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Abstract

Natural gestures are a desirable feature for a humanoid robot, as they are presumed to elicit
a more comfortable interaction in people. With this aim in mind, we present in this paper
a system to develop a natural talking gesture generation behavior. A Generative Adversar-
ial Network (GAN) produces novel beat gestures from the data captured from recordings of
human talking. The data is obtained without the need for any kind of wearable, as a motion
capture system properly estimates the position of the limbs/joints involved in human expres-
sive talking behavior. After testing in a Pepper robot, it is shown that the system is able
to generate natural gestures during large talking periods without becoming repetitive. This
approach is computationally more demanding than previous work, therefore a comparison is
made in order to evaluate the improvements. This comparison is made by calculating some
common measures about the end effectors’ trajectories (jerk and path lengths) and com-
plemented by the Fréchet Gesture Distance (FGD) that aims to measure the fidelity of the
generated gestures with respect to the provided ones. Results show that the described system
is able to learn natural gestures just by observation and improves the one developed with
a simpler motion capture system. The quantitative results are sustained by questionnaire
based human evaluation.

Keywords Social robots - Motion capturing and imitation -
Generative adversarial networks - Talking movements - Fréchet gesture distance

1 Introduction

The main aim of social robotics [2] is to endow robots with artificial social intelligence in
order to advance in a more natural human-machine interaction and make them participate in
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complex human contexts. To achieve the desired level of sophistication in robot behaviors, it
is necessary to model and implement sensing, processing and interacting capabilities similar
to those presented in humans. Emotions, intentions, motivations, and other related cognitive
functions are also needed to be taken into account.

Movements, postures and all kind of spontaneous gesticulation are involved in talking
and social interactions even if they vary among cultures and are largely subjective. If we
want to make people feel confident when interacting with robots, while building trust in
the process, a human-like talking gesticulation behavior is highly desirable. Different kind
of gestures involving head, arms and hands are used both to reinforce the meaning of the
speech and to express emotional state through non-verbal signs. The present work is limited
in scope to beats, i.e. movements of body parts that occur during a conversation and that
although they are synchronised with the general flow of speech, they do not have a particular
meaning associated to them [18]. Generation of a representative set of gesture motions that
it is also variate enough to avoid repetitive behavior is a hard task to perform manually with
handmade animations [24]. A friendlier way of acquiring such natural interaction ability
by social robots would be, undoubtedly, through just observation of human behavior, as
in [36]. However, in order to capture human motion markers were needed to record hand
information.

The present approach intends to take one step forward to improve social robots gesticula-
tion capabilities, therefore allowing us to capture the naturalness with which we gesticulate
when talking and then transfer such properties to a robot. Opposite to [36], a full markerless
motion capturing and system is used, which makes it easier to use with no loss of perfor-
mance. The movements data is given by OpenPose [5], a real-time multi-person 2D pose
estimation that uses a non-parametric representation to learn to associate body parts with
individuals in a given image. In addition, a gesture generation model capable of generat-
ing human talking beat gestures for a humanoid robot is presented. The obtained model is
trained with a database captured by recording humans talking in real time. The main con-
tribution of this paper over the work presented in [37] is the analysis of the improvements
evaluated by means of different measures, quantitative and qualitative.

The rest of the paper is structured as follows: Section 2 presents the different generative
models found in the literature that are used for robot gesture generation. Next, Section 3
defines the baseline used to later on evaluate the performance of the developed system, the
capturing, mapping system, together with the generative approach used. Section 4 summa-
rizes the comparative measures used along with the obtained values. The paper concludes
with Section 5 pointing to further research.

2 Approaches for gesture generation

Social robots need a mechanism that allow to generate a natural and appropriate body lan-
guage, in the way people do. Most models for generating non-verbal behavior are based on
rules [8, 20]. Therefore, those systems can produce a limited set of movements and usually
are tuned for a particular setting. In contrast, data-driven systems are flexible and easily
adjustable. Given a set of examples, data-driven methods aim to learn a model P which to
sample from, such that P is as similar as possible to the unknown distribution contained in
the input data.

