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Abstract
Recommender Systems are a very useful tool which let companies and service provid-
ers focus in the preferences of their customers, helping them to avoid an overwhelming 
variety of choices. In this context, clustering tools can play an important role to detect 
groups of customers with similar tastes. Thus, companies can make personalized market-
ing campaigns, offering to their users new products which have been consumed by other 
users with comparable preferences. In this paper we present a general framework to cluster 
users with respect to their tastes when the registers stored about the interactions between 
users and products are extremely scarce. Commonly, clustering methods employ the values 
of features describing the samples to be clustered (users in our case), but such features 
are not always available. We propose some alternative representations for users, in which 
their tastes are gathered to some extent, so that clustering algorithms can take advantage 
and make more homogeneous groups in this regard. To illustrate the performance of the 
whole framework, we tested it on six popular datasets commonly used as a benchmark for 
recommender systems, as well as on an extremely sparse real-world dataset that records the 
preferences of readers to click promoted links in digital publications. In the experimental 
section we compare our proposed representations to other common user encodings. We 
show that clustering users attending only to their feature values or to the items they have 
evaluated gives rise to the worst scores in terms of taste homogeneity.
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1 Introduction

Recommender Systems (RS) is a very active research field in Machine Learning. The 
objective is to find patterns in the interaction between items and users, in order to predict 
a set of items that a user (or a group of users) will eventually like. But these patterns may 
also be utilized to obtain additional useful knowledge about the tastes of users in general or 
about the affinities of items.

For this purpose it is common to use clustering techniques. From the point of view of 
predictions, clusters are useful because they provide more reliable information than single 
users or items. The overall idea is that a group of items can be suggested to a group of 
users; this is not a very precise recommendation but it is hopefully in the right way. Typi-
cally, cluster-based recommenders promise a greater robustness and make scalable some 
techniques that would otherwise be inapplicable.

Moreover, knowing about their customers (users) is important for companies. This 
knowledge is usually aggregated in market segments, which allows companies to offer 
differentiated products and after-sales services. Furthermore, marketing messages can be 
more focused on the segments that maximize the profits. Let us remark that, frequently, 
this requires to cluster items too.

Sometimes, we may find a dataset where users are described by a vector of feature val-
ues, but this is not the general case. Moreover, the available information about users is 
typically too scarce and limited to a small set of demographic values that are not enough 
to explain the behavior of users. Therefore, we need to include some data into the users’ 
description if we want to gather users with similar tastes. As it is going to be detailed in 
next sections, the ratings given by users to items are frequently included in users features. 
In this way, the correlation or cosine gives rise to the similarity of users’ interaction with 
items. The flaw of this approach is that datasets are very sparse, that is, the set of items 
rated by two users is usually too small to generalize their similarity. In some cases, the 
intersection between the sets of products that users have rated may even be empty, making 
it impossible to apply these traditional methods.

We present a general framework to make clusters of users and to measure their quality 
according to their interactions with items. Let us emphasize that we can use this framework 
even in the case that users or items are not described by a vector of feature values. That is 
to say, from the point of view of items, our proposal is applicable for content based recom-
menders but also for collaborative (agnostic content) filtering settings. Analogously, we do 
not require users to be represented by features for our proposal to be applicable.

To illustrate this methodology, we used seven public domain datasets: six of them are 
commonly used as benchmark for recommendation tasks, together with a dataset of readers 
and promoted news in digital publications. The purpose in the last one is to find a model 
able to predict the preferences of readers to click on a given link instead of other alterna-
tives. In this dataset, readers do not rate promoted news or have the possibility to access all 
of them: each reader is shown a reduced set of promoted news and can click at most one of 
them. Hence, to elicit the relationship between users and items we learn a utility function 
by solving a preference learning task [3, 17, 21, 27]

The paper is organized as follows. In the next section we cite some state-of-the-art 
clustering methods in the context of RS. Next, we present an entropy-based measure to 
assess the quality of clusters of users with respect to their preferences. Section 4 describes 
some alternatives to represent users in the context of recommender systems with the aim 
of improving the clustering process. Then, we describe a formal setting to implement a 
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recommender system applicable to the typical binary classification task of prediction 
whether a user likes/dislikes an item. This setting is then adapted to make it applicable 
to recommendation problems where the preferences of users are not expressed by rating 
items, but by choosing one item among others, which lead us to use a preference learning 
approach.

Before concluding this Introduction, we would like to briefly comment on the most 
important novelties and contributions of this paper (which will be discussed in more detail 
in Section 2.1): i) we present different ways of encoding users according to their product 
preferences in the context of recommender systems even when the data set is very sparse 
(encodings that can then be used to perform user clustering), and ii) we show a way to 
measure the quality of user clusters based only on the preferences shown by the users. The 
purpose of this paper is not to present a new clustering algorithm, but rather to present two 
tools (preference-based user encodings and a cluster quality measure) that are useful for 
any clustering algorithm in the context of recommender systems.

2  Related work

User clustering in RS starts from a vectorial description of users on which different 
algorithms are applied. We can distinguish two major types of approaches. The first one 
requires users to be described by vectors containing intrinsic properties of the users, such 
as their gender, age, etc. Thus, this approach is independent of the behavior of users in rela-
tion to the items involved in the RS [8, 19].

However, a second approach raises because most authors are inclined to represent users 
by the ratings they give to the items with which they interact. To measure the similarity 
between users, they employ measures such as correlation [29] or cosine [4]. The problem 
with these approaches is that the reliability of the similarity (whichever measure is used) 
is limited between those users which have not rated the same items. Unfortunately, this 
situation occurs in most cases. Furthermore, in some cases the ratings may not be homo-
geneous, which makes the task even more difficult. In this regard, [20] address the sparsity 
problem of heterogeneous recommendation, presenting a method for transferring knowl-
edge from a domain in which consumers rate products using like/dislike to another domain 
in which ratings are made using a 5-star system. This method, however, still does not solve 
the problem of reliability of the similarity.

