
Vol.:(0123456789)

https://doi.org/10.1007/s11042-021-11296-y

1 3

A domain specific language notation for a language learning
activity generation tool

Gabriel Sebastián1 · Ricardo Tesoriero2 · Jose A. Gallud2

Received: 6 July 2020 / Revised: 30 May 2021 / Accepted: 9 July 2021

© The Author(s) 2021

Abstract
Globalization has increased the need for society to master new languages. This need has
encouraged the launch of many applications dedicated to language learning. This paper
presents a graphical notation for a domain specific language to represent language learning
activities. It describes how this notation enables developers to represent language learn-
ing activity characteristics using workflow, presentation, content, media and activity model
conforming a metamodel that defines the abstract syntax of the domain specific language.
This notation is implemented as part of an integrated development environment to build
model-based applications. Finally, this proposal is evaluated with a framework that uses
the cognitive dimensions of notations for notational systems. The proposed graphic dia-
gram editor exceeds the experience that the user has with the reflexive model editor. In
relation to the creation and editing of workflow models and presentation/activity models,
the proposed graphical notation its more intuitive and easy to maintain visually than the
traditional reflexive tree notation used by many model-based development frameworks.

Keywords Model-driven architecture · Software Engineering · Domain Specific
Language · Language-learning Applications

1 Introduction

Globalization has increased the need for society to master new languages. This need has
encouraged the launch of many applications dedicated to language learning. These applica-
tions are usually developed for the various work environments that are the product of this
globalization. The most popular platform to develop applications of these characteristics is

 * Gabriel Sebastián
 gabriel.sebastian@uclm.es

 Ricardo Tesoriero
 ricardo.tesoriero@uclm.es

 Jose A. Gallud
 jose.gallud@uclm.es

1 Albacete Research Institute of Informatics, Universidad de Castilla-La Mancha, Albacete, Spain
2 Computing Systems Department, Universidad de Castilla-La Mancha, Albacete, Spain

Published online: 3 September 2021

Multimedia Tools and Applications (2021) 80:36275–36304

/

http://orcid.org/0000-0002-1156-8000
http://orcid.org/0000-0002-4643-7094
http://orcid.org/0000-0002-6616-8055
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-021-11296-y&domain=pdf

1 3

undoubtedly the Web. The Web not only allows easy access to resources, but also allows
interaction through learning communities.

There are different learning methods. Formal learning is the strictly academic one that
was traditionally applied in classrooms, although there are currently on-line alternatives
(i.e. e-learning and b-learning). On the other hand, informal learning has the main char-
acteristics of not being structured and support different learning rythms. Finally, unlike
informal learning, non-formal learning is structured; and unlike the formal one, it is not
strictly academic. As in formal learning, learning resources are produced professionally
[41]. These types of non-formal materials are often designed for educational purposes with
a structured progression. While this form of learning can be offered as in-class, it is more
common to find it on-line (eg Busuu1, Duolingo2, Babbel3, etc.).

The development of such applications is complex due to the diversity of language learn-
ing methodologies, the variety of execution environments (desktop, mobile and web) and
the amount of different technologies that can be used. The preparation of learning exercises
to implement a language learning application is a complex, tedious and repetitive process,
which involves the repetition of resource management tasks, the generation of duplicate
code that is difficult to maintain and prone to errors, etc. These problems are further aggra-
vated by the large number of deployment platforms in which applications must be available
(e.g. iOS, Linux, Windows, Web, etc.).

A survey of the published literature [1] revealed that much of it justified the cognitive
advantages of visual languages in terms of concepts from popular psychology such as the
left-brain right-brain dichotomy. This was in spite of published research into the usability
implications of diagrammatic notations, dating back to the 1970s [14]. Empirical investiga-
tions of notation usability have tended to find that while diagrams are useful in some situa-
tions, they are not efficient in others (e.g. [19]).

Given these circumstances, languages, tools and techniques have emerged in recent
years to assist designers to support instructional design4, either in Spanish or English, of
learning scenarios [23] that include the configuration of Learning Management Systems
(LMS) or Technology Enhanced Learning (TEL) systems.

As we will see later, there are many approaches that support models and visual lan-
guages through editors that allow designers to express the mental and conceptual models
to communicate the work to be developed [24]. Thus, the complexity of creating learning
exercises is increased by the complexity of creating tools that allow manipulating visual
artefacts through specific notations associated with specific domain languages capable of
representing them, also known as Visual Instructional Design Languages (VIDL) .

These tools should be designed to help professionals specify learning scenarios with
specific terminology and graphic formalism. In addition, these specifications must be inter-
pretable by computers.

Therefore, the objective of this proposal is the definition and implementation of a
graphic language capable of representing activities to learn languages. In particular, the
goal is the development of a language learning methodology editor capable of constructing
representations of language learning activities that be interpretable by computers regard-
less of the execution platform.

1 Busuu home page. URL = https:// www. busuu. com/ (last access 05/04/2020)
2 Duolingo home page. URL = https:// www. duoli ngo. com/ (last access 05/04/2020)
3 Babbel home page. URL = https:// www. babbel. com/ (last access 05/04/2020)
4 Instructional design. URL = https:// es. wikip edia. org/ wiki/ Instr uctio nal_ Design (last access 05/04/2020)

36276 Multimedia Tools and Applications (2021) 80:36275–36304

https://www.busuu.com/
https://www.duolingo.com/
https://www.babbel.com/
https://es.wikipedia.org/wiki/Instructional_Design

1 3

The potential end users of this editor would be both, language teaching academics and
people who are familiar with TEL systems. The editor will assist them in modelling and
specifying methodologies to increase the reuse of learning resources (e.g. workflow , mul-
timedia resources, exercises, etc.).

To ensure that the specifications are interpretable by computers supporting differ-
ent execution platforms, we will apply an approach based on Domain Specific Modelling
(DSM).

The implementation of the DSM will be based on the specification of an abstract syn-
tax based on the metamodel presented in [36] and explained in detail in [37], which sup-
ports the development of language learning applications that separates the definition of
language learning methodologies in 5 concerns. These 5 concerns structure the learning
methodologies in terms of concepts, multimedia resources, user interface, activities and
their workflow.

Thus, the specific syntax associated with this metamodel is implemented based on the
graphic editor proposed in this work. Models built with the editor are used to generate the
source code of the language learning application modeled with the editor using transforma-
tion rules expressed in the ATL and ACCELEO languages, maximizing code reuse and
minimizing maintenance costs.

The structure of this article is as follows. In Sect. 2 we will see how this work relates to
MDA/MDE technologies, and we will discuss about work related to our proposal. The aim
of Sect. 2.3 is introducing the reader to the domain of language learning activities which
are implemented as part of the language learning methodologies deployed in the Internet.
In Sect. 3 we will present the graphical notation for the abstract syntax defined in the meta-
model shown in Fig. 1 and presented in [37].

Section 4 presents the evaluation of the notation described in Sect. 3. In Sect. 5 we
define a set of metrics to evaluate the proposed editor usability using traditional approaches
in order to improve the validation process of the evaluation based on notational dimen-
sions. In Sect. 6 we discuss our proposal, and the results of the evaluation and the relation-
ships between some of the notational dimensions are analysed. Finally, in Sect. 7 we will
show the conclusions of this work and future work.

2 Related work

To address the solution to the aforementioned problem, in this article we will use DSM
[21] as a development methodology, applying the principles and techniques defined in the
standard of Model Driven Architectures (MDA) within the context of Model Driven Engi-
neering (MDE) [35].

In this section we will explain how this work is related to these technologies (Sect. 2.1)
and we will discuss some works that are related to our proposal (Sect 2.2). Besides, in
Sect. 2.3 we will introduce to the domain of language learning activities which are imple-
mented as part of the language learning methodologies.