Several authors have explored data-driven approaches for motion generation. In [14]
the authors propose the combination of Principal Component Analysis (PCA) [33] and
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Hidden Markov Models (HMMs) for encoding different movement primitives to generate
humanoid motion. Tanwani [31] uses Hidden Semi-Markov Models (HSMM) for learning
robot manipulation skills from humans. These approaches mainly focus on the techni-
cal aspects of generating motion like arm lifting, arc circling or tracking and reaching a
screwdriver, very different motion skills compared to speech related gestures. Regarding on
social robotics, some generative approaches are being applied with different objectives. For
instance, in [15] Manfre et al. use HMMs for dance creation.

Deep learning techniques have also been applied to generative models, giving rise to deep
generative models. Recently several deep generative models, mainly Generative Adversar-
ial Networks (GAN) [9] and Variational Autoencoders (VAEs) [11], have been applied for
gesture generation. For instance, Nishimura et al. [21] propose a long-term motion genera-
tion method by using a generative model trained by short-term motions (CNN-GAN). The
purpose of their research was to model the non-verbal communication (mainly upper body
motion) of human during interaction for the application of the motion generation of the
Ibuki humanoid robot.

However, we found few references to beat gesture generation in robots, albeit it is
important to provide social robots with an adequate beat generation system.

According to Bremner et al. [3], selecting naively from a library of gestures is unlikely
to result in particularly human-like gesture sequences. They perform an analysis of chat
show videos and generate rules for the creation of of human-like beat gestures. These ges-
tures are later combined with hand scripted non-beat gestures, to produce monologues with
a complete set of accompanying gestures, concluding that having correctly designed ges-
ture sequences improves observer engagement. As mentioned before, hand made rule based
approaches are time consuming, hard and difficult to generalize enough. Wolfert et al. also
emphasize the importance of beat gesture generationg is social robots in [34]. They compare
generated beat gestures with gestures created manually and conclude that users prefer beat
gestures generated by an encoder-decoder DNN model. In their work, the learning model
is fed with combined speech and motion information. However, in the experimentation no
robot is involved, just a 3D model of a human’s upper body.

The closest work we found to our approach is given by Marmpena et al. They exploit the
latent space of a VAE for generating beat gestures in a Pepper robot. In [17] they state that
the latent space of the model exhibits topological features that can be used to modulate the
amplitude of the motion, and they propose a structural feature that can be potentially useful
for generating animations of specific arousal according to the dimensional theory of emotion
[27]. This work is later extended on the one hand, by modifying the VAE into a Conditional
Variational Autoencoder (CVAE), and on the other hand, by adding the sequences of eye
LEDs patterns to the training data to increase the expressiveness of the animations [16].
Although they adopt a generative approach to beat gesture generation similar to what we
do, they feed the learning mechanism with a manually built set of animations. They have no
need to map recorded human motion into robot motion at the expense of a more limited and
less natural gesture set to learn from.

In Rodriguez et al. [25] we used GANS to generate emotional gesticulation movements
for the humanoid robot Pepper. Similarly to Marmpena et al., we used animations learned
from a set of predefined talking gestures obtained from the robot’s animation library, which
later are modified by changing the head position, eyes’ led color, arms motion veloc-
ity and speech intonation according to the sentiment of the speech. In a later work [36],
we improved the beat gesture generation system by feeding the GAN with human talk-
ing gestures recorded by a Kinect. In the present work, we improve the mocap system
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to obtain more precise and richer human motion information and evaluate it using differ-
ent quantitative measures, sustaining the obtained measures by questionnaire based human
evaluation.

3 Experimental baseline

Just like a robot can learn to tighten a nut by demonstration it can also acquire a way to imi-
tate the movements performed by the instructor. Thus, learning to gesticulate by observation
should enhance robot naturalness.

In this section the approach employed for learning gestures from observation is described
in detail. The proposed approach can be divided in a three-step process: observation,
mapping and learning.

The observation step consists on capturing motion data while people talks. Afterwards,
the data is filtered and mapped into the robot’s motion space. Head, arms and hands features
are mapped. Finally, the data is used in a learning step in order to be able to generate new
but similar robot motion gestures. Each of these steps are more in deep explained in the
consequent subsections (see Fig. 1).

