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Abstract
At the end of 2019, the World Health Organization (WHO) reported pneumonia that started
inWuhan, China, as a global emergency problem. Researchers quickly advanced in research
to try to understand this COVID-19 and sough solutions for the front-line professionals
fighting this fatal disease. One of the tools to aid in the detection, diagnosis, treatment, and
prevention of this disease is computed tomography (CT). CT images provide valuable
information on how this new disease affects the lungs of patients. However, the analysis
of these images is not trivial, especially when researchers are searching for quick solutions.
Detecting and evaluating this disease can be tiring, time-consuming, and susceptible to
errors. Thus, in this study, we aim to automatically segment infections caused by COVID19
and provide quantitative measures of these infections to specialists, thus serving as a support
tool. We use a database of real clinical cases from Pedro Ernesto University Hospital of the
State of Rio de Janeiro, Brazil. The method involves five steps: lung segmentation,
segmentation and extraction of pulmonary vessels, infection segmentation, infection classi-
fication, and infection quantification. For the lung segmentation and infection segmentation
tasks, we propose modifications to the traditional U-Net, including batch normalization,
leaky ReLU, dropout, and residual block techniques, and name it as Residual U-Net. The
proposed method yields an average Dice value of 77.1% and an average specificity of
99.76%. For quantification of infectious findings, the proposed method achieves results like
that of specialists, and no measure presented a value of ρ< 0.05 in the paired t-test. The
results demonstrate the potential of the proposed method as a tool to help medical profes-
sionals combat COVID-19. fight the COVID-19.
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1 Introduction

By the end of 2019, several cases of pneumonia of unknown etiology were reported in Wuhan,
China [59]. In December, the World Health Organization (WHO) declared it a global health
crisis [70]. Initially, the transmission of the virus causing the disease was restricted to bats in
China. However, eventually human-to-human transmission began, and since then this fatal
virus has rapidly spread worldwide [6].

The virus is named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and
the disease is called coronavirus disease (COVID-19). COVID-19 was reported to be the cause
of these various cases of pneumonia [4, 42]. Compared with other pandemics such as severe
acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS),
COVID19 has accounted for the largest number of contagions in the least amount of time.
The WHO declared the SARS outbreak on July 5, 2003. A total of 8096 SARS cases and 774
deaths across 29 countries were reported. MERS, which has still not been contained, has thus
far been responsible for 2494 confirmed cases and 858 deaths across 27 countries [44]. In
contrast, by February 2020, as reported by Wu and McGoogan [62], there have been 72,528
confirmed COVID-19 cases and 1870 related deaths in only China.

The most common symptoms of COVID-19 include fever, cough, and fatigue, and other
symptoms include sputum production, headache, hemoptysis, diarrhea, dyspnea, and lymphopenia
[49]. Social isolation is one of themost recommendedmeasures to combat COVID-19.An individual
experiencing the symptoms is advised to self-isolate for a 14 day at home. This significantly reduces
the chances of the individual passing on the virus to other people. Social isolation is also aimed at
preventing the overcrowding of hospitals. Considering how rapidly the number of infections is
increasing, if all symptomatic individuals seek emergencymedical care at the same time, there would
be an overcrowding of hospitals, which would consequently lead to far more deaths [5].

The report published by the WHO on June 10, 2020 is worrisome. As per the report, there
are already 7,145,539 cases with 408,025 deaths worldwide. Out of this, Europe and America
together account for almost 6,000,000 cases, with 185,537 deaths in Europe and 185,863 in
America [41]. Another disturbing data point presented in the report is the number of cases
identified as dead in the last 24 h: Out of a total of 105,621 cases, 3629 new deaths were
recorded. These statistics are highly alarming, as this number is believed to be significantly
higher considering the patients who have not yet been confirmed as COVID-19 positive [40].

The key trends observed in most studies on COVID-19 are the presence of parenchymal
involvement due to the formation of lesions with consolidation characteristics, ground glass
opacity (GGO), often with rounded morphology and peripheral lung distribution [50]. The
consolidation formation occurs on days 4–7 after the patient is infected, whereas the GGO
starts in the initial days, and with the evolution of the consolidation until the patient is cured, it
may be “dissolved” in GGO [40]. Thus, measuring the degree of infections of both types can
guide medical decision-making. Other studies have observed the evolution (both in texture and
volume) of these lesions over time [4].

Computed tomography (CT) can present interesting artifacts to medical specialists. For example,
a CT can help confirm COVID-19 in an asymptomatic patient, and after a few days, a new follow-
up CT can help observe the behavior of the previous findings. Another practical example would be
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for a patient in a severe condition to undergo an imaging examination. Then, the same patient can
undergo treatment, and a new CT can be conducted to evaluate the new tomographic findings.

However, a specialist’s evaluation of tomographic findings can get tiring, and hence
susceptible to interpretation errors. The patterns of COVID-19 tomographic findings are
different, and evaluating them is a challenging task, especially for doctors who need to diagnose
several CT images on the same day.Moreover, the doctor needs to check existing standards and
quantify pulmonary impairment due to COVID-19 infection, in addition to diagnosing and
suggesting a possible course of treatment. Another significant point of consideration is the
verification of the disease’s evolution. The specialist must quantify the findings before and after
treatment, mainly to analyze the effectiveness of the therapy. The use of computer-aided
diagnosis (CADx) tools is a fundamental task, both for the segmentation of the infectious
findings of COVID-19 and for the volumetric quantification of the various types of lesions.

Another significant point, in a verification of the disease ‘s evolution. The specialist must
quantify the findings before and after treatment, mainly to analyze the therapy’s effectiveness.
The use of Computer Aid-Diagnosis (CADx) tools proves to be a fundamental task, both for
the segmentation of the infectious findings of COVID-19 and for the volumetric quantification
of the various types of lesions, to be an ally of specialists.

The effectiveness of CADx tools is proportional to the techniques that constitute them.
Currently, deep learning techniques have shown promising results in several domains of
imaging, mainly in the field of medical imaging. Owing to their power of generalization,
methods using deep learning have been applied for organ segmentation [16, 56], lesion
detection [14], and disease classification [9].

Thus, the main objective of the present work is to develop an automatic method for the
segmentation and volumetric quantification of COVID-19 infection CT findings using deep
learning techniques. Our findings will assist clinicians in defining and quantifying results,
offering a comprehensive framework for the study of medical images.

Among the various contributions of this work, we highlight the following: (a) an automatic
lung segmentation model based on deep learning, (b) segmentation and extraction of pulmo-
nary vessels from the lung parenchyma, (c) volumetric quantification showing the percentage
of involvement of each lung and parenchyma, and (d) a fully automatic method to aid
detection and diagnosis based on medical imaging.

With this, we provide a promising CADx tool that segments and quantifies lesions, serving
as a crucial tool to aid medical professionals to combat the COVID-19 pandemic.

2 Related work

Two imaging modalities are used to visualize COVID-19 in patients. One is the use of chest
radiography. Some studies have already proposed methods for classifying these [21, 37, 43, 61].

In contrast, for classifying CT images, there is a need to develop methods with a series of
procedures. Infection segmentation and quantification go through a series of processes includ-
ing lung segmentation, segmentation of findings, classification of infections, and volumetric
quantification.

The literature presents several works that deal with these procedures. It is worth remem-
bering that, as the COVID-19 is a newly discovered pathology, we still need methods that
perform all these functions in one go. In this section, we present works that tackle the use of
these processes together or separately.
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2.1 Lung segmentation overview

Lung segmentation, an important step in an automated method, will serve as an initial
process in our work for segmenting and extracting pulmonary vessels. It will also be
used to extract measurements as we must determine the lung’s volume to measure the
degree of lung involvement.

