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Abstract
This article presents, on the one hand, new algorithms for the fast and stable
computation of discrete orthogonal Hahn polynomials of high order (HPs) based
on the elimination of all gamma and factorial functions that cause the numerical
fluctuations of HPs, and based on the use of appropriate stability conditions. On
the other hand, a new method for the fast and numerically stable computation of
Hahn moment invariants (HMIs) is also proposed. This method is mainly based
on the use of new recursive relations of HPs and of matrix multiplications when
calculating HMIs. To validate the efficiency of the algorithms proposed for the
calculation of HPs, several signals and large images (≥4000 × 4000) are recon-
structed by Hahn moments (HMs) up to the last order with a reconstruction error
tending towards zero (MSE ≃ 10−10). The efficiency of the proposed method for
calculating HMIs is demonstrated on large medical images (2048 × 2048) with a
very low relative error (RE ≃ 10−10). Finally, comparisons with some recent work
in the literature are provided.
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1 Introduction

The discrete orthogonal moments (DOMs) are widely applied in various fields of signal and
image analysis. Applications of DOMs include signal and image reconstruction [8, 9, 50],
image classification [3, 16, 20, 39], face recognition [33], image watermarking [24, 41, 44],
signal zero-watermarking [10], edge detection [35], image encryption [43], signal compression
[11, 2] and image compression [13, 42]. The computation of DOMs involves the computation
of kernel discrete orthogonal polynomials (DOPs) such as Tchebichef [27, 28], Krawtchouk
[45, 47], Hahn [46, 50], Meixner [12, 21], Charlier [8, 19, 34], dual Hahn [20, 48], Racah [49]
and Shmaliy [26] polynomials.

In general, the computation of DOPs is performed recursively either with respect to the
polynomial order n or with respect to the discrete variable x. Mukundan et al. discuss in [27]
that the recursive computation of high-order Tchebichef polynomials with respect to the order
n is unstable because of the propagation of numerical errors. To minimize this problem,
Mukundan et al. use the recursive computation of Tchebichef polynomials with respect to the
variable x rather than the order n. Similarly, Zhu et al. [50] propose a general form for the
recursive computation of Tchebichef, Krawtchouk, Hahn, Meixner and Charlier polynomials
with respect to the variable x for minimizing the propagation of numerical errors. Although the
recurrence approach with respect to the variable x minimizes the propagation of numerical
errors, this approach remains limited because it is unable to generate the polynomial values of
high-order polynomials [1, 9]. To overcome this problem for Tchebichef polynomials,
Abdulhussain et al. [1] propose a method based on the sequential integration of the traditional
recurrence relations with respect to order n and with respect to variable x that were introduced
by Mukundan et al. [27]. However, this proposed method is not stable for higher order
Tchebichef polynomials due to the problem of numerical errors propagation [5]. To overcome
this problem, Camacho-bello et al. [5] propose the computation of higher-order Tchebichef
polynomials via the modified Gram-Schmidt orthonormalization process (GSOP). This meth-
od succeeded to ensure the numerical stability of higher-order Tchebichef polynomials. More
recently, GSOP method is used by Daoui et al. to introduce a numerically stable computation
of Hahn [9], Charlier [8] and Meixner [12] polynomials.

Even if the problems of recursive computation of certain high-order polynomials are
solved, the computation of high-order Hahn polynomials (HPs) is still limited by the following
two major problems: (i) the numerical instability of the initial values, which are defined from
gamma and factorial functions. (ii) The propagation of round-off error when computing
high-order HPs, which leads to the loss of the orthogonality property of these polynomials.
To solve the problem (i), new algorithms for HPs computation are proposed in this work.
These algorithms are free from any gamma and factorial functions. To overcome the problem
(ii), a new numerical stability method is proposed. This method that is based on appropriate
stability conditions, is very low in terms of computational cost compared to the GSOP method
that is presented in [9]. As result, the computation of high-order Hahn moments (HMs)
becomes stable and fast when reconstructing large-size signals and images. It is worth
mentioning that the high-order moments are required for better describe the content of the
images [6, 38].

The present work also discusses some computational aspects related to Hahn’s moment
invariants (HMIs) computation, with a view to overcoming the encountered problems.

Generally, the derivation process of the orthogonal moment invariants relies on the
algebraic relation between the orthogonal moments and the geometric ones, to express the
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orthogonal moment invariants as a linear combination of geometric moment invariants. [3, 14,
18, 20, 30]. However, this process is limited by two major drawbacks: (i) the numerical
instability due to gamma and factorial functions involved in the computation of the orthogonal
moment invariants, and (ii) the high computational cost [3]. To overcome these problems
when computing Racah moment invariants (RMIs), a fast and accurate computation method is
proposed in [3]. This method is based on the use of recursive formulas of certain factors
involved in RMIs computation. However, this method and others presented in [3, 17, 20, 39]
are not suitable for computing the invariant moments of large-size images (≥1024 × 1024),
since these methods involve the use of certain terms depending on gamma and factorial
functions when computing the image moment invariants. Motivated by overcoming these
problems, a fast and numerically stable computation of large-size image moment invariants is
proposed in this paper. For this purpose, significant improvements are made on the conven-
tional computation of HMIs presented in [36]. On one hand, the proposed improvements allow
to compute HMIs independently of gamma and factorial functions, which guarantees the
numerical stability of the computed moment invariants. On the other hand, HMIs execution
time is considerably reduced by using matrix multiplications and recursive formulas. It is
important to note that the fast computation of moment invariants is relevant for real-time
applications [3].

The rest of this work is organized as follows: in the second section, the conventional and
the proposed methods for HPs computation are presented. The third section contains the
theoretical background of Hahn moments (HMs) in the 1D and 2D domains. The fourth
section presents the conventional and the proposed method for HMIs computation. In the fifth
section, the results of simulations and comparisons are presented to validate the efficiency of
the proposed algorithms, and the final section includes some conclusions and future works.