3.1 Observation: motion capturing using OpenPose
Motion capture (MoCap) is the process of recording motion data through any type of

sensor. Applications of such systems range from animation, bio-mechanics, medicine to
sports, science, entertainment, robotics [39] of even study of animal behavior [29]. MoCap

Observation

[ MoCap ] [ Depth Data ]

3D Skeleton Data

Ve Skeleton Filtering

Mapping |

¥ 12 ¥
Head Motion Arm Motion Hands Motion
Mapping Mapping Mapping

N |

Learning Robot Motion
-

Fig. 1 Gestures learning process
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Fig.2 Openpose detected body, hand and face keypoints

systems rely on optical technologies, and can be marker-based (e.g. Vicon!) or markerless,
like RGB-D cameras. While the former ones provide more accurate results, the latter ones
are less prone to produce gaps (missing values) that need to be estimated [19, 32]. Besides,
markerless approaches are welcomed by users that do not need to wear devices or clothes
that might be cumbersome.

Trying to capture human poses as natural as possible, markerless technique seems to be
more appropriate due to the freedom of movement of the speaker. Microsoft’s Kinect depth
sensor has been very popular as markerless skeleton tracker device due to its availability [1,
7]. The Kinect uses a machine learning method for human body pose recovery. Mainly, it
infers body parts from depth images using a randomized decision forest learned from over
a million training examples [30].

The advent of deep learning systems motivated the development of more powerful
model-based approaches for human pose estimation. OpenPose [6] is one of the most popu-
lar bottom-up approaches for multi-person human pose estimation. It provides in real-time
the body, hands, and facial keypoints (135 keypoints in total) of every person in the image.
Figure 2 shows an example of the different parts detected. As most deep learning based tech-
niques, it requires a powerful GPU and needs specific software dependencies in order to run
efficiently. However, the face and hand information that provides turns it into a promising
alternative for the task we are involved in.

In the proposed approach the technology employed for the observation process includes
the Intel RealSense D435 2 depth camera and OpenPose as MoCap system. The observation
step consists of the process of extracting the necessary human motion information, in this

Uhttps://www.vicon.com/
https://www.intelrealsense.com/depth-camera-d435/
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case the 3D skeleton according to the OpenPose BODY25 model and hand information.
Considering OpenPose only estimates 2D human pose, our approach combines the output
given by OpenPose and the depth data provided by the camera to obtain the 3D skeleton data
of the user. Facial keypoints are not considered since Pepper facial expression is limited to
coloured led eyes. Extracted data are low pass filtered before converting into robot motion,
in order to stabilize them and avoid trembling.

3.2 Mapping: translating human motion to robot motion

Human motion cannot be directly mapped to a robot because in spite of the humanoid
appearance their motion systems differ. Their joints have different degrees of freedom
(DOF), movable ranges are not the same, etc. Therefore, original motions must be modi-
fied to be feasible by the robot, i.e the captured movements must be correctly mapped by
satisfying several constraints (see [22] for a good overview of every aspect of the motion
imitation task).

The mapping can be done by inverse kinematics, calculating the necessary joint positions
given a desired end effector’s pose [1]. Only the information of the end effectors is consid-
ered and employed to estimate appropriate positions of every joint. This process is effective
but its complexity requires high computational load. Alternatively, direct kinematics adapts
captured angles to the robot [36, 38]. As it is a more straightforward and computationally
tractable method, this last technique has been used in the system presented here.

During the mapping stage only upper body joints (arms, head and hands) are considered
since lower-body parts are not involved in beat gesticulation. The description of the terms
used in the equations presented in the following subsections are detailed in Appendix. A to
facilitate the readability and comprehension.

3.2.1 Arms mapping

The literature reveals different approaches to calculate the robot arm joint positions [12, 38].
This mapping process depends upon the robot’s degrees of freedom and joints range. For the
Pepper robot arms we are dealing with, some upper-body link vectors are built through the
skeleton points in the human skeleton model, and joint angles are afterwards extracted from
the calculation of the angles between those vectors (see Fig. 3). For the sake of simplicity,
the formulae involved in that process are not going to be reproduced here (see [36] for more
detailed information).

3.2.2 Head mapping

OpenPose detects basic face features such as the nose, the eyes and the ears (see Fig. 4).
To map humans head position into the robot, we use the nose position as reference. Nose’s
position shifts horizontally when moving the head left to right and gets closer to or away
from the neck when looking up or down. Thus, head’s pitch (H (;"b”’ ) is proportional to the

distance between the nose and the neck (N N) joint. This distance is enough to adjust the
neck’s pitch angle (see (1)). The distance value must be converted from the camera frame
to the robot head joint range. This is done by the rangeConv function. The Range HE q’;’b”’
in (1) represents the range of values the head pitch can take. Instead, the yaw orientation
of the head itself (HE fp"b‘”) can be calculated by measuring the angle between the vector
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Fig.3 Left arm joints and angle limits

joining the nose and the neck, and the vertical axis as expressed in (2). Again, the measured
angle must be converted to the tolerable robot head yaw range Range HE ’,;b”’ .

