are bully and nonbully in our case.

While SVM or LR tries to learn only one hypothesis from the available training data, 
this weighted majority based ensemble model tries to develop a set of hypotheses and 
accordingly combine them for further use. Here, we have linearly combined the class 
belonging probabilities as produced by the individual classifiers (SVM and LR) along with 
the fine-tuned set of parameters.

(5)y = argmaxi

m
∑

j=1

wj�A(Cj(x) = i)

Fig. 3   Deep learning based architecture used in our experiments

8  https://​fastt​ext.​cc/
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4.3.2 � Ensemble: deep learning approach

One way of enhancing the performances of neural network models is to frame an ensemble 
of deep neural network models. The architectures of different deep neural networks used 
in our experiment are described in Fig. 4. The weights for each of the deep networks are 
initialized at random using Xavier initialization technique [9] as it keeps the variance the 
same across every layer that helps to make the variance of the output to be equal to the 
variance of its input. Here, we have initialized weights randomly for the shake of stabil-
ity of deep networks. Therefore, we can leverage the stability of deep neural networks by 
ensembling the decisions taken by the same network but with different random initializa-
tions, using the following equation:

where yi,c denotes the output probability of ensemble having input xi that belongs to a class 
c. �c is the logistic output averaged over n randomly initialized models. Fig. 4 shows, an 
overall architecture of the proposed deep ensemble approach.

In the initial stage, the rigorously pre-processed data is independently trained using 
MLP, CNN, BiLSTM with attention layer, BERT and hand-crafted feature driven BERT. 
Then each of the predictions given by the aforementioned models are summarised by 
initializing weights. Here, we have used Xavier weight initialization technique [9]. This 
in turn minimises the overall misclassification error rate by ensuring fine-grained classi-
fication. Subsequent sections consisting of the experimental results will demonstrate the 
improved efficiency of the deep ensemble network over individual deep networks.

5 � Experimental evaluation

In this section, we present the results of different machine learning and deep learning models 
and their ensemble frameworks, evaluated on our proposed code-switched dataset. We have 
also explained the details of hyperparameter analysis along with the evaluation of our pro-
posed framework. Also, we have provided a through error analysis on misclassified instances. 
All our experiments were conducted on a hybrid cluster of multiple GPUs comprised of RTX 

(6)yi,c =
1

n

n
∑

j=1

�c(xi, �j) ∣ ∀c ∈ [ 1,C]

Fig. 4   Steps of Ensembling Various Network Structures
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2080 Ti. It is to be noted that the dataset, codes and obtained results will be made publicly 
available on associated repository.

5.1 � Training details

Machine learning models are implemented using Scikit-Learn 0.22.2. Keras 2.3.1 is used as 
the backend framework to train deep learning frameworks. Randomly sampled 80% of the 
data is used for training and 10% each is used for validation and testing. We have presented 
the performance of both the machine learning and deep learning frameworks on our valida-
tion set in the subsequent subsections. After tuning the hyperparameters sufficiently, we have 
reported the optimised set of hyperparameters for machine learning and deep learning models 
in Tables 4 and 5, respectively.

5.2 � Experimental results

We have shown the mean of macro-averaged F1 scores across five runs of proposed 
machine learning and deep learning models in Tables 6 and 7, respectively.

In Table 6, SVMHi , SVMEn , LRHi and LREn correspond to Support Vector Machine(SVM) 
and Logistic Regression(LR) trained using Hindi and English fasttext word embeddings, 
respectively. Thereby, the ensemble of these ML models is framed by combined word 
embedding (as described in Subsection 4.1) and weighted majority voting of the individual 
classification models (as described in Subsection  4.3). The obtained results suggest that 
ensemble of these ML models performed reasonably good than the individual classifiers. 
Although SVM and LR work well where there is clear margin of separation between both 
the classes and are memory efficient but in our case, the ensemble of both the ML models 
outperforms due to SVM or LP as an individual classifier lacks to learn the classification 
hypothesis.

