
Improving text-to-image generation with object
layout guidance

Jezia Zakraoui1 & Moutaz Saleh1 & Somaya Al-Maadeed1 & Jihad Mohammed Jaam1

# The Author(s) 2021

Abstract
The automatic generation of realistic images directly from a story text is a very challeng-
ing problem, as it cannot be addressed using a single image generation approach due
mainly to the semantic complexity of the story text constituents. In this work, we propose
a new approach that decomposes the task of story visualization into three phases:
semantic text understanding, object layout prediction, and image generation and refine-
ment. We start by simplifying the text using a scene graph triple notation that encodes
semantic relationships between the story objects. We then introduce an object layout
module to capture the features of these objects from the corresponding scene graph.
Specifically, the object layout module aggregates individual object features from the
scene graph as well as averaged or likelihood object features generated by a graph
convolutional neural network. All these features are concatenated to form semantic triples
that are then provided to the image generation framework. For the image generation
phase, we adopt a scene graph image generation framework as stage-I, which is refined
using a StackGAN as stage-II conditioned on the object layout module and the generated
output image from stage-I. Our approach renders object details in high-resolution images
while keeping the image structure consistent with the input text. To evaluate the perfor-
mance of our approach, we use the COCO dataset and compare it with three baseline
approaches, namely, sg2im, StackGAN and AttnGAN, in terms of image quality and user
evaluation. According to the obtained assessment results, our object layout guidance-
based approach significantly outperforms the abovementioned baseline approaches in
terms of the accuracy of semantic matching and realism of the generated images
representing the story text sentences.
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1 Introduction

Image generation for the task of story visualization aims to generate meaningful and coherent
images representing the story text [16]. This is a challenging task since it requires a deep
understanding of the objects involved in the story as well as their mutual interactions and
semantical connections [17]. Specifically, story visualization aims at generating a sequence of
images to convey a given story text. The text often narrates complicated interactions with
multiple characters and events. With the advent of large datasets such as COCO [1, 19] and the
image synthesis models [22, 23, 26, 28, 36, 37] pairing images with natural language descrip-
tions became possible without enormous efforts in contrast to discriminative methods. The
latter methods are carried out with excessive efforts, such as maintaining massive image
resources and developing algorithms for retrieving, filtering, and selecting images [11]. Gen-
erating images that match the input text has wide applications in different domains, including
news, communications, and business. One important application of pairing text with images is
literacy development. In fact, children with learning difficulties can understand vocabulary and
concepts better with images rather than raw text. In addition, new language learners can
comprehend the vocabulary meaning when it is associated with representative images.

Recent works [17, 18, 26, 36] have shown that generative adversarial networks (GANs) [5] are
immensely useful in generating realistic images. GAN-based approaches have demonstrated great
success in generating high-resolution images with photorealistic details conditioned on textual
descriptions [20, 24, 26, 36, 37], semantic segmentations [18] and scene graphs [14, 17].
However, successful results have been limited to generating images of single objects, often
training one model per object class. Indeed, they still fail in generating images with recognizable
objects when multiple objects are given. Due to the complexity of learning a direct text-to-pixel
mapping from general images, as argued in [10], existing approaches still have problems in
generating adequate images for complex text descriptions. Indeed, most works approach this task
by generating images for short textual descriptions using GANs. However, because of this
restriction, they use only object information in given text descriptions for rendering a specific
object, leading to a poor layout of multiple objects in generated images [17] such as birds or
flowers with simple backgrounds. Story text, conversely, is different from short textual descrip-
tions, which emphasize multiple objects and semantic coherency more rather than single objects
and simple descriptive text. Specifically, the task of story text visualization is to generate a
sequence of images to narrate the story written in multiple sentence paragraphs.While most of the
existingmethods focus either on semantic compliance with the description on the image level [14]
or on the scene layout level [27], few focus on both semantic and layout levels [4, 16, 32].
Notably, generating complicated real-world images such as COCO [19] remains a challenging
task due to the following three challenges. First, in story text, the sentences are related to multiple
objects with various semantical relationships. In this case, the presence of multiple objects with
details of each object, and how to localize them all to reflect given relations becomes crucial for
better image generation. Second, information about the appearance of the object in the story is
neither explicitly available nor ready to integrate into the image generation, whichmakes it harder
for any model to generate the desired object images. Third, in story visualization, the clarity of
objects in terms of shape and how well the generated image matches the story text and the image
quality are important details in realistic images. In addition, the consistency of the characters
across all images is essential for promoting story understanding.