Lung segmentation in CT has been studied for several years [2, 25, 38, 46]. Semi-automatic
and automatic techniques have been developed to assist specialists in segmenting this organ.
Lung segmentation plays a fundamental role in various spheres of image processing and serves
as the pre-processing step for several subsequent steps. It includes detection of nodules,
detection of risk organs in radiotherapy treatment, separation of pulmonary lobes, separation
between the left and right lungs, and extraction of pulmonary vessels in the parenchyma,
among others [20, 39].

According to Hofmanninger et al. [25], lung segmentation is not a methodological problem,
but a database problem. Furthermore, the authors state that the lung segmentation methods,
despite being published and consolidated, still present questionable results in the clinical
routine. The authors of this paper carry out a broad study with several databases and several
deep learning networks and compare two works published in the literature. According to the
authors, the use of a simple U-Net can present significant (and even better) results compared
with sophisticated methods.

To validate the above-mentioned theory, Hofmanninger et al. [25] performed several
experiments where they showed that different results can be achieved depending on different
training databases. Their research uses four networks for segmentation: U-Net [48], ResU-Net
[31], Dilated Residual Network [65], and Deeplabv3 [7]. The databases used were Routine
Random, VISCERAL Anatomy3, LTRC, and LCTSC.

Even conducting different experiments, it always results in a measure of the dice coefficient
(or just Dice) [13] greater than 92%. This demonstrates that despite the use of another training
database to generate a segmentation model, it presents significant results for lung segmentation
in a new database. This fact is needed for clinical practice as there will not always be a ground
truth to confirm the results, knowing that training in different databases can result in a high
degree of accuracy.

Given the urgency for automatic methods and the lack of time for specialists who are
currently facing the pandemic, this study used a database from a hospital where the collection
of exams does not have a defined acquisition protocol. With the short time the specialists have
in hand, it was decided that they would only work on the manual delineation of the infections.
In this way, the database has no lung markings. However, there was a need to segment the
lungs for better performance of the proposed method.

Thus, to obtain reliable and practical results, it was decided to train a lung segmentation
model on a public and diversified database, with several acquisition protocols and using a
state-of-the-art fully convolutional network on a segmentation problem. Based on
Hofmanninger et al. [25] that, despite not having a metric to prove the result in our base,
produces significant results and is capable of being used in the clinical routine.

2.2 Infections segmentation overview

As COVID-19 is a current and global crisis, the race for developing methods that can help
specialists has accelerated. However, for the development of computational methods in
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tomography, it is necessary to observe the patterns that such a pathology may present in CT
images. Ng et al. [40] describe the main characteristics of infections caused by COVID-19 on
CT. The predominant imaging pattern is ground-glass opacities with occasional consolidation
in the peripheries.

Some methods for segmentation of infections have already been developed. Yan et al.
[64] suggested a new deep neural network for infection segmentation. The network called
COVID-SegNet is composed of a block of feature variation proposed by the authors to
better delineate infections. The study uses a broad research database consisting of 21,658
chest CT images. Many images are widely used for deep learning training and provide
important results when several samples are used for training. The authors’ process
achieves 72% Dice in infection segmentation.

In contrast, Fan et al. [19] reported that collecting a large amount of data is impractical
within a short time, thus inhibiting the training of a deep model. They proposed a novel
COVID-19 lung infection segmentation deep network (Inf-Net) and its semi-supervised
version (Semi Inf-Seg), as there are few cases of annotations in its database. The tests were
conducted on a database with only 100 slices of CT images, all with infections (database from
[11]). A Dice of 68.2% was achieved for Inf-Net and 73.9.

Zheng et al. [68] presented a defined database acquisition protocol and the use of deep
learning for infection segmentation. They performed lung segmentation based on a trained
lung segmentation model and excluded false positives manually. For infection segmentation,
they used a semi-supervised network called DeCovNet in a database of 630 CTs. The results
achieved included an area under the ROC curve of 95.9.

In Wu et al. [63] also proposed a method of infection segmentation using deep learning.
The method is applied to a standardized database built for the application, composed of
144,167 CT images of 400 COVID-19 patients and 350 uninfected cases. The network used
is called joint classification and segmentation (JCS). The method achieved 95.0% sensitivity
and 93.0% specificity on COVID-19 classification, and 78.3% Dice on segmentation. It is
worth mentioning that specificity values of 93% at the pixel level for the segmentation of
infections generate a high number of false positives when assessing the percentage of infection
in the volume can result in erroneous or mistaken diagnoses.

Qiu et al. [47] suggest an extremely minimal network for the efficient segmentation of
COVID-19 infections . They proposed a framework to provide efficient multi-scale, light-
weight learning. The work is applied only to a base with 100 CT images of 60 patients (slices)
resulting in approximately 1.6 slices per patient (database available in [11]). The results
achieved using their method have 83.62% sensitivity, 97.42% specificity, and 77.28% Dice.

We can observe that the topic of segmenting infections (lesion or COVID19) in CT is
already well-studied, and many computational methods have been developed. Among these,
the deep learning methods stand out. Virtually all of the literature shows the use of these
techniques to target infections Fan et al. [19] and Qiu et al. [47] focused on an image database
of only 100 slices, showing the ability to obtain results even on small bases using deep
learning methods. However, in clinical practice, a patient does not only have 1.6 slices per
exam, and hence the classification of an examination is necessary.

There is, however, a certain standardization in the acquisition of the database, which does
not occur in clinical practice, particularly in underdeveloped countries, where tests are carried
out with the most diverse types of instruments. Nevertheless, it is not possible for all research
to collect such a wide variety of data, primarily due to ethical standards and false diagnoses,
among many other factors.
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Thus, the segmentation of infections is not a trivial task, presenting at best a Dice of
78.3%. However, in a segmentation system such as these, we must observe the generation
of false positives, as it is necessary for evaluating pulmonary impairment. Wu et al. [63]
showed that wrong segmentations generate values of wrong commitment, even with
78.3% Dice and a specificity of 93%. The same occurs in Qiu et al. [47], with 77.28%
of Dice and 97.42% of specificity.

The present work shows the use of a fully convolutional neural network, aggregating
residual blocks [23] for the segmentation of infections in CT. The experiments were conducted
on a database acquired without an acquisition process focused on the computational method,
with slices ranging from 77 to 585, with patients of various ages, various types of lesions, and
varying degrees of commitment. Still, it is a relatively small database in terms of the number of
exams, involving only 40 patients, but a total of more than 8000 slices. For infection
segmentation, the lung segmentation and vessel extraction processes proposed in our work
are crucial for the robustness of the method.

2.3 Volumetric quantification overview

Despite playing an important role, segmentation alone does not provide quantitative informa-
tion for the expert’s assessment. Assessing the volume of the lungs, infections, and the extent
of involvement of the infections in the lungs are essential to assess the aggressiveness or stage
of COVID-19. For treatment, quantifying impairment is also crucial. Assessing how compro-
mised the lung is before and during treatment can show the effectiveness of the treatment and
improve the drug testing process.

Some studies have shown the importance of quantitative assessment of infectious
findings in CT. The work of Zhou et al. [69] investigated 62 patients to describe the
CT features of COVID-19. They also showed that the CT exam of patients with
COVID-19 pneumonia showed a mixed and diverse pattern with both lung parenchy-
ma and the interstitium involvement. The value of assessing the findings is thus seen
to suggest measures to the specialist that can be interpreted to monitor the pathology’s
development.

The method proposed by Liu et al. [35] aims to quantify pneumonia lesions by computed
tomography in the early days to predict progression to severe illness in a cohort of COVID-19
patients. Thus, CT quantification of pneumonia lesions can early and non-invasively predict
the progression to severe illness, providing a promising prognostic indicator for clinical
management of COVID-19. Three quantitative CT features of pneumonia lesions were
automatically calculated, representing the percentages of groundglass opacity volume, semi-
consolidation volume, and consolidation volume in both lungs.