2 Conventional and proposed computation of HPs

This section presents the conventional computation methods of HPs and introduces the
proposed algorithms for fast and stable HPs computation.

2.1 Conventional computation of HPs

The HPs of order n and discrete variable x are defined as follows [46]:

h α;βð Þ
n x;Nð Þ ¼ −1ð Þn β þ 1ð Þn N−nð Þn

n!
F 2

−n;−x; nþ 1þ αþ β
β þ 1; 1−N ; 1

� �
ð1Þ

where n, x = 0, 1,…, N − 1, α > − 1, β > − 1, and 3F2(.) is a hyper-geometric function defined
as:

F 2 a1; a2; a3; b1; b2; zð Þ ¼ ∑
∞

k¼0

a1ð Þk a2ð Þk a3ð Þkzk
b1ð Þk b2ð Þkk!

; að Þk ¼ a aþ 1ð Þ aþ 2ð Þ:… aþ k−1ð Þð2Þ

Using Eqs. (1) and (2), HPs can be explicit as follows:

h α;βð Þ
n x;Nð Þ ¼ A βð Þ

n ∑
n

k¼0
B α;βð Þ
n;k xh ik ð3Þ
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with

A βð Þ
n ¼ −1ð Þn β þ 1ð Þn N−nð Þn

n!
ð4Þ

B α;βð Þ
n;k ¼ −nð Þk nþ αþ β þ 1ð Þk

−1ð Þkk! β þ 1ð Þk 1−Nð Þk
ð5Þ

According to [7], 〈x〉k is defined as follows:

xh ik ¼ −1ð Þk −xð Þk ¼ ∑
k

i¼0
S k; ið Þxi with k≥1 and xh i0 ¼ 1 ð6Þ

withS(k, i) are the Stirling numbers of the first kind, obtained by the following recurrence
relation [40]:

S k; ið Þ ¼ S k−1; i−1ð Þ− k−1ð ÞS k−1; ið Þ
with S k; 0ð Þ ¼ S 0; ið Þ ¼ 0 ∀k≥1 ∀i≥1 and S 0; 0ð Þ ¼ 1

ð7Þ

HPs satisfies the following orthogonality relation [23]:

∑
N−1

x¼0
h α;βð Þ
n x;Nð Þh α;βð Þ

m x;Nð Þω xð Þ ¼ d2nδnm ð8Þ

where δnm denotes the delta of Kronecker, ω(x) is the weight function, and d2n represents the
square norm function. These functions are defined as follows [29]:

ω xð Þ ¼ Γ N þ α−xð ÞΓ β þ 1þ xð Þ
Γ N−xð ÞΓ xþ 1ð Þ ð9Þ

d2n ¼
αþ nð Þ! β þ nð Þ! αþ β þ nþ 1ð ÞN

αþ β þ 2nþ 1ð Þ N−n−1ð Þ!n! ð10Þ

When the order n of HPs is high, the computation of these polynomials becomes unstable and
expansive in terms of computation time because of gamma and factorial functions that define
HPs (Eq. (1)) [9, 27]. To improve the computation speed and the numerical stability of
high-order HPs, researchers use the recurrence relations with respect to the order n or with
respect to the variable x [46, 50]. In order to derive the recurrence relations of the normalized
HPs, the following form is used [46]:

eh α;βð Þ
n xð Þ ¼ h α;βð Þ

n xð Þ
ffiffiffiffiffiffiffiffiffiffi
ω xð Þ
ρ nð Þ

s
ð11Þ

The following three-term recurrence relation allows the computation of the normalized with
respect to the order n [50]:
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eh α;βð Þ
n xð Þ ¼ x−Bð ÞC

A
eh α;βð Þ
n−1 xð Þ− DE

A
� eh α;βð Þ

n−2 xð Þ ð12Þ

Where the coefficients A, B, C, D and E are defined in Table 1.
The initial values of HPs with respect to the order n are computed as follows [50]:

eh α;βð Þ
0 xð Þ ¼

ffiffiffiffiffiffiffiffiffiffi
ω xð Þ
ρ 0ð Þ

s
ð13Þ

eh α;βð Þ
1 xð Þ ¼ − β þ 1ð Þ N−1ð Þ þ αþ β þ 2ð Þx½ �

ffiffiffiffiffiffiffiffiffiffi
ω xð Þ
ρ 1ð Þ

s
ð14Þ

The recursive computation of HPs is also possible with respect to the variable x by using the
following three-term recurrence formula [3]:

eh α;βð Þ
n x;Nð Þ ¼ 1

σ x−1ð Þ þ τ x−1ð Þ �
2σ x−1ð Þ þ τ x−1ð Þ−λnð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω xð Þ

ω x−1ð Þ

s eh α;βð Þ
n x−1;Nð Þ

−σ x−1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω xð Þ

ω x−2ð Þ

s eh α;βð Þ
n x−2;Nð Þ

266664
377775

with

σ xð Þ ¼ x N þ α−xð Þ; τ xð Þ ¼ β þ 1ð Þ N−1ð Þ− αþ β þ 2ð Þx and λn ¼ n αþ β þ nþ 1ð Þ
ð15Þ