2.1 How this work relates to MDA/MDE

The most important principle of the MDE is the creation of non-contemplative productive
models (i.e. interpretable by computers); therefore, they must be well defined, that is, they

36277Multimedia Tools and Applications (2021) 80:36275–36304

1 3

have to correspond to a specific metamodel. In this way, productive models can be man-
aged and interpreted with MDE [5] tools.

The DSM is a flexible model-based approach that is based on the definition of differ-
ent Domain Specific Modelling Languages (DSML) defined by experts in the different
domains covered by the system; instead of a single modelling language like Unified Model-
ling Language (UML) [33].

A DSML is defined in terms of three basic components: abstract syntax, concrete syn-
tax and semantics.

The abstract syntax is specified by a metamodel that describes the concepts of language,
the relationships between them and the structuring rules that restrict the elements of the
model and their combinations to represent the domain rules. In our case, the metamodel
is the one shown in Fig. 1, and presented in detail in [36] and [37]. Fig. 2 shows different
packages representing the common elements. The central package of this model architec-
ture is Methodology and is divided into five packages: workflow, content, media, activity
and presentation. A sixth package called commons, that provides other metaclasses with
the identification (entity metaclass) and extension (property metaclass) capabilities

The concrete syntax of a DSML is defined as a mapping between the concepts of the
metamodel and its textual or graphic representation providing users with a more intuitive
notation for the representation of models. In this paper we present the definition of a spe-
cific syntax to represent language learning methodologies.

Finally, the semantics of a DSML describes the precise meaning of its models through
model transformations that support the update in situ [8] in terms of the allowed actions.
UML profiles are the mechanism that UML provides for the definition of DSMLs. Some
proposals that use this mechanism for the definition of learning systems are presented in
[25] and [26].

However, the use of UML profiles implies that DSML users must know UML, which
determines the number of end users of the language. This limitation can be saved by using
a specific editor for the DSML, instead of defining an extension to UML.

Several technical approaches coexist to develop DSMLs [20]: MetaCase/MetaEdit +5,
Microsoft Visual Studio DSL Tools6, EMF and GMF7.

All these tools allow to define both the abstract and the concrete syntax of the DSMLs
as well as facilities for the persistence of the built models. In addition, some of them pro-
vide support for the execution of transformations, model-to-model, and model-to-text.

In our case we have decided to work with the tools provided by the Eclipse Modeling
Project (EMP)8 with the objective of creating plug-ins for Eclipse IDE that implement the
DSML. The EMP includes the Eclipse Modeling Framework (EMF) that allows the gen-
eration of modifiable code to specify metamodels, edit instances of models through a basic
reflective editor (in the form of a tree, table or properties). It also provides runtime support
that allows XMI notification, persistence and serialization of the models. However, it is

Fig. 1 The metamodel (abstract syntax) ▸

5 MetaCase/MetaEdit +. URL =https:// www. metac ase. com/ produ cts. html (last access 05/04/2020)
6 Microsoft Visual Studio DSL tools. URL = https:// docs. micro soft. com/ en- us/ visua lstud io/ model ing/
overv iew- of- domain- speci fic- langu age- tools? view= vs- 2019 (last access 05/04/2020)
7 GMF. Eclipse Graphical Framework. URL = https:// www. eclip se. org/ gmf- tooli ng/ (last access 05/04/2020)
8 EMP. Eclipse Modeling Project. URL = https:// www. eclip se. org/ model ing/ (last access 05/04/2020)

36278 Multimedia Tools and Applications (2021) 80:36275–36304

https://www.metacase.com/products.html
https://docs.microsoft.com/en-us/visualstudio/modeling/overview-of-domain-specific-language-tools?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/modeling/overview-of-domain-specific-language-tools?view=vs-2019
https://www.eclipse.org/gmf-tooling/
https://www.eclipse.org/modeling/

1 3

36279Multimedia Tools and Applications (2021) 80:36275–36304

1 3

noted that the basic reflective editor is insufficient in terms of usability, at least for complex
metamodels, such as those used in the creation of language-learning methodologies.

The EMP also includes the Graphical Editing Framework (GEF) that allows develop-
ers to create a graphic editor from a metamodel generated with EMF. Another framework
included in the EMP is the ATLAS Transformation Language (ATL)9 that allows you to
define model-to-model transformations.

From the point of view of VIDL, the Graphical Modelling Framework (GMF)10 pro-
vides a generative component and a runtime infrastructure to develop graphic editors
of EMF-based diagrams and GEF using an MDE approach. In addition, GMF allows us
to define restrictions in OCL11 to define rules to build well-formed models. Fig. 3 illus-
trates the workflow and domain models (ECORE), used during GMF-based development:
the reflective editor code generator (Domain Gen Model), the Graphic Definition model
(Graphical Def Model), the Tool Definition Model (Tooling Def Model), the Mapping
Model (Mapping Model) and the code generator of the diagram graphic editor (Diagram
Editor Gen Model).

Fig. 2 The metamodel package model: sub-packages defined as part of Methodology package

9 ATLAS Transformation Language. URL = https:// www. eclip se. org/ atl/ (last access 05/04/2020)
10 GMP. Graphical Modeling Project. URL =https:// www. eclip se. org/ model ing/ gmp/ (last access 05/04/2020)
11 Object Constraint Language (OCL) specification. URL = https:// www. omg. org/ spec/ OCL/ (last access
05/04/2020)

36280 Multimedia Tools and Applications (2021) 80:36275–36304

https://www.eclipse.org/atl/
https://www.eclipse.org/modeling/gmp/
https://www.omg.org/spec/OCL/

1 3

The Domain Model is specified when defining an Ecore model (meta-model name for
EMF/GMF, in reference to the Eclipse meta-meta-model, called Ecore, to define meta-
models) with the editor from EMF or importing the model from other Ecore providers. The
Graphic Definition Model is formalized through the use of a formula-based wizard, which
guides and generates a graphic definition model of the previously specified domain model.
The Graphic Definition Model contains information related to graphic elements (figures,
nodes, compartments, links, etc.) without direct connection to the elements of the domain
model for which they will provide representation and editing. The Tool Definition Model
is specified using another wizard; It is used to design the palette and other visual controls,
such as menus, actions and toolbars. The Mapping Model is specified, with the help of
another assistant, linking the three previous models: the domain, the graphic definition and
the definition of tools. In this way, GMF allows you to reuse the graphic definition for sev-
eral domains. A separate Mapping Model is used to link the graphic and tool definitions
to the selected domain models. Once the appropriate assignments are developed, a Gen-
erator Model is created to allow the implementation details or the code generation phase
to be defined. Finally, the Diagram Plug-in is generated and then tested in a new Eclipse
Application at runtime. When a user is working with a diagram, at runtime, the notation
and domain models are joined providing both persistence and synchronization. Instead of
generating workbench plug-ins, GMF can be used to generate diagram editors as Rich Cli-
ent Platform (RCP)12, that is, independent applications.

2.2 Related work on visual learning designs

E-learning is one of the mostly address fields of application of the MDA papers [38]. Com-
plex Learning Processes (CLPs) are represented using Educational Modeling Languages
(EMLs). IMS Learning Design (IMS-LD)13) is a commonly used EML for which some
visual editors are being created that help the authoring process of learning scenarios (learn-
ing designs).

In [11] authors describe the FLEXO language, a Domain Specific Language (DSL)
based upon the definition of a generic IMS-LD. A visual representation of FLEXO can be
provided using an editing tool that abstracts the text-based specification of courses. The

Fig. 3 Model editor development workflow

12 Rich Client Platform applications. URL = https:// wiki. eclip se. org/ Rich_ Client_ Platf orm (last access 05/04/2020)
13 Learning Design Specification. URL=http:// www. imsgl obal. org/ learn ingde sign (last access 05/04/2020)

36281Multimedia Tools and Applications (2021) 80:36275–36304

https://wiki.eclipse.org/Rich_Client_Platform
http://www.imsglobal.org/learningdesign

1 3

FLEXO language delivers the course in a variety of EMLs, as required by the execution
environment or LMS. It hides most of the technical details from the designer, and can be
easily extended to deliver other formats. The designer must only be aware of the possibili-
ties of the target language, but not of how to use them. If the target platform in which the
learning design has to be run is changed, the course can be generated from the FLEXO
specification with scarce modifications.