Shen et al. [53] showed the importance of some metrics for assessing the degree of the
disease: For example, volume (mL), lesion volume (mL), lesion percentage (%), and mean
lesion density (HU) of the whole lung, right lung, left lung, and each lobe. Despite the
comparison of the results of the computationally calculated values and the values observed
by the specialist, it is known that once the lesion is segmented, it is possible to calculate the
metrics using mathematical formulations without error.

In addition to the detection/segmentation of infections, the present study presents volumet-
ric quantification of CT findings. Thus, we provide subsidies to specialists for the diagnosis,
monitoring, and treatment of patients affected by this disease that has caused deaths of more
and more patients every day.
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3 Materials and method

This section describes the materials and the proposed method for segmentation and volumetric
quantification of infections caused by COVID-19 in CT. Figure 1 illustrates the steps used in
this section. Then, each step is detailed in the subsections that follow.

3.1 Materials

For the development of the method, it was necessary to use two databases retrospectively: a
public and a private database. The public database was used for the creation of a lung
segmentation model as it has a specialist’s markings for the lungs. The private database was
used to perform the experiments on the segmentation of infections caused by COVID-19, to
classify infections by texture (GGO or consolidated), and to extract quantitative metrics related
to the lung and infection.

The first database is a public CT database with an expert’s markings for the lungs in 36
exams. It is available in The Cancer Imaging Archive, referenced by the LCTSC database. In
this method, there is diversity in the image acquisition process. The images are obtained from
three different institutes with several protocols, with the number of slices per exam ranging
from 112,288. This database was used only to create a lung segmentation model. Once created,
this model is applied to the second database.

The choice of this database for creating a segmentation model is justified by diversity. As
the second database has no lung markings, and it was not due to a standard acquisition process
due to the practical medical need for speed in the pandemic exams. Thus, a diversified
database for the lung segmentation model makes it robust to variations in the acquisition
process, generating more effective results when applied to another image database. An
example of the diversity of the three institutes in this database is shown in Fig. 2.

Fig. 1 Flowchart of materials and method
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The second database is a private database from the Pedro Ernesto University Hospital of the
State of Rio de Janeiro, Brazil, referenced in this work by the HUPE database. This database is
composed of CT findings of COVID-19 infections. The appointments were made manually by
several specialist doctors for 40 patients who had the most diverse types of lesions and degrees
of impairment. There is only the label, without classification by the specialist; that is, it is not
given whether the lesions are of a consolidation type or a ground-glass opacity (GGO) type.
There is no lung labeling in this database, and thus there is a need to construct a segmentation
model for another set of images. Figure 3 presents the examples of patients from this database.

In addition, HUPE database patients have a variation in the number of slices, ranging from 77
to 585. The personal information of each patient was discarded to keep his identity confidential.

Therefore, for our experiments, the first database from The Cancer Imaging Archive has 36
patients from three different institutes, and the second database of Pedro Ernesto University
Hospital of the State of Rio de Janeiro has 40 CT scans of patients affected by COVID-19 at
different stages of contamination.

To analyze the population studying for the creation of the method, in the next subsection we
will describe information about the patients of the HUPE database.

3.1.1 Participants of HUPE database

The HUPE database were used to build the infection segmentation, classification and quan-
tification techniques. This database is composed with COVID-19 patients. To develop this
database, the inclusion criteria were being ≥18 years of patients age, presenting with acute

Fig. 2 LCTSC database: (a) slice of institute 1; (b) slice of institute 2; (c) slice of institute 3

Fig. 3 HUPE database: Example of three patients with different degrees of infections
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respiratory symptoms, and having had contact with COVID-19 patients or individuals with
symptoms suggestive of the disease, with laboratory confirmation of SARS-CoV-2 infection.
Patients in whom the technical standards of the CT scans were deemed unacceptable (move-
ment artifacts or missing sequences) were excluded.

Based on these criteria, the database were composed of 40 different patients with a
confirmed diagnosis for COVID-19 from April 17, 2020 to June 23, 2020. Age ranges from
23 to 88 years, with an average age of 49 years. Of the total, 24 (60%) patients were female.
All patients had infectious findings in the lung parenchyma.

Image studies were approved by the Institutional Review Board of Pedro Ernesto Univer-
sity Hospital, operated by Rio de Janeiro State University, in the city of Rio de Janeiro, Brazil.
Because all the data evaluated were obtained retrospectively from the database of the hospital,
the requirement for written informed consent was waived.

3.2 Lung segmentation

The lung segmentation step is necessary to assist the next pulmonary vessel extraction step and
to extract quantitative metrics related to the lung. For lung segmentation, a model was generated
based on a fully convolutional neural network, called U-Net. This network was proposed by
Ronneberger et al. [48] and has shown promising results in several domains of images.

First, we define the input images, then the network architecture, after which the training is
performed. Finally, we present a segmentation refinement step. This step was necessary
because the model generated for the LCTSC database was applied to the HUPE database,
which is completely different. Thus, the results achieved for the LCTSC database were not
fully reflected for HUPE. The segmentation refinement step tried to exclude some false
positives generated for the HUPE database.

3.2.1 Input lung images

As previously mentioned, the training for lung segmentation was performed using the LCTSC
database. To build the model, training, validation, and test datasets were defined. However,
there are a few examples of the training step. Another significant thing to remember was the
large variation in the number of slices. Thus, we opted for slice training (2D). In this way, the
number of samples was increased and training with the original size of the x and y axes, which
were 512 × 512, was possible.

To preserve database diversity, the three datasets promised patients from the three institutes.
Thus, during training, there would be most diverse samples, both concerning protocols from
different institutes and the number of slices.

Ensuring this diversity in the training model, the HUPE database acquisition protocol is
reflected. In this second database, because the patients included are affected by COVID-19,
and need rapid image acquisition, there is no well-defined acquisition protocol. It generates a
high amount of diversity in the database. Therefore, ensuring the training of a generalized lung
segmentation model is crucial to reflect the results in the HUPE database.

3.2.2 Training lung segmentation model

In the construction of the lung segmentation model, variations were applied to the U-Net
model proposed by Ronneberger et al. [48]. U-Net, a convolutional neural network (CNN),
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uses the concepts and layers of a CNN. Examples include convolutional layers, pooling layers,
activation layers, and dropout layers. CNNs are being increasingly used in several problems
involving medical imaging [10, 14, 15, 17, 18, 55, 56].

In short, this network can be trained end-to-end, where U-Net simply concatenates the
encoder feature maps to map decoder feature maps at all stages to form a ladder structure. This
design, with its concatenation links, allows the decoder to learn the related features that are lost
when grouped into the encoder at each point [48].

Based on the literature, we decided to use U-Net because of its promising results in medical
imaging segmentation. However, instead of using the standard U-Net, we propose the
following changes to improve its performance: a different number of layers, batch normaliza-
tion, leaky ReLU, dropout, residual connections, and Dice loss function. We will explain these
changes in detail below.

According to Ioffe and Szegedy [27], the training of deep neural networks is complicated,
mainly because the distribution of the inputs changes during the training as the parameters of
the previous layers are modified. Thus, a normalization was proposed for each layer. One of
the problems shown during the development of this work is the variability of our database. As
it consists of data from three different institutes, they tend to have high variability in their
distribution, and thus, by using batch normalization, we have addressed this problem. Thus,
each convolution is followed by batch normalization.

In addition to batch normalization, each convolution is followed by a Leaky ReLU
activation [33], and dropout [3].]. The activation functions are used to correctly reset the
weight parameters of the networks [33]. Commonly, convolutional neural networks are trained
using the ReLU function as activation [32]. However, the ReLU function has problems with
negative data during training, without being able to reactivate them. According to Maas et al.
[36], Leaky ReLU solved this issue by assigning a constant variable in the negative region of
the ReLU activation function. The main criterion for using dropout is to address the problem of
overfitting in training. During each dropout operation, some training units are disabled,
requiring the network to use other connections to better predict the generated model. In this
way, we force the network to calibrate the connections between other neurons and avoid any
overfitting caused during training.