The initial values of HPs with respect to the variable x are given by [50]:

eh α;βð Þ
n 0ð Þ ¼ 1−Nð Þn

nþ β
n

� � ffiffiffiffiffiffiffiffiffiffi
ω 0ð Þ
ρ nð Þ

s
ð16Þ

eh α;βð Þ
n 1ð Þ ¼ nþ β þ 1ð Þ N−n−1ð Þ−n N þ α−1ð Þ

β þ 1ð Þ N−1ð Þ �
ffiffiffiffiffiffiffiffiffiffi
ω 1ð Þ
ω 0ð Þ

s eh α;βð Þ
n 0ð Þ ð17Þ

Table 1 A, B, C, D and E coefficients of eh α;βð Þ
n xð Þ

A ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n αþ β þ nð Þp

αþ nð Þ β þ nð Þ N−nð Þ αþβþnþNð Þ
aþβþ2nð Þ

B α−βþ2N−2
4 − β2−α2

� � βþαþ2Nð Þ
4 αþβþ2n−2ð Þ αþ β þ 2nð Þ

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ β þ 2nð Þp

2−1
D

ffiffiffiffiffiffiffiffiffiffiffiffi
n−1ð Þp

αþ β þ n−1ð Þ αþ n−1ð Þ β þ n−1ð Þ N−nþ 1ð Þ αþ β þ n−1ð Þ þNÞ
αþβþ2n−2ð Þ

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþβþ2nþ1
αþβþ2n−3

q
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The recursive computation method of HPs provided in [46, 50] is limited by the problem of
numerical instability of HPs initial values, either with respect to the order n or with respect to
the variable x. This problem comes from ω(x) and ρ(n) functions, which are defined from
gamma and factorial functions. Noting that Γ(172) = Inf under Matlab, Python, C++, etc. This
Overflow problem leads to numerical instabilities of HPs when the values of the order n, the
variable x and the parameters α and β become high. Therefore, the analysis of large-size
signals and images by HPs is not possible.

To overcome the instability problem of high-order HPs, new algorithms are introduced in
the next section.

2.2 Proposed computation of high-order HPs

2.2.1 HPs computation with respect to the order n

To avoid the numerical instability of the initial values eh α;βð Þ
0 xð Þ, Eq. (13) is used to develop the

following formula:

eh α;βð Þ
0 xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−xð Þ β þ xð Þ
x N þ α−xð Þ

s eh α;βð Þ
0 x−1ð Þ ; x > 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αþ β þ 1ð ÞΓ αþ 1þ βð ÞΓ N þ αð Þ
Γ αþ 1ð ÞΓ N þ αþ β þ 1ð Þ

s
; x ¼ 0

8>>>><>>>>: ð18Þ

To eliminate Γ(x) function from the term eh α;βð Þ
0 0ð Þ (Eq. (18)), the following recursive formula

is used:

eh α;βð Þ
0 0ð Þ ¼ eh α;βð Þ

i ¼
1; i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iþ α−1ð Þ
iþ αþ βð Þ

s eh α;βð Þ
i−1 ; i ¼ 2; 3;…;N

8><>: ð19Þ

Based on Eqs. (13)–(14), the expression of eh α;βð Þ
1 xð Þ can be expressed as follows:

eh α;βð Þ
1 xð Þ ¼ αþ β þ 2ð Þx− β þ 1ð Þ N−1ð Þ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ β þ 3ð Þ

αþ 1ð Þ β þ 1ð Þ N−1ð Þ N þ αþ β þ 1ð Þ

s eh α;βð Þ
0 xð Þ

ð20Þ

The method thus developed to compute HPs initial values via Eqs. (18)–(20) is numerically
stable since it is independent from gamma and factorial functions. Algorithm 1 summarizes the
main steps of the proposed method for HPs computation with respect to the order n.
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Algorithm 1 Proposed algorithm for HPs computation with respect to the order n.

The following subsection includes the proposed computation of HPs with respect to the
variable x.

2.2.2 HPs computation with respect to the variable x

To ensure the numerical stability of HPs initial values eh α;βð Þ
n 0ð Þ and eh α;βð Þ

n 1ð Þ, Eqs. (16)–(17)
are extended to obtain the formulas below.

eh α;βð Þ
n 0ð Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ β þ 2nþ 1ð Þ αþ β þ nð Þ N−nð Þ nþ βð Þ
n αþ nð Þ αþ β þ N þ nð Þ αþ β þ 2n−1ð Þ

s eh α;βð Þ
n−1 0ð Þ ð21Þ

with eh α;βð Þ
0 0ð Þ is given by Eq. (18).

eh α;βð Þ
n 1ð Þ ¼ nþ β þ 1ð Þ N−n−1ð Þ−n N þ α−1ð Þð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

β þ 1ð Þ N−1ð Þ N þ α−1ð Þ

s eh α;βð Þ
n 0ð Þð22Þ

For x > 1, the numerical stability of eh α;βð Þ
n xð Þ is achieved by eliminating ω(x)function from Eq.

(15) as follows:
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eh α;βð Þ
n xð Þ ¼ A� eh α;βð Þ

n x−1ð Þ þ B� eh α;βð Þ
n x−2ð Þ

A ¼ 2 x−1ð Þ N þ α−xþ 1ð Þ þ β þ 1ð Þ N−1ð Þ− αþ β þ 2ð Þ x−1ð Þ−n αþ β þ nþ 1ð Þ
x−1ð Þ N þ α−xþ 1ð Þ þ β þ 1ð Þ N−1ð Þ− αþ β þ 2ð Þ x−1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β þ xð Þ N−xð Þ
N þ α−xð Þx

s

B ¼ −
x−1ð Þ N þ α−xþ 1ð Þ

x−1ð Þ N þ α−xþ 1ð Þ þ β þ 1ð Þ N−1ð Þ− αþ β þ 2ð Þ x−1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β þ xð Þ N−xð Þ
N þ α−xð Þx

β þ x−1ð Þ N−xþ 1ð Þ
N þ α−xþ 1ð Þ x−1ð Þ

s
ð23Þ

The fundamental steps used for HPs computation with respect to the variable x are presented in
algorithm 2.

Algorithm 2 Proposed algorithm for HPs computation with respect to the variable x.

It is important to mention that the computation of HPs initial values by Eqs. (20)–(21)
presents the Underflow problem for high values of the order n. Indeed, Table 2 illustrates an
example of this problem.