NN =dist(Nose, Neck)

HE;”I”” =rangeConv(NN, RangeHE;"bm) €))
HE]r/,"b‘” = rangeConv(— arcsin (NN ), RangeHElr/,"b‘”) 2)

Note that using the nose information instead of the more general head central pose allows
for a more detailed realistic capture of the head motion.

Fig.4 Face keypoints detected in
OpenPose’s BODY25 model
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3.2.3 Hands mapping

OpenPose differentiates left and right sides without any calibration and gives 21 keypoints
per hand, four per finger plus wrist. Next how hand movements are mapped is detailed. Note
that the explanation focuses on the left hand, without any loose of generalization, due to the
similarity of the right hand analysis.

1. First, it is determined whether a hand is showing the palm or the back. This requires to
calculate the angle between the horizontal line and the line joining the thumb and the
pinky fingertips. This is represented in (3), where F'T stands for fingertip and O FT
represents the new origin of a fingertip (see Fig. 5a and b). Afterwards, the fingers’
points are rotated in such a way that the pinky lies at the right of the thumb, and both
fingertips are aligned with ¥ = 0, as reflected in (4) (see Fig. 5c). For the right hand,
at least two fingers should lie over that line to consider the palm is being showed as
described in (5), the opposite condition for the left hand (see Fig. 5d).

ViFT' OFT], = FT.  — FT/"m?
o = arctan(O FTyPMky, OFT!"™) S

Rotate a

—> 43

)

© ()

Fig.5 Hand side detection process for the right hand
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Vi FT] = OFT] xcos (—a) — OFT, x sin (—a)

Vi FT)' = OFT] xsin(—a) — OFT, % cos (—a) )
Back 3_ FT/i 0) >2

HandSide = {~%¢ ((Z,_l' ¥)>0) = )
Palm otherwise

2. Afterwards, the turn of the wrist, i.e hand’s yaw angle (W&/Obw ), is set correspondingly

by measuring the distance between the thumb and the pinky fingertips (T P) (6). The
minimum and maximum values are adjusted according to the wrist’s height so to avoid
collisions with the touch screen on the chest of the robot. In this case, Range W]Z”h"’ in
(6) equation corresponds to the range of values the robot hand’s yaw can take.

TP =dist(FT"""", FT'P"h)

Wl’/‘/"b‘” = rangeConv(T P, Ranger/rj"b”’) (6)
3. Hand opening/closing (H Aglo,le’,ff ) is also measured as a function of the distance between
wrist and middle fingertip (M W) (see (7)). The obtained M W value is then converted

to the robot hand’s opening/closing range (Range H Ag;’f;ﬁ’ )

MW = dist(FT™ Wrist)
HA™P" — rangeConv(MW, RangeH AT°2°") (7

open open

3.3 Learning: GAN based gesture generation

GAN networks are composed by two different interconnected networks. The Generator (G)
network generates possible candidates so that they are as similar as possible to the training
set. The second network, known as Discriminator (D), judges the output of the first network
to discriminate whether its input data are “real”, namely equal to the input data set, or if
they are “fake”, that is, generated to trick with false data.

The training dataset given to the D network contained 2018 unit of movements (UM),
being each UM a sequence of 4 consecutive poses, and each pose 14 float numbers corre-
sponding to joint values of head, arms, wrists (yaw angle) and hands (finger opening value).
These samples were recorded with the aforementioned OpenPose based MoCap system by
registering 4 different persons talking, about 9 minutes overall.

The D network is thus trained using that data to learn its distribution space; its input
dimension is 56. On the other hand, the G network is seeded through a random input with
a uniform distribution in the range [—1, 1] and with a dimension of 100. The G intends to
produce as output gestures that belong to the real data distribution and that the D network
would not be able to correctly pick out as generated. Figure 6 depicts the architecture of the
generator and discriminator networks.

4 Evaluation of the robot’s behaviour
In order to evaluate the whole system, we opted to compare some gestural features of the
produced behavior with the one in [36]. Both systems differ in the MoCap (OpenNI vs.