Surveys about the use of clusters of users are [4, 6, 19]. Here we find many references 
discussing also the methods to cluster users once they are represented. These methods 
range from deterministic algorithms as k-means [12] or hierarchical methods [15] to soft 
methods as c-means [22, 40].

Sometimes, clustering users in an RS is made to gain insight into the kind of custom-
ers of a given company, as in [38]. The goal here is that companies can improve their 
customer-relations management by enhancing customer satisfaction and loyalty. It is also 
sometimes interesting to cluster items in order to have a better understanding of them, as 
in [34], where a recommender system for Indian classical music is presented. This system 
makes recommendations to users based on their listening history and also analyzes and 
groups melodies based on note structures available in Indian classical music.

Nevertheless, the aim of using clustering techniques is frequently to improve robust-
ness or scalability in RS. This is the case of [28] that combines a clustering technique with 
an associative classification algorithm to personalize recommendations. The clustering of 
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users is built upon their demographic information together with the interaction with the 
items. It is also the case of [36], which is capable of making better movie recommenda-
tions by obtaining clusters with k-means and using an adaptive genetic neural network. In 
this work users are encoded only by the ratings they assigned to the movies.

In [30, 31], the authors use a clustering to obtain groups of items in the so-called long 
tail with more ratings than the individual items. In this way, an RS will consider to sug-
gest those items that otherwise will be kept unknown for users since they can not accu-
mulate enough ratings so as to be more frequently recommended. Focusing on efficiency, 
a detailed study of the difference in efficiency between using user clusters and not using 
them is shown in [25]. That paper shows that using clusters makes systems much faster.

[5] and [40] introduce a co-clustering approach (Multiclass Co-Clustering, MCoC) 
to find meaningful subgroups. The idea is to capture the relations of user-to-item, user-
to-user, and item-to-item simultaneously. For this purpose the authors define an embed-
ding of users and items into a common low-dimensional Euclidean space. The goal is to 
obtain close representations of users and items if they have a high rating. These embed-
dings are usually obtained using matrix factorization techniques  [24] or an intermediate 
layer in a deep neural network  [41]. Another co-clustering method is presented by [39], 
CCCF, Co-Clustering for Collaborative Filtering. It also uses the user-item matrix to infer, 
using a Bayesian point of view, a cluster of users and, at the same time, of items. Similar 
approaches involving the computation of a common embedding to map users and items 
into the same space has also been used in other fields, like education [32, 33] or the food 
industry [27].

2.1  Differences with our approach and contributions

Table 1 shows a summary of the encoding approaches typically used to represent users. 
The first one consists of using demographic data such as age, sex, address, etc. to represent 
and cluster users. This approach presents two weakness points: i) this information is some-
times missing or unreliable and ii) these features are not necessarily related to the prefer-
ences of the users. Although this encoding approach can be used in very large and sparse 
(in terms of evaluations) datasets, the latter issue is crucial because it renders useless clus-
ters, poorly related to the users’ tastes.

Another frequently used encoding consists of representing users by the ratings given to 
the items they assess. This representation clearly takes into account the users’ preferences. 

Table 1  This table shows the most common user encoding strategies found in recommender systems litera-
ture

The meaning of each column is the following: Based on user prefs.?: the encoding takes into account user 
preferences Needs learning?: there is a learning process needed to obtain the encoding. Useful under spar-
sity?: the encoding can be reliably used under high sparsity conditions of the user-item matrix. Lots of 
items?: the encoding can be used in problems with a large number of items. The last column contains some 
bibliographic references where these encodings were used

Based on Needs Useful under Lots of Example
Encoding user prefs.? learning? sparsity? items? references

Demographic features × × ✓ ✓ [8, 28]
User-item ratings ✓ × × × [4, 28, 29, 34, 36]
Embeddings ✓ ✓ ✓ ✓ [5, 27, 32, 33, 38, 40]
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However, it is unusable when the amount of items is very large because the user-item 
matrix tends to be very sparse, recording little intersection between items assessed by dif-
ferent users, thus, yielding nonsense clusters.

Finally, users can be represented by their projection in a vector space by means of an 
embedding learned from the preferences expressed by the users. This approach is very pop-
ular because of its ability to deal with very large datasets, despite their sparsity. However, 
users with few items rated, or whose ratings were mostly given to items rated by few users, 
may have little influence in the learning of the embedding, so their encoding can be rather 
inaccurate.

We propose to use an utility function to encode the users. This utility function, which 
is aimed at predicting an score given by a user to an item, will be obtained by means of 
a process which learns from the user preferences. The resulting encoding can be used in 
problems with a very large number of items and where the user-item matrix is extremely 
sparse. We show in section 6 that clustering approaches using user encodings based in our 
utility function outperform those using other encodings.

Let us recall that we do not present any new clustering technique in this paper, nor do 
we intend to present a new recommender system. To be precise, the main contributions of 
this work are: 

1. Several utility-based encoding variants of the users in such a way that their preferences 
regarding the items can be taken into account by any existing clustering method. This 
encoding approach can be used independently of the characteristics of the problem at 
hand.

2. A measure to assess the quality of the clusters so obtained. This measure takes into 
account the similarity of the users’ preferences grouped in the same cluster by means 
of the entropy.

3  The quality of clusters

The quality of a cluster is generally assessed by measures related to the similarity among 
their elements with respect to a certain property. Our main objective is to obtain clusters of 
users with similar tastes with respect to a collection of items, that is, we need to assess the 
homogeneity with respect to their preferences.

Let us consider a general setting of a problem typically approached by recommender 
systems, where the set of users is represented by U , and the set of items by I  . In this con-
text, an RS is a map from U to the set of non-empty subsets of I  ( RS: U ↦ I  ). And we 
will represent a clustering of users carried out by any means as Ω(U) = {U1,… ,Um}.