According to He et al. [23], when deeper networks start converging, a degradation problem
is exposed. With increasing network depth, accuracy becomes saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly, such degradation is not caused by
overfitting, and adding more layers to a suitably deep model leads to a higher training error.
For this reason, He et al. [23] proposed the use of residual connections. They addressed the
degradation problem by introducing a deep residual learning framework. Instead of hoping
every few stacked layers directly fit a desired underlying mapping, we explicitly let these
layers fit a residual mapping. Therefore, despite the use of Leaky ReLU functions, the
proposed network addresses the problem of degradation by using residual connections.

In summary, the RB-U-Net contains four pooling layers, and each convolution layer is
composed of a Leaky ReLU activation, batch normalization, dropout, and finally, shortcut
connections between the input and output by using residual blocks. All convolution layers
used filters of 3 × 3. In the pooling layers, we use an average pooling of 2 × 2. In the
deconvolution layers, we used a transposed convolution of 2 × 2. All dropout operations
remove 20% of the connections. In this way, it is believed that the proposed network adds a
lot of improvements compared to existing U-Nets and addresses major problems such as data
variability and overfitting.
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An example of the proposed architecture can be seen in the Fig. 4.
Also, the network is trained with the dice loss function [57], represented by Eq. 1.

diceloss ¼ 1−
2TP

2TP þ FPþ FN
ð1Þ

where TP is the true positive, FP is the false positive, and FN is the false negative.
We chose to use the dice loss because we want to optimize the segmentation results based

on the specialist’s marking. Thus, the use of this function as a loss helps the network to
improve this metric during network training.

In segmentation methods, one of the metrics that reflects how accurate the method is is the
Dice Index. This metric, according to Taha and Hanbury [58], is the most used to verify the
effectiveness of segmentationmethods, and the most compared for this purpose in the literature.
As we need to develop a method that accurately delimits infections, the Dice was considered to
be used as a loss function, in this way we managed produce a better segmentation result.

After training and creating the model, a test is performed with separate images for testing
the LCTSC database. When obtaining satisfactory metrics in this database (compared with the
state of the art of lung segmentation), we apply the model to the HUPE database. Although
there is no markings to confirm the results achieved, the results visually show promise.
However, there were some false positives. Thus, a segmentation refinement step is necessary.

3.2.3 Segmentation refinement

The segmentation refinement process consists of removing false positives, smoothing the
contour, and filling holes inside the binary lung mask. The linked components are classified
from the binary image to eliminate false positives. We measured the volume of each one.
Therefore, we have marked the object with the largest number. Finally, we removed objects
with a volume of less than one-fifth of the largest.

Fig. 4 Architecture of residual U-Net
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Lung segmentation can result in irregularities near the contour of the lungs. As it is
common to have COVID-19 lesions on the walls of the parenchyma because they are denser,
they have low contrast concerning the tissue outside the parenchyma. The outline of the lung
mask is regulated using morphological filtering techniques of opening and closing by recon-
struction. The opening operation can separate connected objects in a binary image and soften
the inside of the object’s outline. The closing operation can fill small holes and soften the
outside of the object’s outline. Finally, holes not connected to the boundaries of objects are
eliminated [34]. Figure 5 presents an example of the result of this step.

3.3 Segmentation and extraction of pulmonary vessels

The process of marking infections is carried out comprehensively by a specialist. Owing to the
difficulty of circumventing existing pulmonary vessels with infections (lesions) during this
process, several vessels are incorporated into the markings. When building a model for
segmentation, this pattern can end up hindering the training. Therefore, there is a need to
exclude these vessels. Thus, the vessels present in the lungs are segmented and subsequently
extracted from the specialist’s markings.

Segmentation of pulmonary vessels is performed using filters Hessian Recursive Gaussian
Image Filter, and the Hessian 3D To Vesselness Measure Image Filter implemented using the
Insight Toolkit (ITK) [30]. The first filter calculates the 3D Hessian matrix of an image by
convolution with the second and cross derivatives of a Gaussian. An important parameter of
this filter is the sigma, which determines the amount of smoothing applied during the Hessian
matrix estimate. A greater sigma will decrease the identification of small vessels.

The second filter highlights tubular structures, such as vessels and bronchi, in three-
dimensional medical images. After Hessian matrix eigenvalue decomposition, the bright
tubular structures (blood vessels in CT images) have an eigenvalue close to zero and two
negative eigenvalues (positive values correspond to dark tubular structures). This filter has
been described in more detail in Sato et al. [52]. TThe method produces Hessian matrices as
the first stage of the filter, and then highlights the tubular structures in the second stage.
Figure 6 presents an example of the segmentation of pulmonary vessels.

The next step is to create a binary image from the image resulting from blood vessel
enhancement filters using thresholding. Experienced radiologists gave us a range of values that
could segment blood vessels. Therefore, after several tests, the threshold of 20 was ideal for the

Fig. 5 Segmentation refinement: Contour of the lungs segmented by Residual U-Net (a) and result of segmen-
tation refinement
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base used in this work. It is defined as vessel voxels with a value above a threshold, and
otherwise, not vessels. We performed a visual analysis of each image in the bank, subtracting
the parenchyma and the binary mask of the vessels generated with a value of 20. Thus, we
proved that this value was ideal for our problem. Once the mask of the vessels is obtained, it is
extracted from the marking of the lesions made by specialists.

The extraction of blood vessels from the lesions is also important for a better assessment of
lesion consolidation. The vessels have high densities and are usually classified as consolidated
regions of the lesions, biasing the proposed assessment. The classification of lesions is
explained later in Section 3.5. Figure 7 presents an example of the extraction of pulmonary
blood vessels from an appointment made by a specialist.

3.4 Infections segmentation

After extraction of pulmonary vessels from the specialist’s marking, the next phase is to build a
lesion segmentation model. Because the HUPE database has no indication of the type of

Fig. 6 Enhancement of pulmonary vessels: (a) Result of lung segmentation used to demarcate the region of
application of the vessel enhancement filter, which results in (b)

Fig. 7 Extraction of pulmonary vessels from the markings made by the specialist: (a) original image; (b) image
with emphasis on pulmonary vessels; (c) ground truth built by a specialist; and (d) ground truth without
pulmonary vessels
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infection found, the model must be robust enough to segment the most diverse types of
infection. The pulmonary vessel exclusion strategy will assist the network in learning lesion
patterns without considering vessels and bronchi.

3.4.1 Input infections images

For the input images of the lesion segmentation network, a 2D approach was used. It was
passed as an input to the network and slices of patients from the HUPE database. Once again,
this approach was chosen for both the diversity of the database and the number of samples.
The HUPE database had patients ranging from 77 to 585 slices, showing again the complexity
of working with this database.

Thus, in the training phase, the database was divided into three datasets (training, valida-
tion, and testing) to ensure that the greatest number of diverse slices was inserted in the
training. Examples of slices with several types of CT findings of COVID-19 infections are
shown in Fig. 8.

3.4.2 Training infections segmentation model

In training the segmentation of infections, once again, we use Residual U-Net, defined in
Section 3.2. However, we observed that the use of diceloss was unable to generalize all the
examples in the database, without generating significant results. This observation was made by
checking the results of the validation dataset. Thus, we decided to use a combination of binary
cross-entropy [22] and dice loss as a network loss function.

The loss function is the sum of the binary cross-entropy and dice loss. The network will try
to optimize this function in the evolution of the times. An analysis of the influence of the use of
these losses is presented in Section 4.

Another important point inserted for infection training was dropout layers [3]. Since the
HUPE database is very diversified (in the number of slices and acquisition process) and the
number of samples for the various types of existing lesions is low, it was expected that the
model would be overfitted. To circumvent this problem, in training the infection segmentation,
for each convolution layer followed by batch normalization and leaky ReLU, a dropout layer
was inserted.