COLLAGE [28] is too a high-level creation tool compatible with IMS-LD specialized
in Computer-Supported Collaborative Learning (CSCL). COLLAGE helps teachers in the
process of Create your own potentially effective collaborative learning designs by reus-
ing and customizing patterns, according to the requirements of a particular learning situ-
ation. These patterns, called Collaborative Learning Flow Patterns (CLFP), represent best
practices that are reused by professionals when structuring the flow of learning activities
(collaborative).

In [42], the authors also present a visual authoring tool that complies in this case with
the LPCEL (Learning Process Composition and Execution Language) specification pro-
posed in [43]. The objective of this tool is also to facilitate the process of creating learning
scenarios, with the advantage that the level of expressiveness of LD-LPCEL (as objective
EML) is broader than IMS-LD. So, the LPCEL Editor provides a broad level of expres-
siveness and facilitates the authoring process with an editor that includes: (1) Visual Ele-
ments, (2) Intermediate Representation, (3) Learning Patterns, (4) Collaboration tools and
(5) Web Services

In [34] authors proposes an authoring system, refered to as ASK Learning Design Tool
(ASK-LDT), that utilizes the LD principles to provide the means for designing activity-
based learning services and systems. The ASK-LDT relies on user-defined visual represen-
tations of IMS-LD level A formalisms from which an XML-based description of the target
Unit-of-Learning (UoL) can be generated. Visual shapes, icons, connectors and all source
elements are kept close to the core IMS-LD level A model.

The Model-Driven Learning Design (MDLD) [12] proposes a set of visual abstractions
for the authoring process and the mechanisms to generate XML files compliant with an
EML. In [30], the core of the approach is the structural and operational specification of a
DSL used to describe key aspects of the final learning application. On the other hand, in
[40] a language is proposed for the high-level design of interactive applications created in
accordance with the model-view-controller pattern. This approach is especially suitable for
applications that incorporate content with sophisticated structures and whose interactive
behavior is driven by these structures. In both [30] and in [40], the resulting designs are
compatible with rapid prototyping, exploration and early discovery of application features,
and systematic implementation using technologies web based standard. Also, these two
approaches facilitate active collaboration between instructors and developers throughout
the process of developing and maintaining e-learning applications.

Gamification has been proven to increase engagement and motivation in multiple and
different non-game contexts such as education. In [7] authors describe a graphical mode-
ling editor for gamification domain definition and a graphical modeling editor for gamifica-
tion strategy design, monitoring and code generation in event-based systems. The solution
makes use of Model-Driven Engineering (MDE) and Complex Event Processing (CEP)
technology. This work also shows how the proposal can be used to design and automate the
implementation and monitoring of a gamification strategy in an educational domain sup-
ported by a well-known Learning Management System (LMS) such as Moodle.

36282 Multimedia Tools and Applications (2021) 80:36275–36304

1 3

Finally, the following research works [6, 29, 44], and [22], although they do not apply
to the field of e-learning, are also related to VIDL and are related to our work by their
approach or by the tools they use for their development.

2.3 Analyzing language‑learning methodologies

The aim of this section is introducing the reader to the domain of language learning activi-
ties which are implemented as part of the language learning methodologies deployed in the
Internet.

Regarding the definition of language learning activities, the authors of [4] describe the
language learning experience using mobile devices in formal and informal learning sce-
narios. From the technological perspective, different approaches to develop e-learning
solutions are explored in [13] and a summary of the advances in the development of these
systems based on experiences and methodologies is presented in [18]. Finally, the eLSE
methodology [27] describes a systematic approach to evaluate them ensuring their quality.
The importance of interactive multimedia packages for language learning is explored in
[45]. This work exposes the impact of proving high flexibility to designers in the definition
of such resources in order to focus the attention on a learner-based orientation instead of
technology-driven learning methodologies. The analysis performed in [9], which studies
the situation of language learning software currently available, shows that more stimulating
activities are being proposed. Consequently, it suggests a positive evolution of language
learning software in the near future.

Although the implementation of most of these methodologies has different look and
feel; they share common characteristics such as the Concepts to Learn (CtL), the structural
organization of contents (i.e. levels, blocks, lessons, activities, etc.), multimedia resources
(i.e. audios, texts, images, etc.), Learning Activity Mechanisms (LAMs), and so on.

Fig. 4 The multiple-choice learn-
ing activity in Duolingo (a) and
Busuu (b)

36283Multimedia Tools and Applications (2021) 80:36275–36304

1 3

For instance, the Fig. 4 depicts the multiple-choice LAM in two different learning meth-
odologies. While Fig.4a depicts the Duolingo14 version of the mechanism using radio
buttons associated to images to display available options, and a button to confirm the
option selection; the Fig. 4b depicts the Bussu15) version the employs a set of buttons
labelled with the available options instead of the radio buttons. Moreover, both versions
share common characteristics in the presentation too (e.g. providing student lesson pro-
gress at the top of the language learning activity UI).

This is just one example of the similarity among language learning methodologies, since
it is not the aim of this paper to perform a review of language learning methodologies.

3 Graphical notation description

The graphical notation for the abstract syntax defined in [37] was implemented as an
Eclipse IDE plugin using the Eclipse Graphical Framework (GMF)16 that is part of the
Eclipse Modeling Project (GMP)17. These tools are multi-platform because Eclipse IDE
runs on MacOS, Linux, and Microsoft Windows.

The purpose of the specific syntax of a DSL is to provide users with an intuitive and
friendly notation similar to others they normally use. In the case of this work, this nota-
tion makes easier for users to specify the models of a language learning methodology. The
concrete syntax is usually defined as a mapping between the concepts of the meta-model
and its textual or graphic representation. Thus, to define these visual representations, it is
necessary to establish links between these concepts and the visual symbols that represent
them. For all this, we have chosen visual symbols for our graphic editor so that they are as
intuitive as possible. A complete example illustrating the concrete syntax adopted can be
seen in Fig. 6. The description of each of the icons used can be found in the Table 3.

The description of the graphical notation will be carried out following the description
tables presented in [16], which are described in the Tables 1 and 2.

The Graphical User Interface (GUI) of our editor consists of the following components:
a title bar, a properties panel, a tool palette and the workspace. Figure 5 shows the distribution
of these elements in the GUI.

Title bar In this bar, both the name of the application and the name of the current job file
are displayed.

Properties panel In this panel, the user can view and edit the properties of the selected
elements in the workspace.

Tools palette The elements of the tool palette are organized into five categories: Con-
tents, Resources, Presentation, Activities and Control Flow. In the Table 3, we provide the
description of each of the icons.

14 Duolingo. URL = https:// www. duoli ngo. com (last access 05/04/2020)
15 Busuu. URL = https:// www. busuu. com (last access 05/04/2020)
16 GMF. Eclipse Graphical Framework. URL=https:// www. eclip se. org/ gmf- tooli ng/ (last access 09/23/19)
17 GMP. Graphical Modelling Project. URL=https:// www. eclip se. org/ model ing/ gmp/ (last access 09/23/19)

36284 Multimedia Tools and Applications (2021) 80:36275–36304

https://www.duolingo.com
https://www.busuu.com
https://www.eclipse.org/gmf-tooling/
https://www.eclipse.org/modeling/gmp/

1 3

The Workspace is the canvas in which we place all the elements that will define the
methodology that we want to model with the graphic editor. In the Fig. 6, an example of
the content of the “Workspace” is shown.