OpenPose) used to collect the training data. The OpenNI based approach showed difficulties
to accurately track hands and head positions as it can be appreciated in Fig. 7.
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(a) OpenNI
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Fig. 7 Reproduction of poses in the simulated robot
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Table 1 Mean values for each

measure (¢: pitch, ¥: yaw) OpenPose based OpenNI based
Lhand Ejerk 0.0369 0.0371
Epath 29.6107 31.1931
Rhand Ejerk 0.0304 0.0367
Eipatn 25.3052 29.8871
Lelbow Ejerk 0.0135 0.0162
Eipath 11.6434 13.4594
Relbow Ejerk 0.0102 0.0161
Eipath 9.0550 13.9018
Head EY, . 0.0515 0.0478
¢
Eork 0.0301 0.0248

These difficulties are therefore reflected in the generated gestures, as can be appreciated
in this video®. The executions of both systems correspond to the models trained to generate
movements using 4 consecutive poses as unit of movement. Notice that the temporal length
of the audio intended to be pronounced by the robot determines the number of UM required
to the generative model. Thus, the execution of those UMs, one after the other, defines the
whole movement displayed by the robot.

In this first and naive qualitative analysis three man differences are detected. On the one
hand, head information provided by the OpenNI skeleton tracking package was not enough
for preserving head movements and thus, the resulting motion was poor. On the other hand,
the tracker only offered wrist positions and as a consequence, a vision based alternative was
developed by segmenting red/green colors of the gloves wore by the speaker for tracking
palms and backs of both hands. The opening/closing of the fingers was made at random
for each generated movement. Lastly, the robot elbows tended to be too separated from the
body and raised up. At a glance, it can be seen that the OpenPose based approach overcomes
these three main drawbacks.

Further and more thorough qualitative analysis is presented in Section 4.2.

4.1 Quantitative analysis

There is no consensus in the field about which objective measures should be used to evaluate
the quality of generated gestures. As a step towards common evaluation measures for the
gesture generation field, we primarily use metrics found in the literature [13, 26, 35], namely
the mean values of jerk and length path, and the Fréchet Gesture Distance (FGD):

— Norm of Jerk: as mentioned in the introduction, the goal is to generate spontaneous
smooth movements. The norm of Jerk is a smoothness measure based on root mean

3https://www.youtube.com/watch?v=h9wpMEHS8JQc
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square (RMS) jerk quantification [4]. It is calculated according to (8), where accel
stands for the acceleration at time .

T
. 1 :
jerk = T ; |laccel;|| ®)

Length of the generated paths: the length of the path (/path) described by the positions
of the hands during time (x;) is also another interesting measure. Lower jerk values
would lead to lower [path values, as the movements would be smoother. The measure
(Ipath) is computed as (9).

T
Ipath =y |[% — X1l ©)

t=2

The Fréchet Gesture Distance (FGD) draws its inspiration from the Fréchet Inception
Distance (FID) [10] commonly used in the image generation domain. The Inception
model used in FID has been built from the predictions of a deep learning algorithm
that has been trained with millions of labeled images which could belong to any of one
thousand predefined classes. In inference mode the Inception model is presented an
image, and then returns a list of one thousand probabilities. The probability the models
assigns the image to belong to class C; is the element P; of the list. Our aim is to
define a similar model for gestures, because to the best of our knowledge there is no

OpenPose based generation. Left elbow

OpenPose based generation. Right elbow

0.15 T T T T T 0.15 T T T T T
0.1 . 0.1 .
0.05 |- § 0.05 |- , . :
0 . 0 .
-0.05 |- . -0.05 |- 1
-0.1 L L 1 . 4 -0.1 . . . . L
-0.3 -0.2 -0.1 0 01 02 03 -0.3 -0.2 -0.1 0 01 02 03
OpenNI based generation. Left elbow OpenNI based generation. Right elbow
0.15 T T T T T 0.15 T T T T T
0.1 ~ 0.1 .
0.05 |- : \- 0.05 .
0 : 0 .
-0.05 |- . -0.05 .
-0.1 L L L . L -0.1 ¥ L 1 1 .
-0.3 -0.2 -0.1 0 01 02 03 -0.3 -0.2 -0.1 0 01 02 03
Fig.8 Elbows’ motion paths
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Table2 FGD values (E £ o)
OpenPose GAN OpenNI GAN

E+xo 0.1231+0.0108 0.1309+ 0.0117

public model which could fill that role. Using Choregraphe,* a software designed to
create robot animations, we have created a set of synthetic gestures, which in turn has
been the data to build a Gaussian Mixture Model (GMM). The number of poses in this
synthetic gestures database is a total of 1502. The need for a Choregraphe-based GMM
arises from the desirable independence between such model and the data that will be
analyzed. This assumption is met with the Inception model, and our goal is to meet it
too in our approach. The data used for training the generative models is captured by a
MoCap system, which is a different source altogether from the Choregraphe sofware,
therefore ensuring the desired independence between both sets of data.