In this paper, we propose a new approach for generating images that represent the input text
generatively. The approach is decomposed into three phases: story text understanding, object
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layout prediction, and image generation and refinement. Specifically, to address the first
challenge, we focus on each sentence of the text and reduce its complexity to facilitate the
information extraction process. We extract key phrases and transform them into a semantic
representation. Moreover, for the second challenge, we follow the sg2im model [14] to
generate the object layout for each character and mitigate the loss of object information by
aggregating all individual object information (including basic geometric relations) from the
scene graph. Finally, for the third challenge, we adopt the StackGAN for final image
refinement under the guidance of the object layout module. In particular, our proposed
framework provides additional information for the image generation process by incorporating
an object layout module that captures information on the appearance of the image’s objects.

The remainder of this paper is organized as follows. Section 2 scrutinizes related works of
text-to-image generation approaches. Section 3 presents our proposed approach to generate
images of multiple objects with specified relationships. Section 4 describes the settings for our
experiments. Section 5 discusses the results and the evaluations, while Section 6 concludes the
paper and highlights potential research directions.

2 Related works

In the last decade, significant GAN-based works have been carried out for generating
representative text images [5, 12, 21, 28, 32] that are known as text-to-image synthesis
methods. These methods are important for many applications, such as art generation and
computer vision. Most GAN-based text-to-image generator models have demonstrated the
flexibility to generate images that have been exploited in different tasks, such as image
generation from textual descriptions [28, 36–38]. GANs can generate images from a noise
dimension, i.e., a latent random variable [5], and have received attention because they produce
sharper images compared to other generative models [21]. There are many other GAN
variations; for instance, multistage GANs were developed to obtain high-resolution images,
where each stage corrects the defects and adds details to the previous stage. Zhang et al. [38]
proposed StackGAN to generate larger size images via a sketch-refinement process in two
stages. Zhang et al. [37] proposed an improved version of StackGAN that uses multiple
generators and discriminators in a tree-like structure. A later enhancement was proposed by Xu
et al. [36] where they employed an attention mechanism that allows the network to focus on a
single word from an input sentence or a specific region of the image at a time. Specifically, the
attention mechanism works not only on a global sentence vector but also at the word level for
fine-grained text-to-image generation. For instance, it focuses on object attributes when
synthesizing different regions of the image.

Apart from generating images directly from noise with GANs, there has been significant
work on conditioning the generator, discriminator or both on additional information, namely,
conditional cGAN [22]. The conditioning problem in cGAN is modeled as a distribution of
images given some prior information, for instance, providing object labels as an additional
input to both the generator and discriminator. Conditional models have been studied exten-
sively, and various approaches have been suggested to address it; however, many of them [12,
36, 38] focus on a single sentence to generate a single image. Other approaches suggested
splitting the conditioning problem in different ways. An interesting approach was proposed by
Mirza et al. [22], where the idea of conditioning both the generator and discriminator on extra
information such as class labels was presented. Reed et al. [28] proposed using conditional
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GAN with adversarial training of a generator and a discriminator to improve text-to-image
generation. In this latter work, the authors were the first to propose a solution with promising
results for the problem of image generation from text. They divided the problem into two main
subproblems by finding a visually discriminative representation for the text descriptions and
using this representation to generate realistic images.

Various approaches have been proposed to control the image generation process by
conditioning on a class label [23], a text description [21, 28, 37], an auxiliary classifier [23],
a semantic layout [10, 14] a dialog [30] or a semantic segmentation map [13]. More
specifically, Zhang et al. [38] conditioned their generator and discriminator on caption
encodings where their StackGAN model generates images in multiple stages; stage-I generates
a coarse low-resolution (64 × 64) image, and stage-II generates the final high-resolution
(256 × 256) image. This stacking of models resulted in generating highly photorealistic images
at higher image resolution compared to previous works [3, 12]. However, they did not train
their two stages in an end-to-end fashion. First, they trained stage-I until completion and then
used the obtained output model from stage-I to train stage-II. The work in [37] builds
StackGAN++ on top of StackGAN with a tree-like generator architecture for three or more
generators and more stable training behavior. Based on StackGAN++, Xu et al. [36] increased
the number of stages, trained them in an end-to-end fashion, added an attention mechanism
over the captions, and added a novel attentional multimodal similarity model using the deep
attentional multimodal similarity model (DAMSM) for text embedding. DAMSM learns two
neural networks that map image subregions and sentence words to a common semantic space.
This helps to measure the image-text similarity at the word level to compute a fine-grained loss
for image generation, thus guiding the training loss and significantly increasing performance.