As we have already mentioned, the diagram of any methodology consists of 4 sub-
diagrams within it: the sub-diagram of the Contents, the sub-diagram of the Resources,
the sub-diagram of the Slides, and the sub-diagram of the Control flow. In the 4 cases we
will use 4 containers of graphic elements, each of which is distinguished by an identifying
icon, a description in its header bar, and in general by a color associated with the mentioned
sub-diagram. To illustrate this, in Fig. 6, the 4 sub-definitions of a small part of Duolingo’s
methodology and activities are shown.

For the Contents we will use the paradigm of a tree-like structure to express the dif-
ferent levels and sub-levels of the contents of a level of the language learning method

Table 1 Description of the graphic notation (Content model and resource model)

36285Multimedia Tools and Applications (2021) 80:36275–36304

1 3

that we are defining. For example, the Duolingo methodology is structured in Levels,
which in turn are configured by Units, which consist of Lessons, and in which a series
of Concepts or Words are used to learn. See this illustrated in Fig. 7b.

For Resources we will also use the paradigm of a tree-like structure to define the
library of multimedia resources that will be used in interactive activities. Basically,
folders or resource containers are used, which may contain sub-folders. These resources
or media can be of 4 types (audio, text, video and image), which can be combined to

Table 2 Description of the graphical notation (Presentation and workflow models)

36286 Multimedia Tools and Applications (2021) 80:36275–36304

1 3

Table 3 Descriptions of the icons

36287Multimedia Tools and Applications (2021) 80:36275–36304

1 3

represent complex media (eg text and speech or eg image and text, etc.). See this illus-
trated in Fig. 8.

To model the control flow with the graphic editor, we have defined a state diagram.
This can be seen in Fig. 9.

Fig. 5 Editor User Inteface

Fig. 6 The 4 sub-diagrams that make up the diagram of a methodology (as Duolingo)

36288 Multimedia Tools and Applications (2021) 80:36275–36304

1 3

Finally, to model the activities, like all of them are modeled according to the para-
digm of the exercises to fill gaps, they are always modeled with resources for the state-
ment (Ground) and with gaps with possible answers, valid or not (see Fig. 10).

Fig. 7 Tree structure to represent content in Busuu (a) and Duolingo (b)

Fig. 8 The media resources of a multiple-choice activity in the Duolingo methodology

36289Multimedia Tools and Applications (2021) 80:36275–36304

1 3

4 Notation evaluation

This section presents the evaluation of the notation described in Sect. 3. This evaluation
uses the Cognitive Dimensions of Notations framework for Notational systems presented in
[2] and extended in [3] to provide a common vocabulary for use by user interface design-
ers to conduct comprehensible evaluations. It is solely based on structural properties; it
does not representational issues (i.e. effectiveness and aesthetics are outside its purview).
Therefore, the question addressed by the Cognitive Dimensions (CDs) framework is: are
the users’ intended activities adequately supported by the structure of the information arti-
fact? and if not, what design maneuver would fix it, and what trade-offs would be entailed?.

This evaluation, and the conclusions of this work (Sect. 7), also offers the comparison
of the reflexive model editor with the diagram model editor supporting the proposed nota-
tion. The reflexive model editor is the de facto default model editor used in the Eclipse
Modeling Tools (EMT)18 (Eclipse IDE distribution to edit models). It supports a tree-based
notation that employs reflexive properties of metamodels to build models conforming these
metamodels.

The procedure to carry out this evaluation starts with the classification of intended
activities; it continues with the analysis of the cognitive dimensions; and it decides if activ-
ities’ requirements are met. Note that the term “activity” refers to a notational activity in
cognitive dimensions as is a manner of interacting with a notation and it is not related to
Activity Theory, or Active User Theory.

4.1 Activities

The CDs framework contrasts the following 6 generic types of notation use activity on
artifacts based on contributions from a variety of researchers [2]: incrementation (e.g. add
a media resource to a repository), transcription (e.g. set a question text using a media
resource), modification (e.g. change the media resource to render a multiple-choice
option from text to image), exploratory design (e.g. define a multiple-choice using audio
resources as options instead of text), searching (e.g. look for the set of learning activities

Fig. 9 The workflow of 5 slides in the Busuu methodology

18 EMT. Eclipse Modeling Tools. URL=https:// www. eclip se. org/ downl oads/ packa ges/ relea se/ juno/ sr1/ eclip se-
model ing- tools (last access 02/06/2020)

36290 Multimedia Tools and Applications (2021) 80:36275–36304

https://www.eclipse.org/downloads/packages/release/juno/sr1/eclipse-modeling-tools
https://www.eclipse.org/downloads/packages/release/juno/sr1/eclipse-modeling-tools

1 3

related to a CtL), and exploratory understanding (e.g. discover next learning activity
given a starting activity and the result of a user interaction).

In the Table 4, we list a series of generic activities and show to what extent they satisfy
or not each of the 6 types of usage notations mentioned above and exemplified.

Each activity imposes different demands on the system; thus, nothing marked in Table 4
is properly good or bad, unless an activity does not operate as is expected to do.

Some comments regarding the Table 4 of Activities and types of notation use, are the
following:

– All activities, except those of pure editing of properties, involve the use of “Incrementa-
tion”.

– All activities offer and require a use of “Transcription”.
– The 4 general submodels are designed to be created only once, and do not require any

“Modification”. The ones that will have a type of “Modification” notation will be the
Management activities of the mentioned submodels.

– “Exploratory design”: Only the states of a Workflow cannot be predicted directly (visu-
ally) and must be ‘ ‘discovered” using the properties window.

– “Searching”: Only the Media, the Concepts, are easily searchable in the corresponding
Resources or Content trees. Also the creation and editing of Activities, because their
elements are always visible.

– The activity of Editing a View is the only one that does not properly have an “Explora-
tory understanding”.

So, we can affirm that the proposed graphic editor meets all the requirements of the
activities.

4.2 Components

The CDs framework also defines 4 types of components: an interaction language or
notation, an environment for editing the notation, a medium of interaction, and possibly
sub-devices.

Fig. 10 Graphical model of a Busuu FillInTheGaps activity

36291Multimedia Tools and Applications (2021) 80:36275–36304

1 3

4.2.1 Interaction language or notation

The interaction language or notation is defined as what the user sees and edits (i.e.
the graphical notation presented in Sect. 3).

Everything related to the definition of a methodology, in our graphic editor is visu-
ally represented on the canvas. The distribution and sizes of the graphic notation, is
editable by the user. Based on this general graphic representation, the user can config-
ure each of the elements thanks to properties windows and pop-up windows. Some of
these options or configuration properties will be visible on the canvas, but others will
not.

Additionally, there are many interaction resources related to what the user sees and
edits; Some of those resources are:

– In all buttons, the user is shown a tooltip as a feedback that tells him what that but-
ton does.

– When a window or container, due to its current size, does not reveal its contents,
the interface offers the user the possibility of interacting on a horizontal and verti-
cal scroll-view, which allows him to visualize any part of the sub-canvas that ini-
tially appeared hidden.

– The editor interface allows the user to configure many aspects of the environment.

4.2.2 Editing environment

The editing environment and other interaction resources (e.g. for digram editors: drag
and drop support, inline text edition support, zoom support, and so on) that facilitate
editing activities. As it has been mentioned before, users visually manage certain vis-
ual diagrams with freedom and great versatility. We now list some interface aspects
related to the editing environment:

– Drag&drop interaction to add slides, activities, states, and so on.
– Depending on which object is selected on the canvas, one or another context-sensitive

sub-palette will appear, showing the user what operations he can do on that object at
that time.

– To help the user, when moving the mouse on the canvas or on the objects contained
in it, the cursor changes its aspect to let you know what the user can do.

– Once a transition is created, the arrow can be edited freely, moving it, changing the
start and end position, and even creating new vertices.

– There are user operations that might trigger a feedback of violation of the integrity
of the model.

– During the specification of an activity, it is easy to manage options, correct
answers, and so on, through property windows, drop-down, parallel lists with ele-
ments bidirectionally transferable from one to another to specify, among the pos-
sible answers, which we establish as correct answers, and so on.