From Table 2 it can be seen that the values of eh α;βð Þ
n 0ð Þ become zero (Underflow) when n >

2558. This problem limits the recursive computation of high-order HPs. To overcome this
problem, new method is proposed (Fig. 1) for stable computation of high-order HPs with

Table 2 eh α;βð Þ
n 0ð Þ values for N= 4000, α = β = 100, n = 0:2559 and x = 0

Order n 2557 2558 2559

eh α;βð Þ
n 0ð Þ value −1.50000000000000e-323 4.90000000000000e-324 0
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respect to the variable x. The details of this method are described in algorithm 3. Noting the
proposed method is inspired from the method presented in [1], which is used for stable
computation of high-order Tchebichef polynomials.

Algorithm 3 Proposed Algorithm for HPs computation with respect to the variable x.

Since the computation of HPs using the proposed algorithms is recursive, this leads
to the appearance and propagation of rounding error. This problem is discussed by
Camacho-bello et al. in [5] when computing high-order Tchebichef polynomials. To
overcome the encountered problem for Tchebichef, Meixner and Hahn polynomials,
the modified Gram-Schmidt orthonormalization process (GSOP) is used [5, 8, 9, 12].
However, the correction of numerical instability by GSOP is very time-consuming
because GSOP involves a complex calculation process [5, 12]. This problem limits the
fast reconstruction of large-size signals and images by high-order HPs. Indeed,
Table 3 shows a comparison in terms of execution time in second (s) by using
algorithm 1, and GSOP method presented in [9]. The computation of HPs by these

32955Multimedia Tools and Applications (2021) 80:32947–32973



methods is performed 100 times, and then the average execution time is computed
and illustrated in Table 3. It is worth mentioning that all paper tests are carried out
under Matlab R2019a installed on PC of 2.4 GHz processor and 4 GB of RAM.

The results presented in Table 3 and 4 clearly indicate that the GSOP method
significantly increases the computation time of HPs compared to the proposed
methods (algorithms 1 and 3). This is why a new numerical stability method is
introduced in the following section.

2.3 Proposed method for ensuring the numerical stability of higher-order HPs

The proposed method is based on a numerical analysis of the polynomial values in HPs matrix.
Indeed, Fig. 2 present 2D plot of HPs matrix computed by algorithm 1 for n, x = 0 : 512, α = 5,
β = 180. This matrix is displayed in two parts: the first one that is shown in Fig. 2 (a) displays

HPs values that are belong to the orthonormalization domain (eh α;βð Þ
n xð Þ∈ −1; 1½ �)), while the

second part displayed in Fig. 2 (b) shows the unstable values (eh α;βð Þ
n xð Þ∉ −1; 1½ �), and Fig. 2 (c)

shows HPs matrix computed by GSOP method [9].
From Fig.1 (b), it is noticeable that the unstable values of HPs appear when n→N (high

polynomial order). These values are positioned in the blue colored regions called “instability
regions”. After using GSOP method (Fig. 2 (c)), one can observe that the previously observed
instable values become extremely low and tend towards zero. Indeed, Fig.3 shows the intervals
of HPs values computed by GSOP method when n→N.

Fig. 1 Steps of the proposed
method for HPs computation with
respect to the variable x

Table 3 Comparison of HPs execution time for n, x = 0 :512 using Algorithm 1 and GSOP method [9]

HPs order 50 100 200 512

Execution time in seconds (s) using: Algorithm 1 0.0022 0.0056 0.0095 0.0458
GSOP method [9] 0.0582 0.4301 3.2701 52.2399
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From Fig. 3, it can be noticed that the values of eh α;βð Þ
n xð Þ

��� ��� gradually decrease and tend

towards zero when n→N. Therefore, it can be concluded that the numerical instability occurs

only when HPs values become very low and toward to zero ( eh α;βð Þ
n xð Þ

��� ��� ≤10−7). According to

the conducted numerical analysis, appropriate “stability conditions” are introduced during the
recursive computation of HPs to ensure the numerical stability of these polynomials. Indeed,
the following stability condition is inserted after the three-term recurrence relation of HPs with
respect to the order n.

bh α;βð Þ
n xð Þ ¼

0 if ehn−1 α;βð Þ
xð Þ

���� ���� < 10−7
� �

& ehn α;βð Þ
xð Þ

���� ���� > ehn−1 α;βð Þ
xð Þ

���� ����� �
ehn α;βð Þ

xð Þ with n > Nmax=8 and x ¼ 0; 1; 2;…;N−1

8><>: ð24Þ

Note that this condition is activated from the order n =Nmax/8 (lower order) where Nmax is the
maximum order of HPs, this ensures that all unstable values are detected and eliminated
(replaced by zero).

The following stability condition is implemented after the computation of each HPs value
using the three-term recurrence relation with respect to the variable x:

bh α;βð Þ
n xð Þ ¼

0 if ehn α;βð Þ
x−1ð Þ

���� ���� < 10−7
� �

& ehn α;βð Þ
xð Þ

���� ���� > ehn α;βð Þ
x−1ð Þ

���� ����� �
ehn α;βð Þ

xð Þ with x > N=8 and n ¼ 0; 1;…;N−1

8><>: ð25Þ

To evaluate the performance of the proposed Algorithms that including the stability conditions,
HPs are computed by these Algorithms up to the order n = 8000 with x = 0 : 8000 and α = β =
50. Fig. 4 shows 2D plot of HPs matrices computed by Algorithms 1 and 3. The obtained
results show that the computed HPs are stable since the polynomial values belong to the
orthonormality domain [−1, 1], which justifies the efficiency of the proposed Algorithms for
the stable computation of high-order HPs.

The following test presents a comparison in terms of execution time using the proposed
method (algorithm 3) and the GSOP method presented in [9]. The execution time improve-
ment ratio (ETIR (%)) defined by ETIR (%) = (1 − T 1/T 2) × 100 [23] is used as a comparison
criterion, where T 1 is the execution time consumed by the proposed method, and T 2
represents the execution time consumed by GSOP method [9]. The obtained results which
are displayed in Table 4 demonstrate that.

the proposed method (algorithm 3 with the stability condition) is very fast compared to the
GSOP method since ETIR ≥ 99%. This is especially true when the polynomial order n is high.