Table 4   Optimised set of parameters for ML models; here SVM: Support Vector Machine, LR: Logistic 
Regression

Model Parameters

SVM Regularization parameter, C = 0.8; kernel = linear; class_weight = bal-
anced; Tolerance = 1e-3

LR penalty = l1; class_weight = balanced; solver = liblinear; multi_class = ovr

Table 5   Optimised set of parameters for DL models; All the DL models have been trained on 30 epochs

Model Hyperparameters

MLP No. of layers = 4; Activation = ReLU; Regularization = Dropout; Loss = Entropy; Batch size 
= 16; learning rate = 1.0

CNN No. of layers = 3, Pooling = Avg; Activation = Sigmoid; Optimizer = Adam; loss = MSE; 
Batch size = 16; learning rate = 0.001

BiLSTM 
with 
attention

batch size = 32; Activation = sigmoid; Optimizer = Adam; loss = binary_crossentropy; 
dropout probability = 0.5

BERT batch size = 16; learning rate = 2 × 10−5 ; dropout probability = 0.5
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Table 7 shows that ensembling of randomly initialized deep networks achieves a signifi-
cant improvement in terms of macro-averaged f1 score, over ML models (both individual 
and ensemble of ML models). Also, the experimental results demonstrate that an ensemble 
of neural networks is always better than a single classifier. The fundamental reason behind 
this significant performance of deep ensemble model can be the ability of minimising the 
squared error as compared to the individual predictors of the classifier and also with better 
generalisation.

5.3 � Key observations

Figure 5(a) shows the comparison between the prediction quality on the validation set 
and on the test set. The graph conveys the effectiveness of our proposed deep ensemble 
model. In order to show our deep ensemble model has been sufficiently trained, we have 
shown validation accuracy over a number of epochs in Fig. 5(b). From the Table 8, we 
have seen that BiLSTM with attention layer has outperformed MLP and CNN as it has 
the cell memory gate based architecture for processing of text bidirectionally.

5.3.1 � Error analysis

An overall error analysis has been conducted by manually checking the predicted mis-
classified tweet samples. We observe that our proposed model is not able to classify a 
post or comment that contains profane words, e.g., “bitch”, “mad”, which are likely to 
appear in bullying posts. It may be noted that occurrences of such words need not imply 
that particular post to be bullying. Few possible reasons behind these misclassifications 
enlisted below:

Table 6   Performance of machine 
learning models in terms of 
macro-averaged f1

Model performance

SVM
Hi

0.66
SVM

En
0.60

LR
Hi

0.61
LR

En
0.67

Ensemble 0.69

Table 7   Performance of Deep 
learning models in terms of 
macro-averaged f1

The performance of our proposed model is highlighted in bold

Model performance

MLP 0.76
CNN 0.79
BiLSTM with Attn. 0.79
BERT(fine tuning) 0.81
BERT(fine tuning + handcrafted features) 0.86
Ensemble 0.93
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–	 Existence of obscene words in the posts or comments: If a certain post contains any 
abusive word, our model categorised it as in bully class.

–	 We notice that our corpus contains non-standard English and Hindi words which our 
model is not able to interpret properly to build a vector representation.

–	 The lengths of most of the tweet utterances are relatively small, therefore, our pro-
posed model was not able to capture the proper context, in case there exists any sar-
casm.

–	 The language Hindi has dialectal variations in comparison with English language.

Table 8 contains some misclassified tweet samples and the reasons for the misclassification.

Fig. 5   Learning of our proposed deep ensemble model indicates a good fit

Table 8   Misclassified instances and reasons behind misclassification

Instances Predicted Original Possible reason

Any views on the Nizamuddin 
Maulana and his viral audio 
sweetheart???? Shayed nahi h

nonbully bully Absence of any profane word. Our model is 
able to capture the sarcasm of this instance

O godi media ke dalal nahi h. 
Kya nizamuddin markaz ki 
laboratory me hi Corona virus 
produced huwa tha. Don’t be 
such a fool!

bully nonbully Due to existence of the words, e.g., ‘dalal(a 
negative word in Hindi)’ and ‘fool’

hey why you such an asshole? 
why thank yuh to friends! Sale 
chutiye ek number ka!

bully nonbully Presence of words like ‘asshole’, ‘sale’ and 
‘chutiye’. Here, ‘sale’ and ‘chutiye’ are used 
as profane words in Hindi
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6 � Conclusions and future works

In this paper, we introduce a new exploratory area, i.e., identifying cyberbullying from 
code-switched text and also, develop and contribute an annotated code-switched corpus 
snowballed from Twitter. We have also shown cyberbullying is still taking place amid this 
pandemic. Here, we have shown that ensembling deep neural networks with random ini-
tialization of weights and with the help of parallel language specific word embeddings can 
achieve state-of-the-art performance for identifying cyberbullying in code-switched text. 
As the corpus is new, state-of-the-art models as well as their ensembles have been used to 
provide a base-line to identify cyberbullying from code-switched text.

In the future, we would like to consider multimodal fusion in order to predict the 
instances of cyberbully in a more fine-grained way. Also, we would like to develop a multi-
task learning approach where the framework is able to understand hidden sarcasm in the 
post along with capturing information regarding cyberbullying.
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