– When creating activities, states, or other types of entities, the interface facilitates
the user’s work by making certain auto-fill of default values (e.g. automatic genera-
tion of object names).

36292 Multimedia Tools and Applications (2021) 80:36275–36304

1 3

4.2.3 Medium of interaction

The medium of interaction is the medium used to interact with the notation language (e.g.
touch screens, displays, and so on).

In our case, being a graphic editor managed with a desktop computer, the means of interac-
tion are monitors (as an output device) and the mouse and keyboard (as input devices). It is a
persistent medium preceded by many fully editable transitional actions. Although the order of
the actions is free, to guarantee the integrity of the model, in some cases the editor restricts the
actions that can be performed at any time or according to the context.

4.2.4 Sub‑devices

We now mention the two sub-devices supported by the main device. While the helper sub-
device offers cross-references (e.g. references from Workflow model to Presentation model,
diagram outline view, and so on); the redefinition sub-device enables the main notation
changes (e.g. collapsing model views to get a high level view).

4.3 Notational dimensions

In this evaluation we have also considered the 14 notational dimensions defined by the CDs
framework presented in Table 5, where each dimension describes an aspect of an information
structure that is reasonably general.

4.3.1 Viscosity

Cross references are automatically redrawn in the diagram. For example, if we change the
name of a resource, it is automatically modified in all the places in the diagram where it is
referenced.

4.3.2 Visibility

As we have already mentioned in Sect. 4.2, everything related to the definition of a methodol-
ogy, in our graphic editor, is visually represented in a diagram on the canvas. Logically, there
are properties that remain hidden, but these are easily accessible, as appropriate, in the proper-
ties window.

4.3.3 Premature commitment

The editor, depending on the context, provides restrictions on the order of the operations. For
example, depending on which object is selected on the canvas, one or another context-sensitive
sub-palette will appear, depending on the operations I can do on that object at that time; In
addition, operations that could be performed in other contexts are disabled.

4.3.4 Hidden dependencies

Initially the diagram did not graphically show the dependencies of the elements of the
Content Model (concepts/words) with the slides/activities in which these concepts/words

36293Multimedia Tools and Applications (2021) 80:36275–36304

1 3

are worked on or studied. Later, we implemented that these dependencies are shown graph-
ically, but, as many lines are generated on the diagram and the canvas, we have left the
default option for these dependencies to remain hidden.

4.3.5 Role‑expressiveness

In general, the purpose of all the entities that make up the diagram of a methodology is
easily deduced. Certainly, in the case of the graphic expression of the operation (contents)
of some activities, it is not easy to discover what the author wants to model. When all
the activities are based on the fill-in the gaps activities paradigm, all of them are seen in
the diagram in a very similar way. It is therefore necessary for the user to understand the
dynamics - for example - of the creation of an activity of Match based on the paradigm of
the exercises of fill-in the gaps. Once you understand this dynamic, it is easier and more
obvious to understand what another author has modelled.

4.3.6 Error‑proneness

The diagram can be validated at any time. In addition, when the user tries to add an entity
inside a container, thanks to the dynamic change of the appearance of the cursor (while
mouse over the different models, activities, etc.), the user knows whether or not such opera-
tion is allowed. If it is not allowed, the user will not be able to make the mistake of doing it.

4.3.7 Abstraction

As we saw in [37], the “fill-in the gaps” abstraction is at the base of the modelling of all
types of activities supported by the editor. This is the main abstraction mechanism avail-
able in the editor, but other new abstraction mechanisms cannot be managed or created.

4.3.8 Secondary notation

In our editor 3 types of secondary annotations that users can freely use are supported. We
refer to: (1) the text boxes for making annotations on the canvas of the diagram, (2) the
adhesive notes, as well as (3) the relationship between an adhesive note and an entity of the
diagram.

4.3.9 Closeness of mapping

In general the diagram of a methodology, that is, the Content model, the Media model
and the Workflow model, is closely related to what it describes. It is not so obvious in the
case of View model (Activity model). As we have already mentioned, being the “fill-in the
gaps “abstraction at the base of the modelling of all types of activities that the editor sup-
ports, the modelling is not always visually evident and is closely related to the result that it
describes. However, it is in the case of most activities, such as those of type Image Audio
Text Options, Image Text Options, Question Answer, Gap, Listening, and Selection.

4.3.10 Consistency

In relation to the Consistency, two aspects stand out:

36294 Multimedia Tools and Applications (2021) 80:36275–36304

1 3

1. We identify the containers with the icon of a folder, of one colour or another, as appro-
priate, both in the context of a Content Model or a Media Model.

2. The housing of the diagrams of all the Models (packages) are represented in a similar
way (with a window, an identifying icon, and a descriptive name), but with different
colours for better identification and differentiation.

4.3.11 Diffuseness

There are no long annotations, nor they occupy valuable spaces within a viewing area. In
any case, if this happened, the user can at any time resize and relocate any entity of the dia-
gram that is generating, if he considers it appropriate to facilitate the readability of the dia-
gram. In addition, you can minimize some parts of the diagram that may no longer need to
be displayed, to make room for other more valuable parts of the diagram at any given time.

4.3.12 Hard mental operations

As already mentioned in the Sects. 4.3.7 and 4.3.9, the readability of modelling of some
types of activities requires more cognitive resources from the user. This is the case of activ-
ities of type Compose Phrase, Match, and so on.

4.3.13 Provisionality

Users at any times (thanks to the restrictions that avoid the most obvious errors of incon-
sistency of the model) can take provisional actions or playing “what-if” games. In addi-
tion, at all times, after such provisional or trial actions, the user, by validating the diagram,
can know whether or not it is consistent.

4.3.14 Progressive evaluation

Users, as just mentioned in the Sect. 4.3.13, can verify their work at any time. Our editor
allows you to validate any part of the diagram (as well as its entirety), at any time, progres-
sively verifying the stage of the work you are doing or where you are up to that moment.
In the context menu, which can be accessed by having selected any entity in the diagram,
the user always has the option Validate available, which provides the necessary feedback to
locate and resolve errors.

5 Preliminary usability heuristic evaluation results

In order to evaluate the validity of the evaluation based on notational dimensions 4, we
have performed a set of preliminary usability heuristic evaluations based on [10] recom-
mendations defined by Shneiderman rules [39], Nielsen heuristics [31], and Norman prin-
ciples [32].

These evaluations were performed by 4 Human-Computer Interaction (HCI) experts
who have experience in the definition of learning activity models using the reflexive editor.
The score used to measure each usability issue was defined in a scale from 0 to 10 resulting
in the following average scores in parenthesis.

36295Multimedia Tools and Applications (2021) 80:36275–36304

1 3

5.1 Shneiderman rules

The following list shows the average score of each rule between parenthesis:

– Consistency: Strive for consistency in action sequences, layout, terminology, com-
mand use and so on (8.15).

– Shortcuts: Enable frequent users to use shortcuts, such as abbreviations, special key
sequences and macros, to perform regular, familiar actions more quickly (7.25).

– Feedback: Offer informative feedback for every user action, at a level appropriate to
the magnitude of the action (7.35).

– Dialogs: Design dialogs to yield closure so that the user knows when they have com-
pleted a task (6.15).

– Error prevention and handling: Offer error prevention and simple error handling
so that, ideally, users are prevented from making mistakes and, if they do, they are
offered clear and informative instructions to enable them to recover (9.05).

– Easy reversal of actions: Permit easy reversal of actions in order to relieve anxiety
and encourage exploration, since the user knows that he can always return to the pre-
vious state (8.05).

– Control: Support internal locus of control so that the user is in control of the system,
which responds to his actions (8.35).

– Short-term memory load: Reduce short-term memory load by keeping displays sim-
ple, consolidating multiple page displays and providing time for learning action
sequences (7.25).