Fig. 8 Examples of CT findings of COVID-19 infections: (a) early stage patient and (b) advanced stage patient
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At the end of the training, the model was applied to separate exams for testing. As
segmentation is applied to all slices of the patient, there may be some false positives generated
outside the parenchyma region. To achieve this, lung segmentation (Section 3.2) was used to
exclude predictions outside the lung region.

3.5 Infections classification

CT of the lungs of individuals with COVID-19 shows typical lesions, characterized as ground-
glass opacity, air space consolidation, or complete opacity [12, 24]. The level of consolidation
found in lung lesions helps to define the stage of the disease. In the initial step, ground-glass
opacities located in one or more shapes, in the form of a cloud of light or fine mesh, are
common. Occasionally, consolidation is located under the pleura or near the bundles of
bronchial blood vessels. In the progressive stage, few patients had increased ground glass
shadows, or the affected area enlarged tending to merge, thus presenting with large-scale
consolidation. In the severe or critical stage, patients may present with diffuse consolidation
of the unilateral or bilateral lungs, accompanied by ground-glass opacities and signs of
bronchial infection. In the last step, the absorption stage, the original lesions are completely
absorbed and improved [54].

To monitor the level of lung involvement (ratio between the volume of the lesions and the
lungs), it is necessary to measure the level of consolidation of the lesions. Thus, sub-regions of
the lesions are classified as consolidated if the voxel intensity is greater than 0 Hounsfield units
(HU), and in GGO otherwise [40, 66]. Thus, it is possible to evaluate the change in the
consolidation of the lesions caused by COVID-19. Figure 9 presents an example of the
classification of injuries. Ground-glass lesion regions are marked in green, whereas consoli-
dation regions are red.

3.6 Infections quantification

For the volumetric quantification of infections, it was necessary to calculate the volume of the
ground-glass and consolidated subregions of the lesions, the total volume of the parenchyma,
the volume of the pulmonary vessels, and the volume of each lung.

In the total volume of the parenchyma, the result of lung segmentation was used (-
Section 3.2). In the volume of the pulmonary vessels, segmentation of the pulmonary vessels
was used (Section 3.3).

The segmentation of each lung was based on the analysis of the vertical projection
histogram. For the volume resulting from the lung segmentation, described in Section 3.2,
as the lungs are located in the central region of the exam, the vertical projection histogram was
calculated only in that region.

Therefore, an interval was defined based on the central value of the exam width with a gap
of 50 pixels on both sides. Therefore, the vertical projection histogram shows 101 bins on the
horizontal axis and the respective number of lung pixels on the vertical axis. Then, the cut-off
point in the width of the exam responsible for separating the lungs was defined based on the
bin that has the lowest voxel value, that is, the valley point of the histogram. The segmentation
of each lung is shown Fig. 10.

The volumes of the lesions and lungs were calculated from the number of voxels of their
respective segmentation and the spacing information from the CT image. Thus, we have the
following measures: lesion volume (LesV),
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From the volumetric measurements of these structures, some relative measures were
calculated and evaluated, such as the proportion of ground glass (PggLes) and consolidation
(PcdLes) to the general lesions of a patient, as well as the proportion of ground glass (PggL),

Fig. 9 Infections classification. (a) Original image. (b) GGO (green color) and consolidation (red color) can be
seen in the left lung by axial, coronal and sagittal views, respectively
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consolidation (PcdL), and all lesions (PlesL) to the volume of the patient’s lungs. In addition to
volumetric measurements, the average density (LesD) of the lesions was assessed.

At the end of the method, in addition to having visual information giving the location of the
infectious lesions, the specialist still has quantitative information from COVID-19 at hand. In
this way, the specialist has more subsidies to assess the degree of the disease, the extent of
impairment in the lung, or, in the case of treatment, find out temporarily in the TCs if this is the
recommended treatment.

4 Experimental setup and results

This section describes our experiments. First, we explain the experimental setup, metrics
used to evaluate the method, and training environment used. Then, the results of each
step are presented.

Fig. 10 Separation of the lungs. (a) Volume resulting from the lung segmentation step with the range of the
projection histogram calculation illustrated by orange, (b) resulting histogram with the cutoff point illustrated by
red, (c) left lung, and (d) right lung. Ground glass (GgV), and consolidated (CdV) region volume of the lesions
and lung volume (LV). The volume of the lung was calculated by subtracting the volume of the pulmonary
vessels. All measures were calculated for the left lung (LL), right lung (RL), and both lungs (BL) in milliliters
(mL)
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4.1 Experimental setup

For the proposed method, five validation metrics were used in the model construction steps.
The next section describes these metrics.

4.1.1 Evaluation

The metrics used in this work were the most common metrics used in problems with images.
They are Dice [13], sensitivity (SEN) [67], specificity (SPEC) [67], accuracy (ACC) [67], area
under the curve ROC (AUC) [45], Jaccard index [28], and Hoursdoff distance [26].

4.1.2 Training and testing environment

All tests were implemented in the Python programming language with the help of the Keras
deep learning library [8] with TensorFlow-GPU as a backend. For image processing the library
Insight Segmentation and Registration Toolkit (ITK) was used [29, 30]. For training and
testing of lung segmentation and infection models, a computer with modest configurations
with an Intel I7 processor, 128 GB of RAM, 11 GB GeForce RTX 2080, and Windows 10
operating system was used.

The training of the lung segmentation model lasted approximately 360 s per epoch, and
the classification for each patient lasted for approximately 12 s. On the other hand, the
training of the infection segmentation model lasted for an average time of 419 s per epoch,
and the classification per patient lasted approximately 17 s. With trained models, the
system lasts about two min from the entry of the CT to the exit of the segmented infections
with quantification metrics.

After several training sections, and hyperparameters tuning, the chosen hyperparameters in
the training phase were: number of epochs equal to 200, size of batch equal to 3, Adam
optimizer with initial learning rate equal to 0.0001, decay equal to 0.000000199, and 10% of
volumes for validation.

In the experiments, we tried to use data augmentation to verify improvements in the training
phase of the method. However, increasing the sample set by zoom, flip, etc. did not improve
the method in terms of infection segmentation. It is worth noting that the changes presented by
COVID-19 appear to be more related to texture variations, without having a characteristic
behavior of changing geometry; thus, augmentation operations (zoom, flip, rotation, and
translation) probably cannot simulate the effects of infections.

4.2 Results

In this section, the results obtained by executing the proposed method are presented. To verify
all the steps of the method, results and validation metrics were collected at each step. Thus, we
divided the experiments into the following:

1. Lung segmentation.
2. HUPE database division
3. Infection segmentation
4. Classification and quantification of infections per patient.

The following subsections describe these experiments.
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4.2.1 Results of lung segmentation

As mentioned in Section 3.2, the HUPE database patients did not have lung markings.
However, the literature shows that models built for one database can be easily used for
another, producing significant and robust results [25]. Thus, tests were performed for the
LSTSC database until we found a robust model that could be applied for HUPE. Thus, we
divided the LSTSC database into three datasets: training, validation, and test.

The training dataset consisted of 27 patients; as this database is composed from three
different institutes, we ensured that nine patients from each institute made up this training
dataset. For validation dataset, we used one patient from each institute. The model was applied
to the test dataset, which had two patients from each institute. The results can be seen in
Table 1, along with the application of the standard U-Net [48] and two U-Net variations [31].

We can observe that although U-Net and its variations produce promising results, the
proposed variation with residual blocks manages to surpass this result in all metrics, producing
a Dice of 96%.

Although the database is varied, consisting of several acquisition protocols from three
different institutes, the model was able to generalize the problem and achieve good results for
this purpose. The model achieved in the LSTSC database is applied to the entire HUPE
database for lung segmentation. In addition, because it is a different database, segmentation
refinement processes were applied (Section 3.2.3).