We are interested in assessing the quality of these m clusters with respect to the pref-
erences of the users they contain. These preferences are registered in a user-item matrix 
which stores the opinions of users (typically in rows) with respect to the items (in col-
umns). Users’ opinions can be registered in the form of numerical scores, like/dislike, etc.

Therefore, a straightforward approach to assess the clusters’ quality could be to evaluate 
the similarity of their opinions with respect to the items, as is usually done by collaborative 
filtering approaches. The problem is that, in general, this matrix is extremely sparse.

However, we can fill the gaps in the user-item matrix using a RS. The task of any RS is 
to infer a utility function,
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that hopefully estimates the score that a user u would give to an item i ( utility(u, i) ). Once 
the matrix has been filled using the utility function we can measure the similarity of users 
according to their (estimated) preferences about items.

This procedure can be very costly because of the usually huge number of items. To 
avoid this inconvenient, we can look for a representative subset of items and estimate the 
rates on them (using the utility function), instead of using the whole set. The items chosen 
as representatives will act as sensors, so a sensor that receives a high score from the utility 
function will be indicating that the items around it are preferable to others that are close 
to a sensor that receives a lower rating. Therefore, it is important to make an appropriate 
selection of the sensors (representative items) in such a way that they cover all the space in 
which the items are distributed. There are two possibilities:

– when we do not know any feature of the items we can take a sample of n items from the 
training set and use them as sensors, or

– when we know the properties of the items we can cluster them into n clusters according 
to those properties and use the centroids of each cluster as representative items.

In both cases we finish with the choice of n representative items that we will use as sen-
sors: {s1,… , sn}.

3.1  The measure

To formally define a measure of the quality of a clustering of users, let us assume the sim-
plest case: the values of items for users are “like” or “don’t like”, in symbols {1, 0} . Then, 
for each cluster of users Ui ∈ Ω(U) we can compute the proportion of likes for each sj of 
the sensors (centroids if we were able to cluster items or samples otherwise):

In an ideal situation, when all users in Ui have the same preferences, this proportion 
would be 0 or 1. We can assess the homogeneity of the preferences by computing the 
uncertainty by means of the entropy presented by [37]:

Not all clusters Ui will host the same number of users, so we may compute a weighted 
average with all the values for all the clusters to obtain a quality score for the whole clus-
tering. Thus, we define a quality loss of the clustering of users, Cl(U) , by

where |Ij| is the number of items in the Ij cluster (where sj is the centroid acting as a sen-
sor, when items were clustered), or 1 when the sensors (representative items) were sampled 
from I .

(1)utility ∶ (U, I) ⟶ ℝ,

p = Pr(1|Ui, sj) =
|{u ∈ Ui ∶ utility(u, sj) = 1}|

|Ui| .

(2)H(p) = −p log2(p) − (1 − p) log2(1 − p).

(3)Qloss(Ω(U)) =
∑
i,j

|Ui||Ij|
|U||I| H(Pr(+1|Ui, sj)),
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Obviously, the lower the value of Qloss , the better the clustering is, given that we are 
looking for clusters with low entropy.

It is important to remark here that the set of items I  can be drawn from a test set instead 
of a training set. Thus, quality loss  (3) can be used as any other evaluation measure in 
Machine Learning tasks.

4  User encoding

Sometimes we have descriptive information about users such as sex, age, zip code, etc. 
This information (raw features) may have some relationship with their tastes, for example, 
the interests of a middle-aged person are not the same as those of a teenager. Thus, we 
could make a clustering of users based on their features. However, these clusters are not 
taking into account the individual preferences of each person since they work with aggre-
gations. The clusters obtained with the raw descriptions of users, u(raw) , will be denoted by 
Ω(U(raw)).

In the previous section we have defined a reasonable measure to assess the quality of 
clusters, and inspired on it we may consider alternatives to u(raw) to represent users. For 
instance, we may represent them using a vector with the scores estimated by the utility 
function for each sensor. That is,

Thus, users will be represented by their (estimated) taste with respect to a subset of items 
(sensors). The clustering of users so obtained will be denoted by Ω(U(uti)).

These two approaches, raw and utility-based, are the building blocks of other options. 
For instance, we may combine both representations. In symbols, we may represent users by

where ⊕ denotes the direct sum or concatenation of two vectors. This gives rise to a clus-
tering that we will denote as Ω(U(raw⊕uti)).

Finally, the utility-based representation of users (4) can be weighted by the number of 
items represented by each sensor (if the sensors are centroids of clusters of items, provided 
we have previously obtained such clusters). Thus, we can compute a vector of weights,

and then we can use it to create a weighted version of their utility-based representation,

where ⊙ is the element-wise product, also known as the Hadamard product. We denote by 
Ω(U(w⊙uti)) the clustering so obtained.

Note that, if the sensors (representative items) were randomly drawn from the set of items, 
the value of |Ij| will be 1. This causes all the clusters to have the same weights ( 

√
1

|I|  ) and the 
results obtained by the user encodings (4) and (7) are equivalent. Thus, the encoding (7) only 
makes sense when the properties of the items are available and a proper clustering can be 

(4)u
(uti)

←

[
utility(u, sj) ∶ j = 1,… , n

]
.

(5)u
(raw⊕uti)

← u
(raw)

⊕ u
(uti),

(6)w ←

⎡⎢⎢⎣

�
�Ij�
�I� ∶ j = 1,… , n

⎤
⎥⎥⎦

(7)u
(w⊙uti)

← w⊙ u
(uti),
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carried out, in order to select the centroids as sensors and to compute a sensible value for the 
weights, w.

Other user encoding approaches have been frequently used in the literature. The most 
basic encoding can be obtained directly from the user-item matrix containing the ratings 
given by the users to the items. Using this approach, users will be represented by the row 
vectors of the user-item matrix. This encoding is typically used in user-based collabora-
tive filtering tasks. When the number of items is large, this encoding can be inapplicable, 
not only due to the size of the vectors, but because the sparsity of the matrix becomes very 
large, making this encoding useless due to the lack of intersections in the assessment of 
items. We will refer to users encoded in this way as u(rate) , and the resulting clustering as 
Ω(U(rate)).