Story visualization, however, is different from short textual descriptions, which emphasize
semantic coherency between story objects more than short descriptive text. A story text can
contain different objects, scene backgrounds, events, locations, etc. To address such chal-
lenges, Lee et al. [16] proposed StoryGAN for story visualization that employs a context
encoder to track the story flow and two discriminators at the story and image level to enhance
the quality and consistency of generated images. However, due to the well-known difficulties
of training generative models, such as instabilities in the training procedure [29], these works
are limited to specific domains, such as cartoon characters [16]. In these specific domains, the
image generation process is stable because the structures are much easier, and the quality of the
generated image is usually not stable in most cases. Therefore, it is hard to directly apply
generative models in complex scenarios such as scene generation for stories in the wild. Unlike
GAN, Tan et al. [32] proposed text2scene as a sequence-to-sequence framework [31], which
learns to sequentially generate objects and their attributes at every time step by attending to the
words in the input text and the current status of the generated scene. However, their approach
is restricted to composition tasks of abstract scenes.

Worth mentioning models attempted to resolve the semantic complexity of sentences to
support semantic relevance enhancement. Specifically, semantic relevance enhancement focuses
on improving the correlation between ground-truth text and the generated image. Notably, the
author of AttnGAN [36] used StackGAN as the basemodel and proposed an attentionmechanism
by associating the subregions in the resulting image with themost relevant words in the input text.
An interesting approach is theMirrorGAN [26], which incorporates a pretrained text redescription
recurrent neural network (RNN) to better align the images with the given texts and to validate
whether the generated images are consistent with the input texts. However, these GAN-based
models do not specifically deal with the generation of multiple objects and their relationships that
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can occur in a story text. In addition, when they encounter a description language sentence that
includes a plurality of objects and relationships of complex objects, they produce poor results. For
instance, these models cannot identify such issues in sentences with more than one object or more
than one instance, which results in poor image quality.

The idea of integrating object layout for image generation has also been explored by recent
works. For instance, some works constructed a scene graph [10, 14], and others constructed a
scene layout [17] or an object-driven semantic layout [18] by predicting bounding boxes and
segmentationmasks for all objects. The authors in Obj-GAN [18] used image captions to generate
bounding boxes of specific objects within an image and predict the object’s shape within each
bounding box. Obj-GAN improved upon the work of [10] in many aspects. Specifically, for the
task of box generation, the authors in Obj-GAN employed an attentive seq2seq model that
captures the correspondence between an object label and a box. Their model showed better results
than the seq2seq model used in [10]. A similar work [9] used an object path module to generate
multiple objects at different positions using global and object pathways.

Our approach is different from the previously discussed works for several reasons. First, in a
story text, the consistency of images emphasizes the continuity between consecutive image
frames and supports story understanding. Second, in our case, we need to preserve the characters
and their instances for the entire story. Third, to understand the story text, the relationships
between the characters must be visualized in the generated images, which poses a major challenge
for the recent GANs while we can properly address it and produce very good outcomes. Finally,
in story text, the scene background may change within the same sentence; however, recent GANs
cannot explicitly discriminate between the background, i.e., the background of scene image and
foreground images, while our approach succeeds in solving this problem.

The main contribution of our approach is to use an object layout module, specifying the
subject relation object from the scene graph, to localize the objects’ bounding boxes while the
relations among these objects are consistent. In addition, we stack and condition a StackGAN
on the object layout to render realistic detailed objects that keep their relations even for
complex text descriptions. Our approach is compared with other state-of-the-art approaches
dealing with the same problem for image generation using the COCO dataset. The obtained
results clearly show that our approach generates higher quality images that are more visible.