4.2.2 HUPE database division

To validate the results of the proposed method up to the infection segmentation step, several
experiments were conducted. First, the database was divided into training, validation, and testing
databases. The HUPE database included 40 patients, and thus, we used 30 CTs for training, four
for validation, and six for testing. This division was carried out randomly. The only premise
adopted was to use as many patients as possible for training, as it is from the variability of training
that robust and effective models are created, mainly for models that use deep learning.

As mentioned in Section 3.4, the slices of the training database were used to create the
model, using validation to monitor the best set of parameters in the training. With the model in
hand, it was possible to apply the prediction on the test database.

Several experiments were then carried out to validate the steps proposed throughout themethod.
Next, we show the results achieved for the segmentation of infections based on our experiments.

4.2.3 Result of infection segmentation

Validation of the pulmonary vessel segmentation step is not possible because the databases
used in this work do not have vessel markings. In addition, works in the literature either do not

Table 1 Result of Lung Segmentation in the LSTSC Databasee

Network Dice(%) SEN (%) SPEC (%) ACC (%) AUC(%) JAC(%) HD(mm)

U-Net [48] 87.01 93.31 99.25 99.05 96.28 91.33 2.953
DenseU-Net [31] 89.22 90.43 99.36 99.22 96.56 92.68 2.867
ResU-Net [31] 91.19 91.52 99.55 99.35 96.98 93.56 2.603
Proposed Method 96.08 94.93 99.91 99.73 97.42 94.01 1.356
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have vessel marking [1] or use private data sets [51]. Thus, the first experiment was the
segmentation of infections with and without the pulmonary vein extraction stage. To validate
this experiment, the segmentation and extraction of pulmonary veins were excluded (-
Section 3.3) and we conducted training with the same training, validation, and testing patients.
Table 2 presents the results of these experiments.

We can observe that with the extraction of pulmonary vessels, the method achieves
significant improvement for all validation metrics. This is because when the model is trained
taking into account the vessels marked by the specialist, the network tends to learn the patterns
of the vessels in the model. Thus, when classifying the test images, the model considers several
vessels as infection, thus negatively impacting all metrics. The addition of the vessel extraction
step improved the index of segmentation of infections by 28.61%.

When inserting the pulmonary vessel extraction step, the method can reach a Dice of
77.1%, resulting in an improvement of more than 25% for this metric.

The same occurs with the sensitivity metric, indicating how robust the method is in finding
lesion voxels.

The second experiment was conducted to compare our result with the infection segmentation
step using the U-Net proposed by Ronneberger et al. [48]. This experiment intends to show how
important the use of the proposed improvements in the network was to achieve the results.

Table 3 shows how promising the improvements applied to our Residual U-Net are. When
inserting the residual blocks and layers of dropout and batch normalization, the results
compared with U-Net have an improvement of more than 20% in terms of sensitivity Even
the ResU-Net and DenseU-Net produce good results; again the proposed method overpassed
Dice in more than 10% in terms of sensitivity. It appears in the Dice as a positive factor. We
assume that these changes address the issue of the availability of databases, making the network
learn more about the patterns found in infections to help describe the COVID-19 lesions.

To validate the results obtained using the Residual U-Net with the proposed cost function,
we conducted another experiment. In this case, we use the same proposed network, changing
only the cost function. First, we use binary cross entropy (BCE), dice loss (DL), and finally,
the combination of the two (BCE +DL). The results are presented in Table 4.

As can be observed, when using only the BCE, the network cannot learn the standards of
the training database, presenting a Dice value of 39.65% and sensitivity of 25.84%. When only
DL was used, there was a significant improvement in the results, going even beyond the
experiment with the U-Net, presenting a Dice of 66.69%. However, on using the combination
of the two cost functions, the training performed better, learning in fact the variability of the
database. Once again, we show that all the improvements proposed for the proposed method
show a significant result (77.1% of Dice) for the task of infection segmentation caused by
COVID-19.

To confirm the variability of the database, Table 5 describes the metrics achieved for
each of the trained patients. The patient column shows the code name given to each
patient in the database.

Table 2 Result of Infection Segmentation with and without Pulmonary Vessels Extraction Step

Pulmonary Vessels Dice(%) SEN (%) SPEC (%) ACC (%) AUC(%) JAC(%) HD(mm)

Without extraction 48.49 47.97 99.73 99.45 73.84 51.31 11.3102
With extraction 77.10 72.44 99.76 99.37 86.11 66.86 4.5295
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We can observe that the image database used (HUPE database) presents a great diversity
concerning the number of slices. This non-standardization makes it necessary to develop a
robust model for segmenting infections. By using the various techniques proposed in this
methodology, we could present significant Dice metrics for all patients, with the best Dice
reaching 79.09% and the worst 67.19%. This produces a standard deviation of only 3.92%,
which shows that despite the diversity of the database, the method is capable of presenting
significant metrics during the task of infection segmentation.

4.2.4 Result of classification and volumetric quantification of infections by patient

To validate the method and how promising is, we extracted the same measurements from the
specialist’s markings to assess how the method performance.

Table 6 presents a comparison of the measures extracted from the marking made by the
specialist and the segmentation method. A paired t-test was used to assess the consistency of
the results of the distribution of lesions. It was performed using Python’s scipy.stats [60]
library, which contains a large number of probability distributions and statistical functions. No
measure showed a significant difference (ρ< 0.05).

It is worth mentioning that for patients in advanced stages, the specialist opts for a quickly
marking, as the degree of impairment is clearly visible, which results in either ignoring minor
infections or adding several lesions in the same marking.

However, as our method classifies voxel-to-voxel, it can leading to the existence of some
divergent metrics extracted by the specialist. The abbreviation of the metrics can be found in
Section 3.6.

Lung volume (LV), lesion volume (LesV), ground glass volume (GgV) and condensation
volume (CdV).

Proportion of GGO (PggLes) and consolidation (PcdLes) to the general lesions of a patient.
Proportion of GGO (PggL), consolidation (PcdL) and all lesion (PlesL) to the volume of the
patient’s lung.

Mean lesion density of GGO (GgD), consolidation (CdD) and all lesion (LesD). Left lung
(LL), right lung (RL) and bilateral lung (BL).

A Paired T-test to assess the consistency of the results of the distribution of lesions obtained
by a specialist and proposed method.

Table 3 Result of Infection Segmentation using U-Net and Residual U-Net

Network Dice(%) SEN (%) SPEC (%) ACC (%) AUC(%) JAC(%) HD(mm)

U-Net [48] 61.99 49.89 99.93 99.66 74.92 49.33 11.8962
DenseU-Net [31] 66.11 63.44 99.86 99.37 78.38 52.87 9.6322
ResU-Net [31] 67.01 66.31 99.95 99.45 79.28 57.63 8.9578
Proposed Method 77.10 72.44 99.76 99.37 86.11 66.86 4.5295

Table 4 Result of Infection Segmentation using Different Types of Loss

Loss Function Dice(%) SEN (%) SPEC (%) ACC (%) AUC(%) JAC(%) HD(mm)

BCE 39.65 25.84 99.97 99.52 62.90 45.61 16.2633
DL 66.69 53.17 99.73 99.67 76.54 56.83 8.2578
Proposed Method(BCE+DL) 77.10 72.44 99.76 99.37 86.11 66.86 4.5295
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5 Discussion

In this section, we discuss the quantitative and qualitative results of the method through case
studies. Existing methods are compared with the proposed method. Finally, the advantages and
limitations of the proposed method are highlighted.