Sometimes we may be interested in knowing if a user has interacted with an item, even 
thought the item was not rated at all. For example, an online store can be interested in the 
items that a user has been viewing, in order to provide a recommendation of related products 
(not necessarily similar but related in some way). For this purpose, the visits to the items must 
be recorded and then used, without even known the ratings that the user would eventually give 
to the items. These visits can be stored in a binary user-item matrix where we will have 1’s to 
indicate interactions between users and items, and 0’s to denote the lack of interaction. Using 
the row vectors of this binary matrix we have another encoding, u(int) , which will lead us to 
another clustering, Ω(U(int)).

There is another encoding that has been used recently in the literature, which consists 
in computing an embedding to project the original representation of users in a new vec-
torial space. These projections are obtained attending to the preferences of users over 
the items. We will denote this encoding as u(emb) , and the resulting clusters obtained in 
this embedding will be denoted as Ω(U(emb)) . The embedding can be obtained using deep 
learning [2, 7, 9, 26, 41] or matrix factorization techniques [27, 32, 33]. In this paper, 
since we use matrix factorization to obtain the utility function (as we will see in the 
next section), we have decided to use this same technique to calculate the embedding 
that projects users in this new vectorial space. We have made this decision since deep 
learning based models usually require learning a larger number of parameters as well 
as fitting a larger number of hyperparameters, as opposed to matrix factorization which 
generates simpler models. We are aware that by means of a model based on deep learn-
ing we could obtain a slightly better utility function than the one obtained using matrix 
factorization, however, we have decided to sacrifice this improvement in the results that 
our proposal could have for the sake of a greater simplicity of the method presented in 
the paper.

In the experiments reported at the end of the paper, we show the quality loss (3) of all these 
clustering approaches in six public-domain recommender system benchmarks, as well as in 
the Outbrain dataset mentioned in the Introduction.

To conclude this section, let us remark that our proposed encodings u(uti) and u(w⊙uti) 
may not use any feature values of users: the clusters Ω(U(uti)) and Ω(U(w⊙uti)) can be com-
puted from a simple one-hot representation of the users if we do not have access to the 
users’ features. Therefore, the method we are proposing in this paper is able to encode 
users without knowing any user/item feature, allowing us to obtain reliable clusters 
afterwards.
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5  Formal setting for a recommender system

In order to evaluate and compare the different representations suggested previously, we imple-
mented a matrix factorization based Recommender System to infer a utility function able to 
predict the preferences of users. Let us recall that the utility function will allow us to build 
several user representations and to evaluate the quality of the clusters depending on that 
representations.

Firstly, we present the formal framework for a typical recommender system which 
learns to predict whether a given user would like a given item. Thus, the recommendation 
problem is posed as a classification task. Then, we extend the framework to deal with the 
recommendation task from a preference learning perspective, in which we will learn from 
the elections made by the users when they have to choose one item among several avail-
able. In both cases we use a matrix factorization approach but any other technique can be 
used, e.g., a deep learning approach, provided it yields an utility function (1).

Let D be a dataset containing the interactions of users with items. We assume that both 
users and items have a vectorial representation. The elements of D are tuples of 3 elements

where u ∈ U is a vector representing the user and i ∈ I  is a vector representing an item 
evaluated by u . These vectors can be built from the features of the users and items (in the 
case of content-based recommendation systems) or they can be represented by simple one-
hot vectors, in case those features are unknown. For further references, U will be the set of 
users and I  will be the set of items.

Following a matrix factorization approach, a first attempt to define the utility of an item 
i for a user u can be given by a function

Here, W and V are matrices that must fulfill the constraints gathered in D , and the rating 
given by the utility function should be positive when the user likes the item and negative 
otherwise. Therefore, to learn the utility function, we use a logistic regression approach. 
Then, we consider the utility given by

where � is the sigmoid function,

Therefore, using a maximum likelihood approach, we need to solve the following opti-
mization problem to find the matrices W and V:

where softplus(x) = ln(1 + ex) , and � is a regularization factor used to set up a trade-off 
between the classification errors and the complexity (in a broad sense) of the parameters 
that we are learning, i.e., W and V.

(8)D = {(u, i, {1, 0}) ∶ u evaluates i and likes (1) or dislikes (0)},

(9)utility0(u, i) = ⟨Wu,Vi⟩.

(10)

utility(u, i) =Pr(1�u, i)
=�(utility0(u, i))

=�(⟨Wu,Vi⟩),

�(x) =
1

1 + e−x
.

(11)argmin
W,V

�
D

softplus(−⟨Wu,Vi⟩) + �

2

���W��2 + ��V��2�,
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Once we have learned the utility function (10) we can use it to estimate the opinion 
of any user with respect to any item. In particular, we are going to use it to infer the 
values that each user would give to each of the representative items (sensors) obtained 
from the set of items I  . These values will then be used to build alternative representa-
tions of users, aimed at obtaining more homogeneous clusters in terms of users’ prefer-
ences, as stated in Section 4. Figure 1 shows the overall approach, which we have used 
to compare the performance of the different user encodings in several public domain 
datasets commonly used as benchmarks in recommendation tasks. The results of the 
comparison are discussed in Section 6.1.3.

Fig. 1  Overall approach: we infer the estimated preferences of the users on a subset of representative items 
(sensors) using the utility function learned by the recommender system. The filled matrix gathers the 
(inferred) behavior of users, which can be used to encode the users and favor the clustering regarding their 
preferences. The graph shows how our proposed encodings are obtained, as well as other commonly used 
representations
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5.1  Formal setting for a preference‑based recommender system

We can apply the framework presented previously to recommendation tasks based on prefer-
ence learning. In this case we do not know the ratings of items given by users. Instead, we 
only know that the user chose an item among a (usually small) set of items, but we do not 
know/have the rating, neither of the chosen item nor of the others.