3 The approach

We follow a generative adversarial approach for scene generation and propose a two-stage
architectural model as follows. First, in stage-I, we generate low-resolution images of the
objects using the scene graph framework [14]. This phase is based only on averaged object
label embeddings to represent objects in the scene layout. We then construct an object layout
module to aggregate individual object labels and serve as image generation guidance for
stacked image generation. Specifically, we build upon the StackGANmodel introduced in [38]
to generate high-resolution images by taking the 64 × 64 images generated from the sg2im
framework [14] and the constructed object layout. Figure 1 provides an overview of the model
architecture that we build as follows:

1. Conversion of the story text into scene graphs: We preprocess the COCO caption, i.e.,
story text into the form of triplets. Each triple is formed of a < subject, relation, object >
semantically connected in the text.
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2. Generation of low-resolution images: We use triplets to generate images using GAN
stage-I.

3. Object layout construction: We aggregate a predicted bounding box, a spatial binary mask
and individual object feature for each object. Then, we concatenate them.

4. Text embedding: We embed the text as an input variable into a fixed-length vector of 1024
dimensions using a pretrained character level embedding encoder.

5. Conditioning Augmentation (CA): We feed the embedding φt into a fully connected layer
to generate means and standard deviations, which in turn produce the conditioning
variable inputs for the generator in the next step.

6. Image generation: We apply a stage-II generator to generate a high-resolution image
(256 × 256) with a stage-II discriminator. We feed the generator with conditional variable
inputs concatenated with the low-resolution image and object layout tensor to generate the
high-resolution image.

7. Output image with computed K nearest neighbor (KNN) score: We compute the KNN
score for each output to assess the quality of every single image.

3.1 Story text processing

We process the story text as follows: Initially, key phrases are extracted using a part of speech
tagger dealing only with NN for a noun and V for a verb. In fact, our objects are built upon 181
labels of the COCO-stuff dataset. We consider key phrases containing the geometric relation-
ships left of, right of, above, below, inside, and surrounding, which gives the spatial relation
between objects. Then, the extracted key phrases are manually translated from Arabic to
English. Eventually, we extract all the triples <object, relationship, object> using the Stanford
scene graph parser [33].

3.2 Stage-I image generation

For stage-I, we adopt the baseline approach for generating images from scene graphs proposed
in [14]. The architecture consists of three main modules: a graph convolution network (GCN),

Embedding φt

64 x 64

6. Stage-II model

2. Stage-I model4. Text embeddings φt

~ (0,1)

1. Text processing
64 x 64

5. Conditioning augmentation

μ

σ

3. Object layout

7. Output

Result
256 x 256

Real image
256 x 256

Fig. 1 The proposed framework overview (graphics partially adapted from StackGAN [38] and sg2im [14])
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a layout prediction network (LN) and a cascade refinement network (CRN). First, the GCN
takes a scene graph as an input and computes new vectors for each node and edge in the graph.
The GCN outputs an embedding label vector for each object. Then, these object embedding
vectors are used by LN to compute a scene layout. This layout is computed by predicting a
segmentation mask and bounding box for each object. Subsequently, given a scene layout, the
CRN is responsible for generating an image that respects the object positions in the scene
layout. The CRN consists of a series of convolutional refinement modules. Finally, an image
discriminator network ensures that the overall appearance of generated images is realistic; it
classifies a set of image patches as real or fake. The object discriminator network classifies
each object as real or fake and ensures that each object is recognizable using an auxiliary
classifier [23] that predicts the object’s category.

However, the sg2im model lacks information about the appearance of the object, which
makes it harder for the model to synthesize the object images for all object categories. This is
because having the same scene graph represents many distinct images from the training
dataset. In addition, the intermediate representation between the input graph domain and the
output image domain loses any context from the scene graph, reducing the quality of the image
generation stage. To overcome these drawbacks in our model, we add an object layout module
to add the capability of reasoning out the appearance of the objects in the scene for stacking
stage-II.

3.3 Object layout module

In the case of story text with multiple characters and events, it is necessary to automat-
ically localize all the objects in the image so that they reflect, to some extent, the given
relationships between them. This consideration is crucial for better image generation to
support the story visualization task. Indeed, recent works [10, 14, 17, 18, 34] employ
different techniques such as prediction networks to estimate a scene layout that gives
initial and refined layout [34] or gives predictive values for the object appearances [10,
14, 17, 18]. However, in [14], the authors used object embeddings only to represent
objects in their layout without using other details from the scene graph. Another
limitation is that at the end of GCN, all occurrences of each object are merged with an
average pooling operation such that individual object and individual relationship infor-
mation are lost. Specifically, all embeddings that are associated with the same object are
averaged together, resulting in new embeddings for that object. Such techniques may
result in a failure to generate the correct object layout because they first predict the
approximate average box and mask over the images corresponding to the given scene
graph, and second, they do not consider the constraints specified by the scene graph.