Table 5 Result of infections segmentation by test patient

Patient Number of slices Dice(%) SEN (%) SPEC (%) ACC (%) AUC(%)

MM0001 01 425 76.72 70.45 99.89 99.65 85.17
MM0001 02 285 72.29 72.78 99.85 99.73 86.32
MM0015 01 212 79.09 73.93 99.96 99.87 86.94
MM0016 01 256 68.19 73.28 99.87 99.80 86.58
MM0017 01 301 76.29 77.46 99.72 99.49 88.60
MM0065 01 160 75.04 66.73 99.29 97.68 83.01
Average±

StandardDeviation
273.17±82.47 77.10±3.92 72.44±3.29 99.76±0.22 99.37±0.76 86.11±1.71

Table 6 Comparison between the Measures Evaluated by the Experts and a Computer using the Proposed
Method

Measures Method Specialist t* ρ’

LVBL 3887.91 ± 1214.80 – – –
LVLL 2044.44 ± 572.04 – – –
LVRL 1843.46 ± 647.00 – – –
LesVBL 383.67 ± 429.18 460.42±562.55 1.38 0.23
LesVLL 207.31 ± 153.84 242.44±197.83 1.85 0.12
LesVRL 176.36 ± 276.00 217.98±366.70 1.11 0.32
GgVBL 377.82 ± 420.56 455.60±557.66 1.36 0.23
GgVLL 203.52 ± 149.51 238.58±194.49 1.81 0.13
GgVRL 174.30 ± 271.79 217.02±365.31 1.10 0.32
CdVBL 5.85 ± 9.09 4.82±5.31 −0.64 0.55
CdVLL 3.79 ± 4.99 3.86±4.08 0.15 0.89
CdVRL 2.06 ± 4.24 0.96±1.44 −0.94 0.39
PggLesBL 98.37 ± 1.59 98.32±1.74 −0.16 0.88
PggLesLL 98.20 ± 1.70 98.08±1.81 −0.40 0.71
PggLesRL 99.36 ± 0.70 83.01±40.67 −0.98 0.37
PcdLesBL 1.63 ± 1.59 1.68±1.74 0.16 0.88
PcdLesLL 1.80 ± 1.70 1.92±1.81 0.40 0.71
PcdLesRL 0.64 ± 0.70 0.33±0.34 −1.05 0.34
PlesLBL 10.80 ± 11.90 12.78±15.34 1.33 0.24
PlesLLL 10.63 ± 7.78 12.23±9.76 1.75 0.14
PlesLRL 11.25 ± 16.83 13.73±22.04 1.11 0.32
PggLBL 10.63 ± 11.68 12.64±15.22 1.31 0.25
PggLLL 10.43 ± 7.59 12.03±9.61 1.71 0.15
PggLRL 11.12 ± 16.58 13.66±21.95 1.11 0.32
PcdLBL 0.17 ± 0.24 0.14±0.14 0.16 0.88
PcdLLL 0.20 ± 0.24 0.20±0.20 0.40 0.71
PcdLRL 0.13 ± 0.25 0.07±0.09 −1.05 0.34
LesDBL −536.59 ± 95.98 −545.58±90.63 −1.01 0.36
LesDLL −536.70 ± 90.60 −544.33±87.45 −0.74 0.49
LesDRL −586.23 ± 108.19 −500.26±262.56 0.70 0.51
GgDBL −545.47 ± 90.32 −555.22±85.98 −1.30 0.25
GgDLL −546.58 ± 84.10 −555.40±81.83 −0.99 0.37
GgDRL −589.75 ± 104.94 −502.28±263.18 0.72 0.51
CdDBL 48.34 ± 21.37 71.67±36.28 1.71 0.15
CdDLL 48.37 ± 21.64 73.37±39.60 1.66 0.16
CdDRL 30.50 ± 26.09 54.02±40.98 1.76 0.14
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5.1 Case study

Two test cases are presented. Considering the results presented in Section 4, we present the
patient with the highest Dice value (MM0015 01) and the lowest Dice value (MM0015 01).

Infection segmentation experiments show a visual and quantitative way to compare our
results with a real specialist’s markings. We can see the edges of the mark (blue) and the
segmentation of the method (green), where a large part is superimposed, which shows us the
robustness of the method to be similar to the specialist’s markings. However, although in some
points the specialist’s markings go beyond the borders found using the proposed method, it is
worth remembering that the doctor while marking the infections tends to leave a risk margin so
as to ensure a certain safety cover, or because it is difficult to define the boundaries and
behavior of COVID-19 on CT. Therefore, first, we will show the results concerning infection
segmentation compared with the specialist markings. Next, we will show the regions highlight-
ed in GGO and consolidation together with the volumetric quantification for each patient.

The first case study is patientMM0015 01 (see Table 5), which presented a Dice of 79.09%.
The result of the infection segmentation with the marking of the specialist is shown in Fig. 11.

We can observe that the specialist’s mark is very faithful to the mark obtained using the
proposed method. It is worth mentioning that because it presents a specificity of 99.76%,
practically no false positives are generated. In Fig. 11(c) we can see that the proposed method
can find regions in GGO that were not marked by the specialist.

After segmenting the infections, the next step is to evaluate the regions of GGO and the
condensation of this patient. Table 7 presents the results of the patientsMM0015 01 eMM0016 01.

On analyzing Fig. 12 and Table 7, we concluded that the method was more accurate
compared with the specialist’s markings. Despite the divergence of some metrics, using the
proposed method it is possible to assess how compromised the lung is, and thus provide a
series of subsidies to specialists.

The second case study concerns the patient MM0016 01 (see Table 5), which presented a
Dice equal to 67.19%, the worst result presented by the method. The result of the infection
segmentation together with the markings by the specialist is shown in Fig. 13.

In Fig. 13(a), the method marks a condensed region outside the markings of the specialist,
which can be considered as an error.

In fig. 13(b), there is a region of infection that was not found by the method but marked by
the specialist. However, Fig. 13(c) manages to demarcate more regions than the one marked by

Fig. 11 Patient case studyMM0015 01 in blue marked by the specialist and green marked by the method (a) slice
80, (b) slice 97, and (c) slice 114
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the specialist. All of these scenarios negatively impact the value of Dice, and as a result, its
value is only 67%.

As in the first case study, segmented infections, the regions of GGO, and conden-
sation of this patient were evaluated (Fig. 14) and the metrics are evaluated (Table 7).
Once again, despite the low Dice value, when comparing the metrics extracted from
the method and the specialist’s markings, it did not have a significant impact on the
evaluation of the results. It is possible to analyze lung impairment from the extracted
metrics.

5.2 Comparison with related works

Even though it is a recent problem, considering how aggravating it is, some studies have
already been begun trying to address the segmentation of infections and volumetric

Table 7 Infections Quantification from Case Studies: patient MM0015 01 and MM0016 01

Measures MM0015 1
Method Specialist

MM0016 1
Method Specialist

LVBL 4445.18 – 2713.41 –
LVLL 2268.14 – 1432.97 –
LVRL 2177.04 – 1280.44 –
LesVBL 126.26 155.89 94.40 83.57
LesVLL 125.19 155.89 87.89 79.66
LesVRL 1.07 0.00 6.51 3.90
GgVBL 123.42 152.85 90.29 79.40
GgVLL 122.35 152.85 83.87 75.50
GgVRL 1.07 0.00 6.42 3.90
CdVBL 2.85 3.04 4.11 4.17
CdVLL 2.85 3.04 4.02 4.17
CdVRL 0.00 0.00 0.09 0.00
PggLesBL 97.75 98.05 95.65 95.01
PggLesLL 97.73 98.05 95.43 94.77
PggLesRL 100.00 0.00 98.63 99.95
PcdLesBL 2.25 1.95 4.35 4.99
PcdLesLL 2.27 1.95 4.57 5.23
PcdLesRL 0.00 0.00 1.37 0.05
PlesLBL 2.84 3.51 3.48 3.08
PlesLLL 5.52 6.87 6.13 5.56
PlesLRL 0.05 0.00 0.51 0.30
PggLBL 2.78 3.44 3.33 2.93
PggLLL 5.39 6.74 5.85 5.27
PggLRL 0.05 0.00 0.50 0.30
PcdLBL 0.06 0.07 0.15 0.15
PcdLLL 0.13 0.13 0.28 0.29
PcdLRL 0.00 0.00 0.01 0.00
LesDBL −468.10 −505.56 −468.29 −454.83
LesDLL −466.20 −505.56 −463.01 −443.86
LesDRL −690.00 0.00 −539.62 −678.62
GgDBL −479.92 −516.56 −491.26 −481.08
GgDLL −478.09 −516.56 −486.96 −470.85
GgDRL −690.00 0.00 −547.42 −678.95
CdDBL 44.75 46.79 36.31 45.16
CdDLL 44.75 46.79 36.65 45.17
CdDRL 0.00 0.00 21.17 21.00
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quantification. Although there is no way to compare the results of volumetric quantification,
the works already developed served as a basis for our study. When observing the opportunity
to not only segment but also to measure the degree of infection caused by COVID-19, the
works in the literature gave us subsidies to extract metrics after our segmentation.