In order to test our proposal in a preference learning scenario, we faced a problem posed 
by the company Outbrain through the Kaggle platform, which consists of predicting the 
promoted link that a reader will choose after reading a piece of news in a web site. In the 
following we adapt our previously presented framework to the specific characteristics of 
this task.

Let D be, in this case, a dataset that records the interactions of readers with promoted 
links that are suggested when reading a digital publication. We assume that both readers 
and documents have a vectorial representation. The elements of D are tuples of 4 vectors

where r is the representation of the reader, d is the document that r reads while a set of 
promoted links are suggested (the reader is only presented with between 4 and 6 promoted 
links and can click at most one of them), l1 is the content of the link clicked by r , and l2 is 
the content of another link that was not clicked.

In order to predict the link that a user is going to click, we should consider the reading 
context. Thus, each user will be represented by the concatenation of its own representation 
(based on features or a simple one-hot) together with the vector representing the document 
the user is reading, u = r⊕ d , when they click on a promoted link. Thus, we include the 
reading context as part of the user profile. For further references,

The utility function (10), must be redefined as the utility of a link l for a reader r who is 
reading the news item d,

where u ∈ U and i ∈ I . As indicated in Section 5, W and V are matrices which must fulfill the 
constraints gathered in D ; in this case, the utility of the chosen link, l1 , must be higher than that of l2,

Hence,

This approach for learning preferences, which was used in [3, 17, 21, 27], reduces the 
learning task to a binary classification.

The consequences of inequality (14) are very useful. From the point of view of RS, we 
have a dataset where items are differences of the vectorial representation of the promoted 
links. Thus, we can redefine the item set as

(12)D =

{
(r, d, l1, l2) ∶ r is reading d and

clicks in l1 instead of l2

}
,

(13)U = {(r⊕ d) ∶ r is a reader, d is a document}.

(14)utility0(u, i) = utility0(r⊕ d, l) = ⟨W(r⊕ d),Vl⟩,

⟨W(r⊕ d),Vl1⟩ > ⟨W(r⊕ d),Vl2⟩, ∀(r, d, l1, l2) ∈ D.

(15)⟨W(r⊕ d),V(l1 − l2)⟩ > 0.

I = {(l1 − l2) ∶ l is the representation of a link}.
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Finally, the rating given by a user to such items (Eq. 15) is positive if the reader prefers 
the first link to the second one, and negative in the other case. Therefore, we adapt the defi-
nition of the utility function (10) as follows:

Note that given the symmetry of the sigmoid, � , and the constraint (15), we only need to 
consider positive examples. Then, the optimization problem to find the matrices W and V 
is as follows:

The results obtained using different user encodings in this problem are presented and 
discussed in Section 6.2.2.

6  Experimental results

This section is devoted to present the experimental results obtained in clustering tasks, in 
the context of recommender systems, in order to compare the performance of the differ-
ent user encodings presented in Section 4. The section is organized in two parts: the first 
one shows the results obtained on a group of public-domain datasets, commonly used as 
benchmark for recommender systems. The second one shows the results obtained on the 
Outbrain dataset which poses a different learning task, as explained in Section 5.

6.1  Results obtained in the benchmark

In the following we present the most relevant characteristics of the datasets used as bench-
mark. We also reveal some implementation details and, finally, we present and discuss the 
results obtained in the experimentation.

6.1.1  Description of the datasets

We have collected the most remarkable characteristics of the datasets used in this bench-
mark in Table 2. Notice the variety in the number of users and items. Also, the number 
of evaluations made by users is scarce in all but one dataset, which results in very sparse 
user-item matrices. On the other hand, our approach is able to deal with problems whose 
user/item features are unavailable, so we have also included some datasets with this lack 
of information, in order to evaluate the performance of the different encoding approaches.

– MovieLens1 [16]. These datasets collect the ratings given to movies, with the restric-
tion that each user rated at least 20 movies and each movie was rated by at least 20 

(16)

utility(u, i) = utility(r⊕ d, l1−l2)

= Pr(1�r, d, l1 − l2)

= 𝜎(utility0(r⊕d, l1−l2))

= 𝜎
�⟨W(r⊕d),V(l1−l2)⟩

�
.

(17)argmin
W,V

�
D

softplus
�
−⟨W(r⊕ d),V(l1 − l2)⟩

�
+

𝜈

2

�‖W‖2 + ‖V‖2�.

1 https:// group lens. org/ datas ets/ movie lens/

https://grouplens.org/datasets/movielens/
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users. We have descriptive information of the users (age, gender, occupation, zipcode) 
and the items (one or more genre(s) of the movie, among 18 possible) in the two data-
sets used. The zipcode was transformed to GPS coordinates (latitude and longitude). 
The ratings range from 1 to 5.

– Book-Crossing2 [42]. This dataset is made of the ratings of users to books. The users 
are described by their age and location, and the books by author, publisher and year 
of publication. In this case, the location is given by the name of the city, which was 
recorded very imprecisely and not curated at all, thus making it useless. Moreover, the 
age of aproximately one third of the users is unknown, so the mode was imputed. Most 
of the users and books in the dataset participated only in one evaluation so we filter the 
dataset, originally containing more than 270,000 books and users, leaving only those 
users with at least 5 evaluations, and books with at least 10 evaluations. The resulting 
size is reflected in the table. The ratings of the books range between 1 and 10.

– CiaoDVD3 [13]. This dataset is also about rating movies, in this case in DVD format. 
The dataset contains no information about the users and only the genre(s) of the mov-
ies. We filtered out the users and movies with no ratings, resulting in the figures shown 
in the table. The ratings range from 1 to 5.

– Jester4 [11]. This dataset contains ratings of jokes. There is no information at all about 
users and items (jokes), only their identification number. The ratings range from -10 to 
10.

– Filmtrust5 [14]. Another movie rating dataset, in which there is no information about 
users and items. The ratings vary from 0.5 to 4.