To consider the required object label specified in the scene graph in the layout
prediction, we introduce an object layout module to aggregate the features of all objects
and their relations specified in the scene graph. In practice, we employ a fully connected
network (FCN) to pool individual object information from the scene graph. In our case,
the FCN is a multilayer perceptron (MLP) [25] that aggregates embeddings using 384
input nodes, 512 hidden nodes and 181 output nodes. MLP is known as a feedforward
neural network and has the capability of arbitrary input-output mapping. In our case,
FCN receives the embedded triplet and produces a score for each object label. Mathe-
matically, an MLP comprising n1 input nodes, n2 hidden nodes, and n3 output nodes is
expressed as follows:
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yr ¼ f 2 b2 þ ∑
q¼0

n2

w2
qr*f 1 b1 þ ∑

p¼0

n1

w1
pq*xp

 ! !
r ∈ 1; n3½ � ð1Þ

where:

n1 = 384, n2 = 512,n3 = 181.
p, q, and r are the indices of the input, hidden, and output nodes, respectively
w1
pq and w2

qr are the weighting factors between layers
b1 =0 and b2 = 0 are bias weights to permit adjustments of the mean level at each stage
f1(g) is the ReLU [2] activity function of the hidden layer
f2(g) is the softmax [2] activity function of the output layer
y denotes the network outputs as a score for each object label

FCN outputs a score value for each predicted label. Thus, the obtained predicted label
contains the averaged information from node embeddings as well as additional information
from the scene graph. Thus, the newly obtained label is potentially more meaningful, remains
true to its category class, and respects its dictated relations from the scene graph. An overview
of the workflow of our method is shown in Fig. 2.

In practice, we obtain such object representation for each object as follows:

1. As a first step, we convert the nodes and edges of the scene graph into object and relation
embeddings using a learned embedding layer. Additionally, a GCN is used to aggregate
information across all objects and their relationships in the graph. The produced embed-
dings are used to form triplet embeddings, which are given as input to the FCN. As output,
we obtain the predicted object labels.

2. We feed the averaged object embeddings into the layout prediction network to predict
bounding boxes and the masks. The mask regression network consists of several transpose
convolutions terminating in a sigmoid [2] nonlinearity so that elements of the mask lie in
the range (0, 1); the box regression network is an MLP as a fully connected layer with

linear ReLU activation. We obtain the bounding box defined by bb = (top, left, bottom,
right) representing the top-left and bottom-right coordinates for each object, and a binary
mask bm is given.

3. To construct the final representation of each object, we concatenate the predicted labels
together with the bounding box coordinates and the binary mask.

Consider the example of a man throwing a frisbee (Fig. 2). To ensure that the objects of man
and frisbee are preserved through the layout prediction, their embeddings must remain
unchanged. To do that, we extract the embeddings from the scene graph namely, manemb ,

Boxes Masks

Labels

Input: scene graph

Graph

convolution

network Layout prediction

network

Output: object layout

.

.

.

.

..
Fully connected 

network

Node

embeddings

Triplet

embeddings

Object layout

module

Fig. 2 Overview of the workflow in the object layout module
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throwingemb and frisbeeemb. We do the same with averaged node embeddings from GCN,
manemb and frisbeeemb. The resulting triplets shown below are fed into the FCN to add

information from the scene graph as well as from the GCN.

manemb; throwingemb; frisbee
emb

man
emb

; throwingemb; frisbeeemb

In that manner, we maintain the identities of the objects and the relations between them
according to the scene graph while also taking benefits from GCN embeddings, and the true
predicted labels for the objects are 1 and 34 for person and frisbee, respectively. The predicted
positions and sizes for each object are given in this form: top, left, bottom, right. These
variables are normalized between 0 and 1 to be independent of the dimensions of the image.

During the training phase, the generated object layout requires learning the true labels, the
desired positions, and the size for each object by using a ground-truth synthetic scene graph
and bounding boxes from the training dataset. At test time, we use the predicted values from
the prediction network and from the FC network. Finally, an embedded story text, the
positions, sizes, and labels of the various objects within the scene graph, are input to the
generator in stage-II in addition to a random noise vector.