Table 4 The execution time of HPs (with n, x = 0 : 2000 and α = β = 50) by using Algorithm 3 (with the stability
condition), and by GSOP method [9]

HPs orders 500 1000 2000

Execution time in seconds (s) by using: The Proposed algorithm 3 0.1390 0.8196 7.3199
GSOP method [9] 47.8710 2.7514e+3 1.2578e+6

ETIR (%) 72.84% 99.99% 99.99%
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It is worth mentioning that the computation time of HPs is significantly reduced when using
the following HPs symmetry relation defined for α = β [29]:

eh α;βð Þ
n xð Þ ¼ −1ð Þneh α;βð Þ

n N−1−xð Þ ð26Þ
It is also important to note that Krawtchouk (KPs) and Tchebichef (TPs) polynomials are

special cases of HPs. Indeed, KPs (ekn pð Þ
xð Þ) are obtained from HPs when α = pt and β = (1 − p)

t with t→∞ [29]. In the case α = β = 0, HPs are reduced to TPs (etn xð Þ) [22].
In the following sections, HPs will be used as kernel polynomials to define both Hahn

moments (HMs) and Hahn moment invariants (HMIs) designed for large-size signal and image
analysis.

3 Hahn moments

This section briefly presents the theoretical background of Hahn moments (HMs) in the 1D
and 2D domains.

The 1D HMs of order n are defined for a 1D-signal function f(x) by the following relation:

HMn ¼ ∑
N−1

x¼0

eh α;βð Þ
n xð Þ f xð Þ ¼ PT

n � f with with Pn

¼ eh α;βð Þ
0 xð Þ;eh α;βð Þ

1 xð Þ;…;eh α;βð Þ
N−1 xð Þ

� 	T
ð27Þ

The reconstructed signal bf xð Þ is computed from the 1D HMs as follows:

bf xð Þ ¼ ∑
N−1

x¼0
Hneh α;βð Þ

n xð Þ ¼ Pn � HMn ð28Þ

The reconstruction error can be measured by the Mean Square Error (MSE) criterion, which is
defined as follows:

MSE ¼ 1

N
� ∑

N−1

x¼0
f xð Þ−bf xð Þ


 �2
ð29Þ

where f(x) is the original signal, and bf xð Þ represents the reconstructed one.

(a) (b) (c)

Fig. 2 2D plot of HPs matrix computed by Algorithm 1 with (a) eh α;βð Þ
n xð Þ∈ −1; 1½ �, (b) eh α;βð Þ

n xð Þ∉ −1; 1½ �, and (c)
HPs matrix computed by GSOP method [9] for n, x = 0 : 512. and α = 5, β = 180
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For a digital image f(x, y) of size N ×M, the 2D HMs are defined by [50]:

HMnm ¼ ∑
N−1

x¼0
∑
M−1

y¼0
f x; yð Þeh α;βð Þ

n xð Þeh α;βð Þ
m yð Þ ð30Þ

with n, m = 0, 1, 2, …, N − 1, x ∈ [0…N − 1], and y ∈ [0…M − 1],.
The computation time of HMs is considerably reduced by using the following matrix

formula [3]:

HMnm ¼ Hn
T � f xy � Hm ð31Þ

where f xy ¼ f x; yð Þf gx¼N−1;y¼M−1
x;y¼0 denotes the image function with HT

n and Hm are HPs

matrices defined by: HT
n ¼ eh α;βð Þ

n xð Þ
n ox¼N−1;y¼N−1

n;x¼0

� 	T
, Hm ¼ eh α;βð Þ

m xð Þ
n om¼M−1;y¼M−1

m;y¼0
.

The inverse transformation of 2D HMs allows to obtain the reconstructed image via the
following formula [3]:

bf x; yð Þ ¼ ∑
N−1

x¼0
∑
N−1

y¼0

eh α;βð Þ
n xð Þeh α;βð Þ

m yð ÞHMmn ð32Þ

Fig. 3 The numerical behavior of HPs values computed by GSOP for n, x→ 500 and α = 5, β = 180

(a) (b)

Fig. 4 (a)-(b) 2D plots of of HPs matrices computed successively by Algorithms 1 and 3 including the stability
conditions with n, x = 0 : 8000 and α = β = 50.
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The matrix formulation of the inverse 2D HMs is given by:

bf xy ¼ Hn � HMnm � HT
m ð33Þ

where bf xy ¼ bf x; yð Þ
n ox¼N−1;y¼M−1

x;y¼0
is the reconstructed image of size N ×M.

In order to quantify the reconstruction error by HMs, the MSE criterion is used as follows:

MSE ¼ 1

N �M
∑
N−1

x¼0
∑
M−1

y¼0
f x; yð Þ−bf 
x; y�
 �2

ð34Þ

The Peak Signal-to-Noise Ratio (PSNR) criterion in decibels (dB) is also used to quantify the
reconstruction error. This criterion is defined from MSE as:

PSNR ¼ 10log10
peak2

MSE

� �
ð35Þ

where peak is the maximum value of the 2D image function.

4 Hahn moment invariants

This section presents both the conventional and the proposed method for deriving Hahn
moment invariants (HMIs) from geometric moment invariants (GMIs).