6.1.2  Implementation details

In order to create the dataset D (8) for each problem, we built the triplets (u, i, x) , where x 
is either 1 (like) or 0 (dislike) depending on the rating given by user u to item i . Following 
[18], we considered ratings below 4 as dislike and ranking greater or equal to 4 as like for 
the MovieLens and CiaoDVD datasets. For datasets with different ratings range we tried 
to get a balance between likes and dislikes. Thus, in Book-Crossing all ratings below 7, 

Table 2  Main characteristics of the public-domain datasets used in this benchmark

Data set #users #items #ratings density user feat. item feat. likes

MovieLens100K 943 1,682 100,000 6.30% ✓ ✓ 56.8%
MovieLens1M 6,040 3,838 1,000,209 4.26% ✓ ✓ 55.8%
Book-Crossing 6,029 5,633 92,449 0.27% ✓ ✓ 63.0%
CiaoDVD 17,615 16,121 72,665 0.03% × ✓ 44.7%
Jester 73,421 100 4,136,360 56.34% × × 58.4%
Filmtrust 1,508 2,071 35,497 1.14% × × 45.6%

2 http:// www2. infor matik. uni- freib urg. de/ ~czieg ler/ BX/
3 https:// guogu ibing. github. io/ librec/ datas ets/ CiaoD VD. zip
4 https:// goldb erg. berke ley. edu/ jester- data/
5 https:// guogu ibing. github. io/ librec/ datas ets/ filmt rust. zip

http://www2.informatik.uni-freiburg.de/%7ecziegler/BX/
https://guoguibing.github.io/librec/datasets/CiaoDVD.zip
https://goldberg.berkeley.edu/jester-data/
https://guoguibing.github.io/librec/datasets/filmtrust.zip
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in Jester all negative values and in Filmtrust all ratings below 3.5 are considered dislike. 
Table 2 shows the final class balance for each dataset.

The vectors representing the users, u , and the items, i , are built from the information 
available in each case. The features latitude, longitude, age and year were standardized 
where available. For those datasets with no information other than the identification of 
users and items we used a simple one-hot codification.

We split the dataset D into train and test, reserving 25% of the items together with their 
ratings for testing. The utility function (10) was learned using a TensorFlow [1] implemen-
tation with the following hyperparameters:

• The dimension of the embedding where users and items are projected was 256, i.e., the 
number of rows of matrices W and V (see Section 5),

• The regularization factor (11) was � = 10−5,
• The batch size was set to 512,
• The learning rate was 10−4 and,
• To solve the optimization problem (11) we used Adam [23].

Regarding the clustering, we applied the K-means implementation of [35] (Mini-batch 
K-means) with a batch size of 1024 to cluster the users using all the encoding options 
described in Section 4. The results reported were obtained with 10 clusters.

To obtain the sensors (representative items), we performed a clustering in the problems 
which included some sort of description of the items. We used the same algorithms and 
hyperparameters as those used to cluster users. In the rest of problems, where clustering 
makes no sense due to the lack of items’ features, we randomly selected 10 items. Thus, in 
these experiments, all published results were obtained using 10 sensors ( n = 10).

6.1.3  Results and discussion

In Table 3, we report the results achieved in terms of Qloss , the quality loss (3), for each of 
the user encodings presented in Section 4. Let us recall that we are measuring the average 
uncertainty, so the lower is the better.

Let us recall that Ω(U(raw)) and Ω(U(raw⊕uti)) cannot be computed for those datasets with 
unavailable user information. When the information of the items is missing, Ω(U(w⊙uti)) 
cannot be computed either.

Table 3  Quality loss (3) achieved by the different user encodings for each benchmark dataset (the lower, the 
better). The name of each column indicates the encoding approach used

Data set Ω(U(raw)) Ω(U(raw⊕uti))   Ω(U(uti)) Ω(U(w⊙uti)) Ω(U(emb)) Ω(U(rate)) Ω(U(int))

MovieLens100K 0.3995 0.3259 0.2608 0.2574 0.3784 0.4632 0.4618
MovieLens1M 0.1846 0.1846 0.1128 0.1045 0.1861 0.2159 0.2157
Book-Crossing 0.7436 0.6953 0.2690 0.2044 0.7333 0.7540 0.7551
CiaoDVD – – 0.7473 0.7382 0.7737 0.9962 0.9963
Jester – – 0.2822 – 0.2933 0.6077 0.8870
Filmtrust – – 0.8896 – 0.8875 0.9745 0.9766
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The best clusters, in terms of Qloss , are Ω(U(w⊙uti)) for all datasets where u(w⊙uti) can be 
computed. The second best clustering in these datasets is Ω(U(uti)) . Moreover, it is the best 
in one of the two datasets with no user information (Jester), and obtains a very similar 
result with respect to Ω(U(emb)) , which is the best in the other dataset (Filmtrust).

On the contrary, the worst results are obtained when using the user encodings u(rate) and u(int) , 
which makes sense because these encodings register almost no intersection (relation) between 
users due to the high sparsity of the user-item matrices. The only dataset in which Ω(U(rate)) is 
clearly better than Ω(U(int)) is Jester, which has a much denser user-item matrix. This also makes 
sense, given that a rating-based encoding records a richer information regarding the tastes of the 
users than encoding using only a binary value to indicate the interaction of users with items.

Using the u(raw) encoding is not a good option either. The results with the clustering 
Ω(U(raw)) are not the worst, but they are far from the best. Nevertheless, we observe that this 
encoding yields better results in the MovieLens datasets than in the Book-Crossing dataset. 
This is due to the fact that the users’ description in the latter is poorer than in the for-
mer (neither gender nor occupation was registered, and the age is missing for many users). 
Notice also that incorporating the utility in this encoding, i.e. using u(raw⊕uti) , improves the 
results in two out of three datasets.

In view of the results of this benchmark, we recommend the u(w⊙uti) encoding as long 
as items’ descriptions are provided (they are needed to weight the utility function). Other-
wise, we propose to use the u(uti) encoding.