In contrast, some works deal only with the segmentation of infections. Although they do
not use the same database, they serve as a comparison to our method. In Section 2.2 some
works are presented that do the segmentation of infections.

Fig. 12 Infections classification from case studies MM0015 01: (a) original image. (b) GGO (green color) and
consolidation (red color) can be seen by axial, coronal and saggittal views, respectively
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All the works presented use deep learning models, which highlights the promise these
techniques hold. Some of the works presented propose semisupervised models, that is,
models that need some degree of human interaction to achieve desired results [19, 68]. It
is worth mentioning that our method is completely automatic, which in addition to
targeting infections on a remarkably diverse database also extracts metrics related to
infections to assist specialists.

Fan et al. [19], Qiu et al. [47] used a limited database, presenting only 100 slices of patients.
Although training with few slices and good results are relevant, the possibility of an overfitted
model is great. In clinical practice, usually, 100 slices correspond to the CT of a single patient.
Our work uses a database with 40 patients with more than 8000 slices and achieves a Dice of
77.1% with approximately 100% specificity.

Yan et al. [64] and Wu et al. [63] used a very extensive image database with fixed
acquisition protocols. In deep learning approaches, the greater the number of images for
training, the more robust the model becomes. Despite using 21,658 chest CT, the work
of Yan et al. [64] achieve 72% Dice. Wu et al. [63] used 144,167 chest CT, presenting
a Dice of 78.3%; however, the specificity is 93%. This causes a series of false
positives, which in our approach would be a problem because we deliver measures
related to infections. Compared with these two works, our method is used in fewer
images; however, it achieves promising results, as we reach 77.1% Dice with a
specificity of 99.76%. In our method, we value consistent values of Dice and speci-
ficity, mainly due to the existence of the quantification step, to generate a minimum of
false positives.

Table 8 shows the results of the presented and the proposed method.
We can observe that although a faithful comparison is not possible, our method has a

prominent place among the related works. Our metrics, when not superior, are comparable to
other methods in the literature.

However, it is worth mentioning that methods for segmenting infections are very
important in clinical practice to assist specialists. Thus, it is believed that our method
is promising in the task of infection segmentation, reaching an average Dice of 77.1%
and specificity of 99.76%.

Finally, we highlight that this is despite the comparable results concerning segmentation.
Our method also presents a step of classification of infection in GGO and condensation areas
and quantification of these findings to provide more subsidies to the specialist.

Fig. 13 Patient case study MM0016 01 in blue marked by the specialist, green marked by the method (a) slice
93, (b) slice 107, and (c) slice 160
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5.3 Advances and limitations

Infection segmentation is not a trivial task. Developing a method capable of addressing this
problem requires a robust model that circumvents all adversities encountered by patients and
procurement protocols. By achieving an effective method for this task, several advances are
achieved, such as:

1. A fully automatic method is capable of segmenting infections and quantifying them to provide
subsidies to specialist doctors. The use of a public database to build a lung segmentation model
has proved to be very promising. Due to the lack of specialists’ time, it would be very difficult

Fig. 14 Infections classification from case studies MM0016 01: (a) original image. (b) GGO (green color) and
consolidation (red color) can be seen by axial, coronal and sagittal views, respectively
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to find a database with both lung marking and infections. By creating a robust model on a
diversified database, we were able to generalize to other databases.

2. For the lungs segmentation, a model based on U-Net [48] was proposed, which evaluated
the results, showed to be quite promising, achieving better results than the U-Net itself.

3. By observing that the markings comprised a series of unnecessary information for the training
of the network (pulmonary vessels), by excluding this from the mark, our method became even
more robust. In this way, we managed to solve the problem of generating many false positives

4. All techniques proved to be fundamental for the creation of an infection segmentation model.
From these results, it was possible to find a Dice of 77.1% with only 99.76% specificity.

5. As there is no classification of the types of infections, we propose to identify the condition
of the infection tissue by analyzing the HU, classifying them as GGO, or condensed. This
is important because the evolution of COVID19 changes the structure of the lesion, which
may progress between GGO and condensation.

6. From the segmentation and classification of infections, it was possible to extract metrics,
and such metrics show the degree to which each lung and the whole parenchyma is
compromised. This in clinical practice can be essential, both to detect disease, diagnose,
prevent, and even monitor whether a particular treatment is reducing the impairment.

7. Finally, all the steps made the proposed method very promising. For the segmentation of
infections, it reached 77.1% Dice, 72.44% sensitivity, 99.76% specificity, 99.37% accu-
racy, and 86.11% AUC. As for quantification, the method showed a value of ρ< 0.05,
which shows that the extracted metrics were faithful to the specialist’s marking.

Despite being a promising method with a series of advances, it has some limitations, such as:

1. As it is a national emergency, it has not yet been possible to find a database composed of
numerous cases marked by specialists. Thus, building or obtaining a large database can be
fundamental for creating 3D models of networks.

2. One of the main problems when it comes to deep learning is the number of parameters,
being able to find these parameters automatically can provide better results for the method.

3. Another important point is the metrics, since the specialist uses them to interpret the
degree of the disease, providing more measures than those already proposed can be
important for medical interpretation.

Thus, we show that the proposed method is promising in clinical practice allied with specialist
expertise. The use of a computer-supported method can assist all spheres of healthcare to
detect disease, diagnosis, prevent, and even monitor whether a particular treatment.

Table 8 Comparison with related works

Work Dice(%) SPEC(%) AUC(%)

Yan et al. [64] 72 – –
Fan et al. (Semi) [19] 73.9 – –
Fan et al. (Automatic) [19] 68.2 – –
Zheng et al. [68] – – 95.9
Wu et al. [63] 78.3 93 –
Qiu et al. [47] 77.3 97.4 –
Proposed Method 77.1 99.8 86.1
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6 Conclusion

This study presented a method for segmenting infections caused by COVID-19 and quantify-
ing these findings. The method was created using two databases: one public (LSTSC database)
and one private (HUPE database). Furthermore, the proposed method was composed of five
stages: lung segmentation, segmentation and extraction of pulmonary vessels, infection seg-
mentation, infection classification, and quantification of infections.

The proposed method proved to be promising, and all steps involved were crucial to achieving
outstanding results. For infection segmentation, we achieved a Dice of 77.1% with 99.56%
specificity. This indicates how accurate the proposedmethodwas in finding infections by generating
as few false positives as possible. As our approach also proposes measures for the infections found,
having few false positives is important in order not to tend to quantify these infections.

In addition, when proposing an analysis of pulmonary impairment through volumetric
quantification, the proposed method achieved results similar to that of the specialist, where no
measure presented a value of ρ< 0.05 in the paired t-test.

Thus, it is believed that the proposed method may play a fundamental role in clinical
practice as it can point out both infections and measures related to them to the specialists.

Finally, we believe that some improvements could be introduced to produce even better
results. First, new architectures for the U-Net used could be tested or created, as the literature
has several publications related to this. Second, a database with several marked cases could be
acquired, which would allow 3D training for these patients. Finally, other metrics can be used
to provide even more subsidies to specialists.
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