4.1 The conventional computation of HMIs

The following relation is used to compute the geometric moments (GMs) of f (x, y) image of
size N ×M [14]:

GMnm ¼ ∑
N−1

n¼0
∑
M−1

m¼0
xnym f x; yð Þ ð36Þ

The central geometric moments denoted μnm are derived from GMs by the following formula
[35]:

μnm ¼ ∑
N−1

n¼0
∑
M−1

m¼0
x−x


 �n
y−y


 �m
f x; yð Þ with x ¼ GM10

GM00
and y ¼ GM01

GM00
ð37Þ

The set of geometric moment invariants (GMIs) of order (n, m), denoted Vnm, which are
independent of translation, scaling and rotation are defined by the following relation [35]:

Table 5 The average time for computing HMIs by using the proposed method (algorithm 5), and the conven-
tional one (algorithm 4)

HMIs orders (5,5) (10,10) (15,15) (20,20)

Execution time in seconds
(s) using:

The conventional method
(algorithm 4)

[36]

0.2034 0.5067 1.0305 2.6209

The proposed method
(algorithm 5)

0.0636 0.1280 0.2466 0.5281

ETIR (%) 68.71 74.73 76.07 79.85
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Vnm ¼ GM00
−γ ∑

n

i¼0
∑
m

j¼0
∑
N−1

x¼0
∑
M−1

y¼0

x−x

 �

cosθþ y−y

 �

sinθ
h ii
� y−y


 �
cosθ− x−x


 �
sinθ

h i j

8><>:
9>=>; f x; yð Þ ð38Þ

where γ ¼ nþm
2 þ 1 and θ ¼ 1

2 tan
−1 2μ11

μ20−μ02


 �
.

In accordance with Eq. (39), the values of the angle θ are limited to −π/4 ≤ θ ≤ π/4. For
angle values in different ranges, the article [40] is recommended.

HMs given by Eq. (31) can be expressed in terms of HPs (Eq. (3)) as follows [36]:

HMnm ¼ A α;βð Þ
n A α;βð Þ

mffiffiffiffiffiffiffiffiffiffi
d2nd

2
m

q ∑
N−1

x¼0
∑
M−1

y¼0
h α;βð Þ
n xð Þh α;βð Þ

m yð Þef x; yð Þ ð39Þ

where ef x; yð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω xð Þω yð Þp

f x; yð Þ is the normalized image.
Based on Eqs. (3), (30) and (39), HMs can be expressed in terms of GMs as follows [36]:

HMnm ¼ A βð Þ
n A βð Þ

mffiffiffiffiffiffiffiffiffiffi
d2nd

2
m

q ∑
m

j¼0
∑
n

i¼0
B α;βð Þ
mj B α;βð Þ

ni ∑
j

l¼0
∑
i

k¼0
S j; lð ÞS i; kð ÞGMkl ð40Þ

The substitution of GMnm by Vnm allows to derive HMIs as follows [36]:

HMInm ¼ A α;βð Þ
n A α;βð Þ

mffiffiffiffiffiffiffiffiffiffi
d2nd

2
m

q ∑
m

j¼0
∑
n

i¼0
B α;βð Þ
mj B α;βð Þ

ni � ∑
j

l¼0
∑
i

k¼0
S j; lð ÞS i; kð ÞVkl ð41Þ

Algorithm 4 summarizes the conventional steps of the HMIs derivation process.
Algorithm 4 The conventional method for HMIs computation [36].

The conventional computation of HMIs via algorithm 4 is numerically instable because of

A βð Þ
n , B α;βð Þ

nk , ω(x) and d2n functions as they are defined in terms of gamma and factorial
functions. In addition, this conventional computation is time-consuming due to the use of
several discrete summations. These problems limit the computation of HMIs especially for
large-size images. There is therefore a clear need for a considerable improvement in HMIs
computation in terms of rapidity and numerical stability.
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4.2 Proposed computation of HMIs

In this section, the proposed method for fast and stable computation of HMIs is presented. This
method is mainly based on the use of matrix and recursive formulas.

In order to significantly accelerate the computation of GMs, the following matrix formu-
lation can be used:

GMnm ¼ X :F:YT with X ¼ xnf gx;n¼N−1
x;n¼0 ; Y ¼ ymf gy;m¼M−1

y;m¼0 a n d F ¼
f x; yð Þf gx¼N−1;y¼M−1

x;y¼0 (42)

The computation time of μnm can also be reduced through the use of the following formula:

μnm ¼ X :F:Y
T

with X ¼ x−x

 �nn ox¼N−1;n¼N−1

x¼0;n¼0
and Y ¼ y−y


 �mn ox¼M−1;m¼M−1

y¼0;m¼0
ð43Þ

In a similar way, the computation of Vnm is speed up by using the following formulation:

Vnm ¼ GM00
−γ ∑

n

i¼0
∑
m

j¼0
Ai⊙Bj� �

⊙F ð44Þ

with A ¼ x−xð Þ cosθþ y−yð Þ sinθ, B ¼ y−yð Þ cosθ− x−xð Þ sinθ, F = f(x, y),x = 1 :N, y = 1 :M,

x ¼ GM10 GM00, y ¼ GM01 GM00 and the symbol ⊙ denotes the Hadamard product [4].

The following recursive relations are developed to accelerate and stabilize the computation
of HMIs. Indeed, ω(x) is computed as follows:

ω xð Þ ¼
elogΓ Nþαð ÞþlogΓ βþ1ð Þ−logΓ Nð Þ x ¼ 0

β þ xð Þ N−xð Þ
x N þ α−xð Þ ω x−1ð Þ x ¼ 1; 2;…;N−1

8<: ð45Þ

where logΓ(x) is the logarithmic gamma function [15]. This function is numerically stable for
high values of the argument x. For example, logΓ(105) = 1.0513e + 06 under Matlab.

The stable recursive computation of d2n function is given by:

d2n ¼
1

αþ β þ 1ð Þ e
logΓ αþ1ð ÞþlogΓ βþ1ð ÞþlogΓ αþβþNþ1ð Þ−logΓ Nð Þ−logΓ αþβþ1ð Þ n ¼ 0

αþ nð Þ β þ nð Þ αþ β þ nþ Nð Þ N−nð Þ αþ β þ 2n−1ð Þ
n αþ β þ 2nþ 1ð Þ αþ β þ nð Þ d2n−1 n ¼ 1; 2;…;N−1

8>><>>:
ð46Þ

The fast and stable computation of A βð Þ
n and B α;βð Þ

nk functions is defined as follows

A βð Þ
n ¼

1 n ¼ 0

−
β þ nð Þ N−nð Þ

n
A βð Þ
n−1 n ¼ 1;…;N−1

(
ð47Þ

B α;βð Þ
nk ¼

1 k ¼ 0

−
nþ αþ β þ kð Þ n−k þ 1ð Þ

β þ kð Þ N−kð Þk B α;βð Þ
n k−1ð Þ k ¼ 1; 2;…; n

(
ð48Þ

The summary of the proposed method for fast and stable computation of HMIs is presented in
algorithm 5.
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Algorithm 5 The proposed method for fast and stable HMIs computation.