5.2 Norman principles

The following list shows the average score of each principle between parenthesis:

– Memory use: Use both knowledge in the world and knowledge in the head (8.25).
– Task structure simplicity: Simplify the structure of tasks (8.25).
– Affordance: Make things visible; bridge the gulfs of execution and evaluation (7.05).
– Metaphor mapping: Get the mappings right; user intentions should map clearly onto

system controls (6.05).
– Constraints: Exploit the power of constraints (8.95).
– Error handling: Design for error (8.15).
– Standardization: When all else fails, standardize (9.25).

5.3 Nielsen heuristics

The following list shows the average score of each heuristic between parenthesis:

– System visibility: Visibility of system state (8.05).
– Affordance: System and real world correspondence (7.05).
– Control: User sense of control and freedom (8.35).
– Consistency and Standards: Use of standards and look and feel consistency (9.25).
– Error prevention: Avoiding users to make mistakes (8.25).
– Metaphors: Mappings to reduce user memory use (5.95).

36296 Multimedia Tools and Applications (2021) 80:36275–36304

1 3

– Flexibility: Effectivity and Efficiency in use (6.75).
– Aestetics: Graphic design (6.25).
– Feedback: Help users to recognize actions, diagnose errors, and fix them(9.45).
– Help: Help documentation support(8.05).

The Table 6 summarizes preliminary usability evaluation results showing that the average
score in all heuristic evaluation approaches are a above 7.70 which is a reasonable good
result.

6 Discussion

One of the most difficult issues to address in this proposal is the selection of the graphi-
cal notation supporting the concrete syntax for the language learning methodology meta-
model. This selection involves the definition of the types of diagram structures to represent
different models (i.e. content, media, activity, presentation, and workflow).

The Content model learning units usually follow a tree-based structure where units are
described in terms of concepts to be developed by students. It is also possible to build com-
plex units describing general concepts that are divided into smaller units to deal with their
complexity by the means of concepts that are more concrete and simpler to understand.

The Media model represents the set of multimedia resources (not language learning con-
cepts) that can be used to represent language learning concepts in learning activities using
a tree-based structure too. This model also supports the definition of complex resources to
represent concepts using different media resources (i.e audio, text, video, or images).

As both models employ a tree-based structure, we applied the Composite design pattern
[17]. The main drawback of using a reflexive model editor (which also employs a tree-
based structure) instead of the proposed editors is the lack of relationship between reflexive
editors (e.g. lines connecting tree nodes).

Fig. 11 Content model nodes are connected to learning activity model nodes defined within presentation
model nodes using diagram lines

36297Multimedia Tools and Applications (2021) 80:36275–36304

1 3

For instance, content model nodes (Concept in Content Model) can be linked to
learning activities (Activity in Activity Model) through presentations (Presentation in
Presentation Model) using a diagram line, instead of using a combo box, which remains
hidden in property the palette (e.g. see Fig. 11). Moreover, our solution is particularly
helpful in Workflow and Presentation/Activity models because it provides a visually
intuitive mechanism that is clearly easier to maintain (see Sect. 4.3).

Table 4 Activities and types of notation use

Activity Incrementation Transcription Modification Exploratory
design

Searching Exploratory
understanding

Create View Model X X X X
Add a View or

Activity
X X X X X

Add a Ground X X X X X
Add a Gap X X X X X
Add a Option X X X X X
Create Media Model X X X X
Add a Media

resource
X X X X X X

Create Content
Model

X X X X

Add a Concept X X X X X X
Add a Content

Container
X X X X X

Create Workflow
Model

X X X

Add a State X X X X
Add a Transition X X X X X
Add a Workflow

Model
X X X X

Manage View Model X X X X X
Edit a View X X X
Edit a Ground X X X X X
Edit a Gap X X X X X X
Edit a Option X X X X X
Manage Media

Model
X X X X X X

Edit a Media
resource

X X X X X

Manage Content
Model

X X X X X X

Edit a Concept X X X X X
Edit a Content

Container
X X X X

Manage a Workflow
Model

X X X X X

Edit a State X X X
Edit a Transition X X X X

36298 Multimedia Tools and Applications (2021) 80:36275–36304

1 3

The Workflow model diagram structure is based on a hierarchical graphs because it ena-
bles developers to build hierarchical state machines to represent the learning development
state. This hierarchical graph structure is particularly important because it relates learn-
ing concepts to user interface presentation by the means of definition of abstract learning
activities following the “fill in the gaps” paradigm. Consequently, although reflexive model
editors are suitable to define hierarchies; they are not good enough to define graphs. Also
note that this relationship could not be set if content and media models were not defined as
part of the diagram modeling editor.

The Presentation model diagram structure enables developers nest activity model dia-
grams in order to define the learning activity to be developed by students. Reflexive editors
could be employed to define these models; however, the lack of support for direct connec-
tion between presentation/diagram models and the rest of methodology models decreases
model editor usability (i.e. readability, learnability, etc.).

Another important advantage of this approach compared to other approaches is the use
of MDA OMG standards to define the abstract and concrete syntax of the set of domain
specific languages to model language learning methodologies and activities. In fact, it ena-
bles developers to generate WebApp source code by the means of M2M and M2T trans-
formations which maximize application development abstraction and reuse as well design
time interoperability. Thus, developers are capable of modeling and generating technol-
ogy independent applications. Moreover, proposed concrete syntax notation, this MDA
approach enables developers to model language learning activity concerns at different lev-
els which are connected using a graphical notation.

Table 5 Summary of notational dimensions

Dimension Aspect

1 Viscosity Resistance to change
2 Visibility Ability to view components easily
3 Premature commitment Constraints on the order of doing things
4 Hidden dependencies Important links between entities are not visible
5 Role-expressiveness The purpose of an entity is readily inferred
6 Error-proneness The notation invites mistakes and the system gives little protection
7 Abstraction (redefinitions) Types and availability of abstraction mechanisms
8 Secondary notation Extra information in means other than formal syntax
9 Closeness of mapping Closeness of representation to domain
10 Consistency Similar semantics are expressed in similar syntactic forms
11 Diffuseness Verbosity of language
12 Hard mental operations High demand on cognitive resources
13 Provisionality Degree of commitment to actions or marks
14 Progressive evaluation Work-to-date can be checked at any time

Table 6 Average score of
heuristic evaluation results

Heuristics Average

Shneiderman rules 7.70
Norman principles 7.99
Nielsen heuristics 7.74

36299Multimedia Tools and Applications (2021) 80:36275–36304

1 3

Finally, due to this approach follows OMG standards, software artifacts generated dur-
ing the application development process of this architecture can be easily reused with third
party tools encouraging the interoperability at design time.

6.1 Analysis of notational dimension results

This section explores the results and consequences of the evaluation of this proposal in
terms of the notational dimensions (see Sect. 4).

Table 7 shows the comparison of the scores of the proposed editor and the reflective
editor obtained during the evaluation of each notational dimension that was exposed in
Sect. 4.3.

Although is an internal assessment of this work, it illustrates the graphic and usability
power of the graphic notation of the developed editor. We have scored with the criterion
that 5 means the maximum level of satisfaction by the user in relation to the notational
dimension evaluated, and 1 the minimum.

Thus, Table 7 shows a significant number of aspects where the proposed editor out-
stands the reflexive editor. For instance, an adequate management and resistance to change
(Viscosity), a complete offer of mechanisms non-formal to capture extra information (Sec-
ondary notation), and the absence of language verbosity (Diffuseness).

In addition, Table 7 shows that the proposed editor also stands out for the right solutions
(graphical and interaction) achieved in relation to other 8 important notational dimensions:
Visibility, Premature commitment, Hidden dependencies, Error-proneness, Closeness of
mapping, Consistency, Provisionality and Progressive evaluation.