3.4 Story text embedding

We encode the COCO caption, i.e., story text into the appropriate embedding φt to be prepared
for input for stage-II. Therefore, we generate the text embedding φt with a 1024-dimensional
vector using a pretrained character-based encoder, namely, Char-CNN-RNN [28], which gives
very good results in text embedding.

3.5 Conditioning augmentation (CA)

The authors in [38] introduced the CA module to produce additional latent variable bc as input
embeddings for the generator. Different from the static conditioning variable c, the variablebc is
defined from an independent Gaussian distribution N μ φtð Þ;∑ φtð Þð Þ where the mean μ(φt)
and diagonal covariance matrix Σ(φt) are functions of the text embedding φt. As in variational
autoencoders (VAE) [15], to ensure that the conditional space remains smooth and the model
does not overfit, a regularization term enforces a standard normal distribution over the normal
distributions of the text embeddings. The regularization term consists of the Kullback-Leibler
(KL) divergence between the normal distribution of the embeddings and the standard normal
distribution. The formula [38] is given below:

DKL N μ φtð Þ;∑ φtð Þð Þ∥N 0; Inð Þð Þ ð2Þ

where In is the identity matrix and n is the dimension of the embedding φt

We use this formula to increase the enhancement and performance of the method as with
StackGAN models [38]. The structure of CA is given in Fig. 1. The regularization idea from
VAEs is used to perform the sampling. Hence, the network has the independence of learning
the mean μ and the standard deviation σ of the embedding. For a text embedding φt, a fully
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connected layer with leaky ReLU activations computes μ and another computes σ and the
sampled vector bc is obtained as shown in the following equation:

bc ¼ μþ σ ⊙ ε ð3Þ
where ε∼N 0; Inð Þ and ⊙ is elementwise multiplication

We then concatenate the story text embeddings and object layout prediction matrices, and
this is passed as input to the stage-II model. We assume, by conditioning image generation on
explicit object layout predictions from stage-I, our method can generate images that are
semantically meaningful and well-aligned with input text, for instance, by measuring the
semantic relevance between the image and the text. We conduct extensive quantitative and
qualitative experiments and evaluations on the MS-COCO dataset and demonstrate substantial
improvement in generation quality over existing works in the domain of narrative stories.

3.6 Image quality enhancement

We focus on improving the quality of the images generated by our stage-I model since the
images are commonly blurred, with only key layout and color that correspond approximately
to the text description. Moreover, various details are omitted in these images since capturing
fine-grained information from high-level text and fitting image data distribution simultaneous-
ly is intractable for a single GAN model. To address these problems, we adopt a conditional
GAN topped upon the scene graph framework in stage-II, which refines the output for both
high-resolution (i.e., 256 × 256) and realistic image generation. Specifically, for the condition-
ing, we use the generated object layout concatenated by text embeddings, with the same
conditioning augmentation applied. The generator G obtains as input a randomly sampled
noise vector z, the location and size of the individual bounding boxes, a label for each of the
bounding boxes encoded as a one-hot vector, and an image-caption embedding. Similar to
most generative models [38], we use the same minmax objective function as a loss function to
train both models G and D simultaneously, where G and D explicitly learn a maximization,
i.e., a minimization of the expected log-likelihood of a data distribution by alternating between
maximizing the loss function LD and minimizing the loss function LG:

LD ¼ E I ;cð Þ∼pdata logD I ; cð Þ½ � þ Es0∼pG0;c∼pdata log 1−D G s0; ĉð Þ; cð Þð Þ½ � ð4Þ

LG ¼ Es0∼pG0;c∼pdata log 1−D G s0; ĉð Þ; cð Þð Þ½ � þ λDKL N μ φtð Þ;∑ φtð Þð Þ∥N 0; 1ð Þð Þ ð5Þ
where:

E I ;cð Þ∼pdata is the expected value over all training data distributions pdata.
I is the real image
c is the conditional information for this image (e.g., an image caption φ, an object category
label)bc is the Gaussian latent variable concatenated with the encoded conditional information