5 Experimental results and discussion

This section presents the simulation outcomes and the performed comparisons that validate the
efficiency of the proposed algorithms in the field of large-size signal and image analysis.
Initially, the numerical stability of the proposed algorithms for higher-order HPs computation
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Fig. 5 Set of reconstructed ECG signals by HMs up to the order 8000 with the corresponding MSE values
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is demonstrated through the reconstruction of large-size signals and images up to the last
moment order. Then, the speed and numerical stability of the proposed method for HMIs
computation is proved via the extraction of HMIs from large-size medical images.

5.1 Large-size signal reconstruction by higher-order HMs

In the first test, the efficiency of the proposed computation of high-order HPs with
respect to the order n is demonstrated. For this purpose, HPs are computed by algorithm
1 for n, x = 0 : 8000 with α = β = 100. Noting that the parameter values are selected
empirically following the study carried out in [9]. This study shows that the parameters
selection case α = β allows obtaining a minimal reconstruction error (MSE) in compar-
ison to other cases (α ≠ β). Then, an “ECG” signal of size N = 8000 is selected from the

Fig. 6 Set of bio-signals selected from the database [25] that are used in the test
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database [25], and reconstructed by HMs up to the last moment order (n = 8000).
Figure 5 shows a set of reconstructed “ECG” signals with the corresponding MSE
values. On one hand, the obtained results indicate that the MSE values decrease
proportionally with the increase in HMs order until the last moment order. On the other
hand, it is noted that the lower MSE value is reached at the last HMs order. These results
prove the numerical stability of the proposed algorithm 1, and confirm the importance of
high-order HMs in terms of precise signal reconstruction.

To further validate the efficiency of algorithm 1, five bio-signals of size N = 8000 (Fig. 6)
are reconstructed by HMs (with HPs are computed by algorithm 1 for α = β = 100). For
comparison purposes, the test signal are also reconstructed by Tchebichef moments (TMs) [5].
Next, the average PSNR values corresponding to the reconstructed signals by both moment
types are displayed in Fig. 7.

The PSNR values shown in Fig. 7 increase up to the last moment order, reflecting the
efficiency and numerical stability of both TMs and HMs for the reconstruction of large-size
signals. One should mention that the numerical stability of TMs is ensured via GSOP [5].
Whereas HMs numerical stability is provided by using the proposed method (stability
condition). This makes HMs significantly faster to compute compared to TMs.

Fig. 7 Average of the PSNR values corresponding to the reconstructed bio-signals by HMs and TMs [5]

Fig. 8 Set of reconstructed “PIA21906” images by HMs up to the order (4000, 4000) with MSE and PSNR
values
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5.2 Large-size image reconstruction by higher-order HMs

In this section, the performance of the proposed method for the computation of high-order HPs
with respect to the variable x (algorithm 3) is illustrated. In the first test, the “PIA21906” test
image of size 4000 × 4000 is selected from the database [31], and then reconstructed by HMs
up to the last order (4000, 4000). Noting that the used HPs parameters values in all recon-
struction tests of this section are α = β = 50. Figure 8 shows a set of the reconstructed
“PIA21906” images with the corresponding MSE and PSNR values. From this figure, it is
noticeable that the visual similarity between the reconstructed image and the original one
gradually improves until the last moment order (4000, 4000). It can also be noted that the best
quality of the reconstructed image (lower MSE) is obtained at the last moment order. This is a
clear indication on the efficiency of the proposed algorithm 3 for the stable reconstruction of
large-sized images.

The second test presents a comparison in terms of reconstruction errors (MSE and PSNR)
by using the moments of Tchebichef (TMs) [5], Krawtchouk (KMs) [47], Meixner (MMs)

Fig. 9 Set of reconstructed “Lena” image by different moment types of order up to (1024, 1024)
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[12], Charlier (CMs) [12] and HMs (based on algorithm 3). Indeed, Fig. 9 shows the
reconstructed “Lena” image by the aforementioned moments, and Fig. 11 shows the average
MSE and PSNR values corresponding to the reconstructed test images shown in Fig. 10. The
achieved results show on one hand that all the used moment types are stable because they
allow the reconstruction of the test images until the last moment order (1024, 1024). On the
other hand, it is apparent that the quality of the reconstructed images using high-order KMs is
better (high PSNR) compared to other moments type, including HMs. However, KMs are
unstable when the moment orders exceed (1075, 1075) [8]. For this reason, only images of size
1024 × 1024 are used in this test. Moreover, HMs are more general than TMs and KMs
because the latter are special cases of HMs [22].

In the following test, the robustness of HMs against different types of noise is evaluated.
For this purpose, a real medical image named “Boxer-fracture” of size 2048 × 2048 is selected
from the database [32]. This image is contaminated by two noise types namely “Salt &
pepper” and “Speckle” noise with density of 5% (Fig. 12). Then, these images are recon-
structed by HMs, and the reconstruction error (PSNR) is displayed in Fig. 13. The achieved
results show a slight decrease in the quality of the noisy reconstructed images compared to the
quality of the noise-free reconstructed one, which validates the robustness of HMs in noisy
conditions.

5.3 Fast and numerically stable computation of HMIs using large-size images

This section is preserved to demonstrate the effectiveness of the proposed method for fast and
stable HMIs computation (algorithm 5).

The computation of HMIs via the proposed method depends on HPs local parameters (α
and β). Therefore, the optimal selection of these parameters is crucial when computing HMIs.