Previous work by the authors [27] supports the suitability of GMM to create the
model. They show that, when used as generative model, GMMs rank second after GAN's
in the quality of generated gestures. As GMMs can also be used as classifiers, they can
therefore return the set of probabilities needed to compute the FGD in the same manner
that the Inception model does in FID.

Two different GANs trained in the same conditions have been used to generate robot
motion for about 300 seconds and during the execution of the movements, the 3D coordi-
nates of the end effectors (i.e. left and right hands) and elbows with respect to the pelvis have
been recorded while talking. Head pitch and yaw values were also saved. Table 1 shows the
obtained values for each approach.

Overall, OpenPose based motion generation obtains lower (and thus, more desirable)
values for every measure. Hands and elbows show smoother motion. Figure § allows to
compare elbows’ motion paths during those 300 seconds. It is noticeable that OpenPose
based gesture generator spread less both, left and right elbows’ positions during those 300
seconds. This fact, together with the obtained motion measures confirm the strange elbow
poses produced by the OpenNI based system and identified in the above referred video.

Head jerk is the exception though. There is an explanation for this outlier. In order to
be able to capture head pose using the OpenNI based approach, the talking human needed
to exaggerate the head movements so that the mapped pose was perceptible on the robot.
This drawback can be appreciated during the replication of the movements of the second
actress in the simulated robot in this video® (timestamp 0:36 to 0:44s). Small human head
movements cannot be captured with fidelity using the OpenNI based approach. As a result,
the generated head motion is barely noticeable and hence, produces smaller jerk values.

Table 2 shows the FGD distance values for the two GAN models aforementioned. The
motivation behind FGD is to make it fulfill the same role in gestures than FID in images,
i.e. measure the distance between the original and the generated movements. Therefore, the
smaller the values of FGD, the more similar to the original gestures. Note that OpenPose
results in a smaller FGD.

“http://doc.aldebaran.com/2- 5/software/choregraphe/index.html
Shttps://www.youtube.com/watch?v=iW 15660zbdg
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Table 3 Mean values based on -
five-point Likert scale rating for OpenPose GAN OpenNI GAN Wilcoxon p-value

each gesticulation type
Naturalness 372 £0.76 336+£0.80 0.013

Fluency 3.98 +£0.71 347+091 0.0007
Appropriateness 3.52 £ 0.89 327095 0.12
Variability 3.83 +£0.79 319+ 091  7.71e-5
Synchronization 3.56 + 0.79 349+£0.83 041
Liking 3.78 +£0.82 3.44+£0.87 0.042

4.2 Qualitative analysis

While there are several successfully approaches on how gestures are produced by social
robots, problems arise when it comes to evaluate the behavior of the robot. Usually robot
behavior is qualitatively evaluated, and the most common tool used for qualitatively mea-
sure the behavior of robots is the questionnaire. Often questionnaires are defined so that
participants can rank several aspects of the robot’s performance [23, 28]. There seems to
be a consensus in presenting the questions using Likert scale and analyzing the obtained
responses using some statistical test like analysis of variance, chi-square and so on.

The questionnaire for the study rates the following aspects in a five point Likert scale:
the naturalness of the gestures, the fluency, the appropriateness of the gestures for accom-
panying the speech, the variability of gestures perceived, the synchronization between the
speech and the gestures, and how much they liked the gestures performed by the robot.

We conducted an online survey showing two videos®’ about 1 minute long each (equiv-
alent to 240 generated movements) to evaluate the perceived quality of the generated
movements of both systems.

In order to avoid possible option ordering bias, we prepared two questionnaires with
different video ordering and we randomly showed one of them to the participants. 59 volun-
teers (22 female, 37 male) with an average age of 32 participated in our user study to judge
the robot’s gesticulation capabilities. Table 3 illustrates the results.

Overall, mean score results are higher for the GAN trained with OpenPose as skeleton
tracker. Fluency and variability are the best valued properties and where the differences
between both systems differ the most. OpenPose allows for more variable and fluent gesture
generation.