Naturally, some of these aspects are related to each other. For example, the good score
in Premature commitment and Error-proneness is due to the fact that the editor effectively
offers restrictions in the order of making things, which in turn provides the user with ade-
quate protection against possible errors. Likewise, the good score in the aspects of the Pro-
visionality and the Progressive evaluation, indicate us that the editor has an adequate com-
mitment to the actions, allowing the users to carry out provisional actions, and facilitating
them to at the same time validating -at any time- what they are doing.

Table 7 Score of notational
dimensions for the proposed
editor (PE) and for the reflective
editor (RE)

Dimension PE score RE score

1 Viscosity X X X X X X X X X
2 Visibility X X X X X X X
3 Premature commitment X X X X X X X
4 Hidden dependencies X X X X X X X
5 Role-expressiveness X X X X
6 Error-proneness X X X X X X X
7 Abstraction X X X X
8 Secondary notation X X X X X X
9 Closeness of mapping X X X X X X
10 Consistency X X X X X X
11 Diffuseness X X X X X X X
12 Hard mental operations X X X X
13 Provisionality X X X X X X X
14 Progressive evaluation X X X X X X X

36300 Multimedia Tools and Applications (2021) 80:36275–36304

1 3

Finally, the aspects Role-expressiveness, Abstraction and Hard mental operations,
which, although adequate, they received less score, are also related to each other (but sig-
nificantly better than in the reflective editor). The adopted score responds to the fact that, as
we have already mentioned in the corresponding subsections: (1) in the diagrams generated
with the editor, the purpose of some entities is not always easily deduced, (2) the editor
does not allow the definition of new mechanisms of abstraction, and (3) sometimes the user
may not find it obvious what another author has modelled.

6.2 Limitations

The main limitation of this proposal compared to UML is the lack of capability to model
“low level” software details.

From the software architecture perspective, this approach does not introduce deploy-
ment and component models because the generation system employs a fixed architecture
which is not easy to extend or distribute.

From the user interface point of view, although this proposal enables users to model
media resources; it does not provide an easy way to use different front-end Web frame-
works because the code generation process use a fixed framework.

The reason behind these decisions lies on hiding “low level” details from developers/
designers to encourage model abstraction. Consequently, this limitation enables the sim-
plification of model transformations because the proposed DSL is considerably “smaller”
than UML.

This limitation also improves software maintenance in terms of model extension
because new learning concepts can be easily introduced into the language avoiding the def-
inition software details which delegated to model transformation specification.

This proposal generates code that does not support a service oriented architecture (i.e.
REST [15] API) which limits the interoperability with third party systems.

7 Conclusions

In this paper we have presented a graphical notation for a domain specific language to rep-
resent language learning activities. We have described how this notation enables developers
to represent language learning activity characteristics using workflow, presentation, con-
tent, media and activity model conforming a metamodel that defines the abstract syntax of
the domain specific language. This notation is implemented as part of an integrated devel-
opment environment to build model-based applications. In addition, we have evaluated this
proposal with a framework that uses the cognitive dimensions of notations for notational
systems. Finally, in this work we have compared the proposed graphical notation to the tra-
ditional reflexive tree notation used by many model-based development frameworks.

We can conclude that the proposed graphic diagram editor exceeds the experience that
the user has with the reflexive model editor. Although there is not much difference in the
modeling of content models and resource models of methodologies, in relation to the crea-
tion and editing of workflow models and presentation/activity models, the solution pro-
vided -unlike the one offered by the reflective editor- it is intuitive and easy to maintain
visually. We list some other more prominent conclusions:

36301Multimedia Tools and Applications (2021) 80:36275–36304

1 3

1. The maintanment of the workflow and activity submodels are very tedious with the
reflective editor, among other things because many elements and properties remain hid-
den... With the proposed graphic editor you can easily and visually create and maintain
the states, transitions between them and sub-workflows.

2. In the reflexive editor, the editing operations using copy&paste, are delicate, and some-
times, to find errors you have to go to the text editor, with all the difficulty that entails.

3. The proposed editor correctly generates the models that we then use as input in a process
of transformations that generate source code (fully functional) in HTML and JavaScript.

As future work, we think we have to improve certain aspects of the “notation dimension”
that we have commented and scored in Sects. 4.3 and 6 respectively. In particular we will
look at these aspects:

1. “Role-expressiveness”: Show more graphically what the author wants to model when
designing activities that are not as obvious as an exercise in filling in gaps. This is the
case of the activities of type Word Ordering and Join , because its design is not evident
using the paradigm on which we always rely, “fill-in the gaps”. Actually this dimension
(and the improvement outlined) is related to these other two “Abstraction” and “Hard
mental operations”.

2. “Visibility”: We think it may be interesting to make it easier for users to preview mul-
timedia resources. We refer to the Media subdiagram files, such as image, audio and
video.

3. “Hidden dependencies”: To facilitate the maintenance of workflow diagrams, we find it
interesting to show or make more evident the relationship-dependence between states
and views.

In addition, some additional work likes could be the following:

1. Incorporate in the editor the possibility of specifying and validating certain restrictions of
each method (Duolingo, Busuu, etc.) in relation to for example: types of activities that it
supports, restrictions of its content structure, types of media resources that it supports, etc.

2. Continuing with the previous aspect, although the different methods use the same types
of activities, in some cases, they do not work visually exactly in the same way, as they
may unequally require Ground resources to compose and paint the statements. In this
sense, the current graphic editor is limited and should guide the user more when it comes
to, for example, modeling activities of type Dialog, Word Ordering, or Join.

3. Improve the graphic aspect in general, eliminating aspects of the interface that distract
the user with functionality provided by GMF, but which are not necessary in our case.

Author contributions Gabriel Sebastián and Ricardo Tesoriero elaborated the graphical notation descrip-
tion, Gabriel Sebastián and Ricardo Tesoriero designed the notation evaluation, Gabriel Sebastián and Jose
A. Gallud prepared the related work and the conclusions. All authors participated in the elaboration of the
manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This
work has been partially supported by the national project granted by the Ministry of Science, Innova-
tion and Universities (Spain) with reference RTI2018-099942-B-I00 and by the project TecnoCRA (ref:

36302 Multimedia Tools and Applications (2021) 80:36275–36304

1 3

SBPLY/17/180501/ 000495) granted by the regional government (JCCM) and the European Regional
Development Funds (FEDER).

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Blackwell AF (1996) Metacognitive theories of visual programming: what do we think we are
doing?, in Proceedings 1996 IEEE Symposium on Visual Languages, pp. 240–246

 2. Blackwell AF, Britton C, Cox A, Green TRG, Gurr C, Kadoda G, Kutar MS, Loomes M, Nehaniv
CL, Petre M, Roast C, Roe C, Wong A, Young RM (2001) Cognitive dimensions of notations:
Design tools for cognitive technology. In Beynon M, Nehaniv CL, Dautenhahn K (eds) Cognitive
Technology: Instruments of Mind, (Berlin, Heidelberg), Springer Berlin Heidelberg pp. 325–341

 3. Blackwell AF, Green TR (2003) Notational systems - the cognitive dimensions of notations frame-
work. In Carroll JM, (ed) HCI Models, Theories, and Frameworks: Toward a Multidisciplinary Sci-
ence, San Francisco: Morgan Kaufmann pp. 103–134

 4. Bárcena E (2015) State of the art of language learning design using mobile technology: sample
apps and some critical reflection. In Proceedings of the 2015 EUROCALL Conference, Padova,
Italy, pp. 36–43

 5. Bézivin J, Gérard S, Muller P-A, Rioux L (2003) MDA components: Challenges and Opportunities,
in Workshop on Metamodelling for MDA, (York. England, United Kingdom), pp 23–41

 6. Caro MF, Josyula DP, Jiménez JA, Kennedy CM, Cox MT (2015) A domain-specific visual lan-
guage for modeling metacognition in intelligent systems. Biologically Inspired Cognitive Architec-
tures 13:75–90