“Lena” “Pepper” “Fruits” “Baboon” “sailboat”

Fig. 10 Standard color images of size 1024 × 1024 used in the test

(a) (b)

Fig. 11 The average of MSE and PSNR corresponding to the five reconstructed color images by different
moment types
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In order to carry out this selection, one can use an empirical method, which is similar to the one
described in [3]. Indeed, HMIs of a test image are computed for specific values of α and
βparameters, then the test image is geometrically transformed by translation, rotation and
scaling. Next, the relative error (RE) (Eq. (49)) is computed for each parameters case. Finally,
the values of α and β that allow to obtain the lower RE values are therefore considered as the
optimal parameters selection.

The RE criterion is defined as:

RE ¼ V−V*k k
Vk k ð49Þ

where ‖.‖ denotes the Euclidean norm, Vdenotes the invariant moments of the original image,
and V∗ represents the invariant moments of the geometrically transformed image.

To test the effectiveness of the empirical parameters selection method, one use a real X-ray
medical image named “Covid 19” of size 2048 × 2048 (Fig. 14) that is selected from [32]. The
test image is then translated by a vector varies from (−20, −20) to (+20, +20) with a step of
(+4, +4), scaled by a factor scaling ranging from 0.5 to 2 with a step of 0.1, and rotated by a
rotation angles ranging from 0° to 360° with a step of 10°. Then, HMIs of the original image
and the geometrically transformed one are computed up to the order (5, 5) for four cases of α
and βparameters: (A) α = 15 and β = 10, (B) α = β = 10, (C) and α = β = 5, and (D) α = β = 0.

The results of the performed test are presented in Fig. 15. From this figure, it can be noted
that the cse α = β = 0 leads to lower RE values, therefore this case will be considered as the

(a) (b) (c)

Fig. 12 (a): The original medical image. (b) and (c) the contaminated images by “Salt & pepper” and “Speckle”
noise successively (with density of 5%)

Fig. 13 PSNR corresponding to the reconstructed «Boxer-fracture “image with and without noise
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optimal parameters selection in the rest of this work. However, the use of the empirical method
for the optimal parameters selection is limited due to the few number of the studied cases. It is
important to note that the optimal selection of local parameters can be made via
population-based algorithms such as the Sine Cosine Algorithm (SCA) [10] or by similar
algorithms (PSO, ABC, TLBO…).

In the following test, four grayscale medical images of size 2048 × 2048 are used (Fig. 16).
These images that are selected from the database [32], are geometrically transformed, and then
the corresponding average RE is displayed in Fig. 17. The outcome results indicate on one
hand that the proposed computation of HMIs is stable for large-size images. On the other hand,
the low RE values (RE ≃ 10−10) indicate that the computed HMIs are highly accurate and
robust against different geometrical transformations.

The following test is conducted to prove the fastness of the proposed HMIs computation
method compared to the conventional one that is presented in [36]. Initially, the test image

(a)
(b) : scaling by a 

factor 0.75

(c) : translation by 

vector (+20, +20)

(d) : Rotation by angle 

30°

Fig. 14 (a) “Covid 19” test image, (b), (c) and (d): geometrically transformed test image

(a) (b)

(c)

Fig. 15 Relative errors (RE) corresponding to “Covid 19” image transformed by (a): translation, (b): rotation,
and (c): scaling
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“Covid-19” is resized to 60 × 60, then HMIs are computed up to the order (20, 20) by using
both methods. Noting that resizing the test image is undertaken since the conventional
computation of HMIs is numerically unstable for images of size larger than 61 × 61 due to

gamma and factorial functions that define the terms A α;βð Þ
n and B α;βð Þ

mk . The time required to
compute HMIs by both methods is computed 20 times, and then the average time is presented
in Table 4.

The obtained results in Table 4 clearly demonstrate the considerable rapidity of the
proposed method compared to the conventional one, especially for higher HMIs order.

Due to the limited paper length, only the advantages of the proposed method for HMIs
computation have been illustrated. In future works, the proposed method (algorithm 5) can be
successfully employed in various applications related images moments invariants such as
pattern recognition, image classification and image zero – watermarking of large-size images.

It is important to point out that some recent methods for computing the invariant moments
[3, 17, 20, 37, 39] are numerically unstable for large-size images (>1024 × 1024).For this
reason, no comparison with these works is carried out. In addition, accelerating and stabilizing
the computation of the previously mentioned methods might be a potentially interesting
direction for further research.

(a) (b) (c) (d)

Fig. 16 Set of real medical images of size 2048 × 2048 used in the test

Fig. 17 Average of the REs corresponding to test images geometrically transformed by (a) rotation, (b)
translation and (c) scaling
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6 Conclusion

In this paper, new algorithms for the computation of high order HMs and HMIs are presented
in the field of large-sized signal and image analysis. First, special attention is paid to ensuring
the numerical stability and to speed up the computation of HPs with respect to the order n and
with respect to the variable x. The proposed algorithms are fully independent from gamma and
factorial functions that are the source of numerical instability (Underflow and Overflow).
Secondly, a new numerical stability method is proposed to detect and eliminate unstable
coefficients during recursive computation of HPs. This method is based on the distribution
analysis of HPs values in the polynomial matrix. As a result, the computation of HPs becomes
stable and fast for any order n, any value of the variable x and for any value of the local
parameters. Also new algorithm is proposed for fast and stable HMIs computation. This
algorithm is based on developed recursive relations and matrix formulations. The simulation
and comparison result clearly validated the stability and efficiency of the proposed methods for
the large-sized signal and image analysis. However, the empirical method used for the
selection of HPs parameters is limited due to the few studied cases and therefore needs to
be further improved. In perspective and future work, we will focus on other applications of the
proposed algorithms such as compression, classification and zero - watermarking of large-size
signals and 2D/3D images. In addition, the selection of HPs parameters will be conducted
based on metaheuristic algorithms.
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