D(I, c) is the discriminator’s probability estimation that real data pairs (I, c) are real
s0 is the image generated from stage-I model pG0
Es0∼pG0;c∼pdata is the expected value over all generated images G s0;bcð Þ
G s0; ĉð Þ is the generator’s output image
D G s0; ĉð Þ; cð Þ is the discriminator’s probability estimation that a fake generated image is real
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DKL N μ φtð Þ;∑ φtð Þð Þ∥N 0; 1ð Þð Þ is the KL divergence between the normal distribution of the
text embeddings and the standard normal distribution

λ is a regularization parameter (1 by default)

3.7 Image quality assessment

Recently, many quantitative metrics have been developed to assess the performance of a
GAN model, such as the inception score [7], FID [8], and GIQA [6]. We adopt the latter
since it can separately assess the quality and diversity of generated images. Specifically,
it employs the mean quality score to indicate the performance of the generative model.

Assume the generative model is G, and the generated samples are I i
g; i ¼ 1; 2;…;Ng.

Therefore, the quality score of generator G is calculated with the mean quality of Ng

generated samples:

QS Gð Þ ¼ 1

N
∑
i

Ng

S I i
g

� �
ð6Þ

The GIQA model methods aim to solve the quality estimation from a probability
distribution perspective. The model directly predicts the probability distribution of the
real data; then, it can estimate the quality of a generated image by the estimated
probability from the model. The model proposes two density estimation methods: the
Gaussian mixture model (GMM) and the KNN model. We adopt the latter model to
assess the quality of generated images since it performs well when the real data
distribution becomes complicated, similar to our case, as argued in [6], where the
Euclidean distance between generated images and nearby real images in feature space
could also represent the probability of generated image. Accordingly, the image quality
score of any generated image is computed as follows:

QS Ig
� � ¼ 1

N
∑
K

k¼1

1

x−xkk k2 ð7Þ

where x is the feature of a generated sample and xk is its k-th nearest real sample’s
feature.

4 Experiments

We conducted extensive experiments to evaluate our approach. We compared it with state-of-
the-art approaches for image synthesis, namely, sg2im, StackGAN and AttnGAN, and we
showed its performance in aspects of semantic matching, object recognition, realism, and
image quality.

4.1 Datasets

We performed the experiments on COCO datasets [1, 19] with additional stuff categories, as
shown in Table 1 below. We noted that the latter has 40 K images for training and 5 K images
for evaluation with annotation including bounding boxes and segmentation masks. This
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dataset contains 80 “thing” categories (people, cars, etc.) and 91 “stuff” categories (sky, grass,
etc.). However, effectively, sg2im [14] used 25 K for training, 1 K for evaluation, and 2 K for
testing, whereas StackGAN [38], AttnGAN [36] and our model used 83 K for training and
41 K for validation.

For computing the GIQA score for the generated images, we used the COCO 2017 [19]
dataset for feature extraction.

We followed the procedure described in [14] to construct synthetic scene graphs from these
annotations based on the 2D image coordinates of the objects using six mutually exclusive
geometric relationships: left of, right of, above, below, inside, and surrounding. We also
ignored objects covering less than 2% of the image and used images with 3 to 8 objects.
For general training, we applied the same procedure used in the GAN architecture that was
modified with our proposed approach based on sg2im [14] and StackGAN [38], as shown in
Fig. 1.

For the story text dataset, we prepared 20 stories for children from the animal domain
that have a great potential impact on engaging children in the learning process and keeping
them highly motivated. The selected stories have 80 key phrases with simple narrative
structures in introducing concepts using animal characters and their common behaviors,
such as running, eating, jumping, and hunting. The sentences are relatively short with up
to six nonfiction terms.

Example:

“Two elephants are in a grassy field. They are close to two sheep. They are eating
grass.”

The characters, objects, location, and background were explicitly mentioned in the text and
realistic as shown in Table 2 below.

Table 1 Dataset details

Dataset Train Validation Test

COCO 2014 [1] 83 K 41 K 41 K
COCO 2017 [19] 118 K (only 40 K are stuff annotated)

25 K (effectively used
by sg2im [14])

5 K
1 K (effectively used

by sg2im [14])

41 K
2 K (effectively used by

sg2im [14])

Table 2 An excerpt from stories’ details

Characters (subject, object) Keywords Spatial relations Background

Elephant Elephant walking
Elephant eating
Elephant running
Elephant drinking
Elephant standing

left of, right of, above, below, inside,
surrounding

grassy field

Sheep Sheep walking
Sheep eating
Sheep running
Sheep drinking
Sheep standing

left of, right of, above, below, inside,
surrounding

grassy field
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All the sentences were preprocessed using NeuralCoref1 to reduce the semantic complexity
of the story text. For instance, the ambiguous pronouns in the following sentences were
adjusted as depicted in the following graph shown in Fig. 3.