Finally, we want to highlight that the improvement in the clustering performance 
achieved with the u(w⊙uti) encoding is higher when the user-item matrix is very sparse.

6.2  Results in a preference learning context

In the following we present the performance achieved by several user encodings in cluster-
ing tasks on a dataset which has a couple of remarkable differences with respect to those 
used as benchmark in the previous section:

– Users did not rate any item; instead, they chose the most appealing one among a small 
set of items, and

– The huge amount of items together with the extremely low density of the user-item 
matrix makes the u(rate) and u(int) encodings unusable.

Firstly, we describe the main characteristics and the preprocessing of the dataset used in 
the experiments. Then, in Section 6.2.2, we report the scores achieved by the clustering 
algorithm for several user encodings. These results have been compared using the Berg-
mann’s test throughout the data, which has been split in datasets of 24 hours of readers’ 
interactions with digital publications.

6.2.1  Description of the outbrain dataset

In the experiments reported in this section we used a dataset deployed by the company Out-
brain6 for a Kaggle challenge7. It is a sample of users’ page views and clicks on multiple 

6 https:// www. outbr ain. com
7 https:// www. kaggle. com/c/ outbr ain- click- predi ction/ data

https://www.outbrain.com
https://www.kaggle.com/c/outbrain-click-prediction/data
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publisher sites around the world in June 2016, between the 14th and the 28th. The bottom 
of the pages read by the users include a group of links to promote other readings (usu-
ally 5 links). Most of the times, the readers do not click on any link, but sometimes they 
access one of them. Each viewed page or clicked recommendation is further accompanied 
by some semantic attributes.

In this article we will work only with those groups of promoted links in which some 
reader has clicked at least on one link. Thus, we will have a total of 559,584 promoted links 

(a)

(b)

Fig. 2  These graphs illustrate the enormous sparsity in the data. Figure 2a depicts the number of readers vs. 
the number of accesses to the promoted links; for example, 17.5 million readers (88.4% of the total) clicked 
only one promoted link. Figure 2b shows the number of promoted links vs. the number of times they were 
accessed; for example, 224,814 links (46.9% of the total) do not have any access. To facilitate the reading 
of the graph, we only show data with less than 10 accesses. In the case of readers, only 0.024% have made 
more than 10 accesses to promoted links and, in the case of links, only 10.7% of the total promoted links 
received more than 10 accesses
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and 19,794,967 readers who have accessed any of those links. In total, 23,120,126 accesses 
were registered, which means that only 0.00021% of the co-occurrence matrix between 
readers and promoted links is filled. It is therefore a recommendation task where the user-
item matrix is extremely sparse compared to other recommendation tasks commonly used 
in the literature (see Table 2). For this reason, traditional collaborative filtering encodings 
( u(rate) and u(int) ) cannot be applied in this problem.

We can see in Fig. 2a that 17.5 million readers (88.4% of the total) accessed only one 
promoted link. The percentage drops dramatically to 8.6% for users who have accessed 2 
links. Figure 2b shows that 224,814 promoted links (46.9% of the total) do not have any 
access and 18.6% of them were accessed only once.

These numbers are useful to highlight the difficulty of the task we deal with. Traditional 
collaborative filtering approaches, which typically use cosine or correlation-based similar-
ity measures, are not applicable in this problem due to its high sparsity: the vast majority of 
pairs of users will have no common links, thus yielding 0 similarity score. This information 
is completely useless in order to cluster users with respect to their preferences.

We used readers, documents and promoted links as defined in Section 5.1. Their rep-
resentations are composed as a concatenation of the representation of some fields listed 
in Table 4. Latitude and longitude are represented by a single real number corresponding 
to the GPS coordinates of the center of the State or Country. We normalize these values 
in order to keep them between 0 and 1. The other fields are binary vectors that codify the 
presence or not of the features that are present in at least 2500 documents. These vectors 
may have several ones, for instance when a document has several topics, entities or cat-
egories. After the binary representation, we multiply them by the confidence that Outbrain 
assigns to those values (a value in the range [0, 1]). Table 4 shows the dimensions of all the 
fields used in the experiments.

As we mentioned earlier, each group of promoted links is usually made up of 5 links, 
where the reader accesses the link that most attracted his/her attention and does not access 
the rest. Thus, we can generate several elements for the set D (12) indicating that the link 
accessed is preferable for the reader over the rest of links in that group. After analyzing all 
the accesses recorded, the set D was formed by 70,267,138 elements.

For the experiments we divided the dataset in blocks of 24 hours. So, we obtained 13 
datasets that were finally split trying to have between 90% and 95% for training and the rest 

Table 4  Documents include 
information about the publisher, 
category, entity and topic, as 
well as Outbrain’s confidence 
in each respective relationship. 
Each field is represented as a 
binary vector multiplied by the 
corresponding confidence. We 
only used features that appear in 
at least 2500 items

Field Dimension Comment
document 662

publisher 190 weighted by the confidence
category 83 weighted by the confidence
entity 99 weighted by the confidence
topic 290 weighted by the confidence
reader 5
latitude 1 normalized in [0, 1]
longitude 1 normalized in [0, 1]
platform 3 3 possible platforms
link 699
advertiser 37
document 190+83+ 99+290 

=662
weighted by the confidence
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for testing. According to these specifications, the sizes of the resulting datasets are shown 
in Table 5.