 7. Calderón A, Boubeta-Puig J, Ruiz M (2018) Medit4cep-gam: A model-driven approach for user-
friendly gamification design, monitoring and code generation in cep-based systems. Inf Softw
Technol 95:238–264

 8. Czarnecki K, Helsen S (2003) Classification of model transformation approaches, in OOPSLA03
Workshop on Generative Techniques in the Context of MDA, (California, USA)

 9. Dettori G, Lupi V (2010) Ict and new methodologies in language learning. Procedia - Social and
Behavioral Sciences vol. 2, no. 2, pp. 2712–2716. Innovation and Creativity in Education

 10. Dix A, Finlay JE, Abowd GD, Beale R (2003) Human-Computer Interaction (3rd Edition). Prentice-
Hall Inc, USA

 11. Dodero JM, del Val ÁM, Torres J (2010) An extensible approach to visually editing adaptive learn-
ing activities and designs based on services. J Vis Lang Comput 21(6):332–346

 12. Dodero JM, Ruiz-Rube I, Palomo-Duarte M, Cabot J (2012) Model-driven learning design. J Res
Pract Inf Technol 44:267–288

 13. Dodero JM (2014) Development of e-learning solutions: Different approaches, a common mission.
IEEE Revista Iberoamericana de Tecnologias del Aprendizaje 9(2):72–80

 14. Fitter M, Green T (1979) When do diagrams make good computer languages? Int J Man Mach Stud
11(2):235–261

 15. Fielding R (2000) Architectural Styles and the Design of Network-based Software Architectures.
PhD thesis, University of Califormia, Irvine, USA

 16. Fondement F, Baar T (2005) Making metamodels aware of concrete syntax. In Hartman A, Kreische D
(eds) Model Driven Architecture – Foundations and Applications, Springer Berlin Heidelberg pp. 190–204

36303Multimedia Tools and Applications (2021) 80:36275–36304

http://creativecommons.org/licenses/by/4.0/

1 3

 17. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Elements of Reusable Object-
oriented Software. Addison-Wesley Longman Publishing Co., Inc, Boston, MA, USA

 18. García F (2008) Advances in E-Learning: experiences and methodologies. Information Science
Reference

 19. Green T, Petre M (1992) When visual programs are harder to read than textual programs. pp. 167–180
 20. Jouault F, Bézivin J, Consel C, Kurtev I, Latry F (2006) Building dsls with amma/atl, a case study on

spl and cpl telephony languages, in ECOOP Workshop on Domain-Specific Program Development.
Nantes, France

 21. Kelly S, Tolvanen J (2008) Domain-Specific Modeling: Enabling Full Code Generation. Wiley-IEEE
Computer Society Press

 22. Kim CH, Grundy J, Hosking J (2015) A suite of visual languages for model-driven development of
statistical surveys and services. J Vis Lang Comput 26:99–125

 23. Koper R (2006) Editorial: Current research in learning design. J Educ Technol Soc 9(1):13–22
 24. Kopp G (2009) Handbook of visual languages for instructional design: Theories and practices. Can J

Learn Technol 34:03
 25. Laforcade P (2005) Towards a uml-based educational modeling language, In Fifth IEEE International

Conference on Advanced Learning Technologies (ICALT’05), pp. 855–859
 26. Laforcade P (2007) Visualization of learning scenarios with uml4ld. J Learn Des 2(2):31–42
 27. Lanzilotti R, Ardito C, Costabile MF, Angeli AD (2006) eLSE methodology: A systematic approach to

the e-learning systems evaluation. Educ Technol Soc 9(4):42–53
 28. Leo DH, Villasclaras-Fernández ED, Asensio-Pérez JI, Dimitriadis YA, Jorrín-Abellán IM, Ruiz-

Requies I, Rubia-Avi B (2006) Collage: A collaborative learning design editor based on patterns. Educ
Technol Soc 9:58–71

 29. Marand EA, Marand EA, Challenger M (2015) Dsml4cp: A domain-specific modeling language for
concurrent programming. Comput Lang Syst Struct 44:319–341

 30. Martínez-Ortiz I, Sierra J-L, Fernández-Manjón B, Fernández-Valmayor A (2009) Language engineer-
ing techniques for the development of e-learning applications. J Netw Comput Appl 32(5):1092–1105

 31. Nielsen J, Mack RL (eds) (1994) Usability Inspection Methods. John Wiley & Sons Inc, USA
 32. Norman DA (2002) The Design of Everyday Things. Basic Books Inc, USA
 33. Ráth I, Schmidt A, Vago D (2005) Automated model transformations in domain specific visual lan-

guages, Scientific Students’ Associations Report
 34. Sampson D, Karampiperis P, Zervas P (2005) Ask-ldt: A web-based learning scenarios authoring envi-

ronment based on ims learning design. Adv Technol Learn 2:207–215
 35. Schmidt DC (2006) Guest editor’s introduction: Model-driven engineering. IEEE Computer

39(2):25–31
 36. Sebastián G, Tesoriero R, Gallud JA (2017) Modeling language-learning applications. IEEE Lat Am

Trans. 15(9):1771–1776
 37. Sebastián G, Tesoriero R, Gallud JA (2018) Model-based approach to develop learning exercises in

language-learning applications. IET Software vol. 18, pp. 206–2014
 38. Sebastián G, Gallud JA, Tesoriero R (2020) Code generation using model driven architecture: A sys-

tematic mapping study. Journal of Computer Languages 56
 39. Shneiderman B, Plaisant C, Cohen M, Jacobs S (2009) Designing the user interface: strategies for

effective human-computer interaction. USA: Addison-Wesley Publishing Company, 5th edition
 40. Sierra JL, Fernández-Manjón B, Fernández-Valmayor A (2008) A language-driven approach for the

design of interactive applications. Interacting with Computers 20(1):112–127
 41. Sockett G (2014) The online informal learning of English, p. 11. Palgrave Macmillan UK
 42. Torres J, Resendiz J, Aedo I, Dodero JM (2014) A model-driven development approach for learning

design using the lpcel editor. J King Saud Univ - Comput Inf Sci vol. 26, no. 1, Supplement, pp. 17–27
 43. Torres J, Dodero JM, Aedo I, Diaz P (2006) Designing the execution of learning activities in complex

learning processes using lpcel, In Sixth IEEE International Conference on Advanced Learning Tech-
nologies (ICALT’06), pp. 415–419

 44. Troya J, Vallecillo A (2014) Specification and simulation of queuing network models using domain-
specific languages. Comput Stand Interfaces 36(5):863–879

 45. Watts N (1997) A learner-based design model for interactive multimedia language learning packages.
System 25(1):1–8

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

36304 Multimedia Tools and Applications (2021) 80:36275–36304

	A domain specific language notation for a language learning activity generation tool
	Abstract
	1 Introduction
	2 Related work
	2.1 How this work relates to MDAMDE
	2.2 Related work on visual learning designs
	2.3 Analyzing language-learning methodologies

	3 Graphical notation description
	4 Notation evaluation
	4.1 Activities
	4.2 Components
	4.2.1 Interaction language or notation
	4.2.2 Editing environment
	4.2.3 Medium of interaction
	4.2.4 Sub-devices

	4.3 Notational dimensions
	4.3.1 Viscosity
	4.3.2 Visibility
	4.3.3 Premature commitment
	4.3.4 Hidden dependencies
	4.3.5 Role-expressiveness
	4.3.6 Error-proneness
	4.3.7 Abstraction
	4.3.8 Secondary notation
	4.3.9 Closeness of mapping
	4.3.10 Consistency
	4.3.11 Diffuseness
	4.3.12 Hard mental operations
	4.3.13 Provisionality
	4.3.14 Progressive evaluation

	5 Preliminary usability heuristic evaluation results
	5.1 Shneiderman rules
	5.2 Norman principles
	5.3 Nielsen heuristics

	6 Discussion
	6.1 Analysis of notational dimension results
	6.2 Limitations

	7 Conclusions
	References