However, this vague numerical comparison might be non statistically significant due to
the apparently large variances. To find if the qualitative perception of both systems shows
a statistically significant difference, we applied the Wilcoxon signed-rank test and the
obtained p-values for each evaluated feature are shown in the last column of Table 3. As we
are testing six hypotheses simultaneously, it is advisable to apply the Bonferroni correction.
Therefore, for the standard « value of 0.05 for each individual hypothesis to be achieved, the
threshold value has to be replaced by o = 0.05/6 = 0.0083. Again, fluency and variability
pass the test and naturalness shows a close p-value (0.083 < 0.013 < 0.05). Appropriate-
ness, Synchronization and Liking, didn’t show significant differences, but they all obtained
higher mean ratings. It is worth recalling that both are GAN based gesture generation sys-
tems that differ only in the MoCAP used to capture the training data and thus, very similar

6QOpenNT: https://youtu.be/O7q2neEeA9s
7OpenPose: https://youtu.be/-ubxvZ2gxtl
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in nature. However, these results together with the quantitative analysis results previously
showed allow us to conclude that OpenPose tool introduces significant improvements in the
generated behavior.

5 Conclusions and further work

In this paper a gesture generating system from human observation has been presented and
tested. It has been shown that while a markerless motion based system is more computa-
tionally demanding than other methods, the results justify its use, due to the high capture
accuracy and comfort for the user.

Markerless motion capture is preferable in order not to constraint the speakers during
the motion recording process. It allows to the human to behave naturally due to the non-
intrusive nature of the recording process. This fact is not petty since the goal is to generate
human like natural robot gestures. Beyond this, OpenPose captures motion more faithfully,
i.e. the skeleton obtained better gathers the pose of the human model. The work presented
here intended to evaluate if the computational demands are justified by producing data
that allows a more natural, credible and non jerky gesturing system. Different measures,
quantitative and qualitatives confirm that the OpenPose-GAN based gesture generation
improves OpenNI-GAN system. OpenPose based approach induces better replication and,
as a consequence, better motion generation as it has been empirically measured.

A more expressive database would broaden the variety of gestures being generated by
the robot. Before exposing the robot to a large audience, a wider set of human models need
to be recorded. It is of high interest to compare the capability of GAN to generate gestures
with another generative approach such as VAEs. Training different learning mechanisms
with the same data would allow us to see if there are significant differences among the
generated gestures or to choose the most appropriate model for the task in hands. However,
the most interesting point in our opinion is that the developed system offers the basis for
extending the beats to a generator conditioned on other kind of movements as emotion-based
or context related gestures.

Appendix A

Table 4 Description of the terms used in (1)—(7)

Term Description

NN = (NN,, N Ny) The euclidean distance between the nose and head keypoints detected
in OpenPose’s BODY25 model.

RangeHE ;f’b”’ Pepper’s head pitch joint range values in radians.

RangeHE ’w"b‘” Pepper’s head yaw joint range values in radians.

HE ('I;Ob‘” Pepper’s head pitch angle in radians obtained after the mapping process.

HE :}/"b"’ Pepper’s head yaw angle in radians obtained after the mapping process.

FT; y X and Y components of the fingertip keypoints detected in OpenPose’s
COCO Hand model, where i = {thumb, index, middle, ring, pinky}.

OF T)f:’). X and Y components of the fingertip keypoints detected in OpenPose’s

COCO Hand model after the translation to the new origin, where i =
{thumb, index, middle, ring, pinky}.
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Table4 (continued)

Term Description

F Ty/i X and Y components of the fingertip keypoints rotated in such a way

that the pinky lies at the right of the thumb, and both fingertips are
aligned with Y = 0.7 = {thumb, index, middle, ring, pinky}

TP The euclidean distance between the thumb and the pinky fingertips.

RangeW]Z”b‘” Pepper’s wrist yaw joint range values in radians.

erf’b‘” Pepper’s wrist yaw angle in radians obtained after the mapping process.

Wrist Wrist keypoint detected in OpenPose’s COCO model.

MW The euclidean distance between the middle fingertip and wrist key-
points detected in OpenPose’s COCO model.

RangeW(’,"l‘,’f,‘l” Pepper’s wrist yaw joint range values in radians.

H Arobot Pepper’s hand opening/closing actuator range values.
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