Regarding the user clustering task, we set the corresponding hyperparameters as indi-
cated in Section 6.1.2, with the exception of the number of target clusters, which in this 
case was 100 due to the large amount of users and items (promoted links) in the datasets 
(we also checked with different numbers of clusters, obtaining similar results). To obtain 
the representative items we also performed a clustering because they were described by 

Table 5  Sizes of datasets 
(number of examples) used in 
the experiments reported in this 
section

Day train test

1 5,500,000 538,092
2 5,000,000 371,410
3 5,250,000 325,203
4 5,000,000 244,993
5 4,250,000 314,621
6 4,250,000 337,243
7 5,500,000 532,854
8 5,250,000 434,170
9 5,250,000 518,113
10 5,250,000 497,922
11 5,250,000 379,320
12 4,500,000 336,755
13 4,750,000 436,442

Table 6  Quality loss (3) achieved with each dataset (each day) by the different user encodings (the lower, 
the better). The name of each column indicates the representation used for users. The bottom line shows the 
average ranking position in the performance ranking of the five encodings. In brackets the position in the 
ranking of each encoding for each day

Day Ω(U(raw)) Ω(U(raw⊕uti))   Ω(U(uti)) Ω(U(w⊙uti)) Ω(U(emb))

1 0.2978 (5) 0.2579 (2) 0.2582 (3) 0.2543 (1) 0.2814 (4)
2 0.2924 (5) 0.2445 (3) 0.2433 (2) 0.2388 (1) 0.2740 (4)
3 0.3651 (5) 0.3029 (2) 0.3040 (3) 0.3012 (1) 0.3369 (4)
4 0.2558 (5) 0.2185 (3) 0.2182 (2) 0.2166 (1) 0.2381 (4)
5 0.2487 (5) 0.2173 (2) 0.2188 (3) 0.2123 (1) 0.2392 (4)
6 0.3232 (5) 0.2764 (2) 0.2772 (3) 0.2683 (1) 0.3013 (4)
7 0.3460 (5) 0.3047 (2) 0.3065 (3) 0.3002 (1) 0.3352 (4)
8 0.2816 (5) 0.2453 (3) 0.2443 (2) 0.2375 (1) 0.2673 (4)
9 0.3492 (5) 0.3100 (3) 0.3066 (2) 0.3021 (1) 0.3300 (4)
10 0.3124 (5) 0.2680 (2) 0.2706 (3) 0.2645 (1) 0.2941 (4)
11 0.2932 (5) 0.2433 (2) 0.2434 (3) 0.2367 (1) 0.2693 (4)
12 0.2947 (5) 0.2502 (3) 0.2478 (2) 0.2426 (1) 0.2736 (4)
13 0.2818 (5) 0.2368 (2) 0.2377 (3) 0.2303 (1) 0.2657 (4)
Avg. rank pos. 5.00 2.38 2.62 1.00 4.00
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some features (otherwise, we have had to sample the set of items to randomly chose the 
sensors, and we could not have used the u(w⊙uti) encoding).

6.2.2  Results and discussion

In Table 6, we report the results achieved for five out of the seven user encodings presented 
in Section 4. We cannot use neither u(rate) nor u(int) mainly because of the extremely high 
sparsity of the user-item matrix, with almost no items in common between users. Moreo-
ver, the number of different items in the datasets will pose a serious issue regarding the 
size of the vectors to represent users.

If we rank the encodings with respect to the scores obtained in each dataset (each day 
represents a dataset), we observe that the u(w⊙uti) encoding is always in the first position 
of the ranking, yielding the lowest values of Qloss , while the u(raw) description of users is 
always in the 5 th position, with the worst results. The differences in ranking scores of the 
u(w⊙uti) representation and the other methods are significant with p-value=0.05 using the 
Bergmann’s test (as proposed by [10]).

The average ranking of Ω(U(uti)) is 2.62, while the hybrid Ω(U(raw⊕uti)) reaches slightly 
better ranking, 2.38, although the difference is not statistically significant. However the qual-
ity of both clusterings is significantly better (with p-value=0.05) than clustering Ω(U(emb)).

As previously mentioned, the u(w⊙uti) representation can only be calculated when the 
sensors (representative items) are obtained through a cluster of items, as has been done 
in this experiment. If the sensors were taken randomly from the set of items, then the best 
representation we could have would be u(uti) , because the quality of Ω(U(uti)) is similar to 
that of Ω(U(raw⊕uti)) and it has proven to be better in the benchmark results of Section 6.1.3.

The u(raw) encoding is always the worst, surely motivated by the scarce information of the 
users: only the platform (type of device used for browsing and reading) and its GPS coordinates. 
If there were more and better user information, maybe the quality of the Ω(U(raw)) clustering 
could have been improved, although we do not expect it to outperform the rest of the encodings 
because the users’ characteristics are not normally related to their individual preferences.

7  Conclusions

We have presented a method to assess the quality of clusters of users in the context of 
recommender systems. This method can be applied in any recommendation dataset, but it 
is especially relevant for those problems in which the user-item matrix has extremely few 
data. The method relies on an entropy-based measure which is computed using a probabil-
istic estimation of the preferences of the users in the cluster with respect to a reduced group 
of representative items (sensors).

Inspired on the quality measure, we have proposed some alternatives to encode users 
employing also the probabilistic estimation of their tastes. The estimation is obtained with 
a utility function, learned using a recommender system.

We tested our proposal using a typical matrix factorization based recommender system 
to learn the utility function on six public domain datasets, as well as a preference learn-
ing based RS on an additional problem which comprises 13 very large datasets with an 
extremely sparse user-item matrix.
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The experiments let us conclude that it is feasible to apply our methodology in very large 
datasets. Moreover, the results lead us to advocate for a utility-based encoding of users in the 
context of recommender systems, when our aim is to obtain homogeneous clusters with respect 
to the preferences of users. More specifically, we advocate for the use of the u(w⊙uti) encoding as 
long as the characteristics of the items are available, and for the u(uti) encoding otherwise.

Finally, we would like to highlight that it is possible to take advantage of the duality 
between users and items. Therefore, the methodology presented in this paper to cluster 
users can be easily adapted to cluster items based on the preferences that users have over 
them (in this case, it would be necessary to select a set of representative users who would 
act as sensors). This can be interesting to find groups of items (products, services, etc.) 
very heterogeneous with respect to their characteristics, but very homogeneous regarding 
the kind of user that could be eventually interested in them.
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