After the coreference resolution and manual adjustment, we obtain the following final
representation for the sentences:

“Two elephants are in a grassy field. Two elephants are close to two sheep. Two sheep
are eating grass.”

4.2 Training details

We trained the two-stage model separately but with the following hyperparameter settings: we
used the Adam optimizer with a learning rate of 10−4 for all trainings and a batch size of 24 for
100 epochs. However, when attempting to use a larger batch size, it resulted in a mode
collapse. The text embedding dimension parameter presented in stage-II was of size 1024,
while all other parameters were identical to baseline models [14, 38]. Here, we added the
object layout matrix during the training phase concatenated with the text embedding and object
labels as input for the second generator following a similar procedure proposed in [9, 18]. We
also followed the same training given in [14]. For better visualization, our stage-II additional
information was provided with up to three bounding boxes and aligned object category labels
per image. Each line of the story text was considered as an image caption as well as additional
information. Detailed qualitative and quantitative analysis of our results and comparisons
against the baseline models are discussed in the next sections.

5 Evaluation

We compared our approach with three state-of-the-art methods: sg2im [14], StackGAN [38],
and AttnGAN [36]. We followed their dataset preprocessing and conducted both quantitative
and qualitative assessments as follows.

5.1 Quantitative results

We demonstrate the image quality improvement of our model by assessing the image quality
of the three baseline models against our model, as shown in Figs. 4 and 5. There are several
assessment algorithms, such as the inception score [7] and FID [8], to evaluate the perfor-
mance of a generative model in a score-based manner with regard to two aspects: realism and
diversity. For our approach, we adopted the GIQA [6] method because it can separately assess
the realism and diversity of the generated images contrary to previous methods, the inception

1 github.com/huggingface/neuralcoref

Fig. 3 Coreference resolution applied to the sentences in the previous example using NeuralCoref
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score [7] and FID [8], where these two aspects are assessed and summed. Hence, we assess the
quality of the generated images, and specifically, we use the KNN method with K = 1000 and
rank the quality of these samples based on it.

Note that a lower KNN score denotes better KNN-GIQA results. This score was normalized
to [0,1] for comparison with other scoring methods. First, we extracted the features from all
images in the COCO 2017 dataset, and then we computed the KNN score based on these
features, as shown in Figs. 4 and 5. For KNN score computation, all images were
downsampled to the same image size of 299 × 299. The downsampling process resized and
rescaled images where Gaussian smoothing was performed to avoid any aliasing artifacts.

5.2 Qualitative results

We show the results of each baseline, and we restrict the test samples to a maximum of three
objects in the image generation for better visual perception. The model sg2im uses a scene

Caption

A person above 
a playingfield 

and left of 

another person 
left of grass, 

with a car left of 
a car above the 

grass.

One broccoli 
left of another, 

which is inside 

vegetables and 
has a carrot 

below it.

Three people 
with the first 

two inside a 

fence and the 
first left of the 

third.

A person 
above the trees 

inside the sky, 

with a 
skateboard 

surrounded by 
sky.

A tie above 
clothes and 

inside a 

person, with a 
wall panel 

surrounding 
the person.

A tree right of 
a person left of 

a horse above 

grass, with 
clouds above 

the grass.

An elephant 
above grass 

and inside 

trees 
surrounding 

another 
elephant.

Clouds above 
a boat and a 

building above 

a river, with 
trees left of the 

river.

Sg2im [16]

StackGAN [23]

AttnGAN [9]

Ours

Fig. 4 Sample images generated from the baseline models and our model using captions from coco dataset

Caption

A baby 
elephant is 

walking 

through the 
jungle.

A zebra is 
standing on a 

field.

A giraffe is 
walking next 

to a fence.

Two giraffes 
are standing in 

a field.

A horse is 
standing in a 

field.

A brown cow 
under a tree in a 

grassy area.

A bear 
walking in the 

woods next to 

some trees.

An elephant 
standing next 

to a smaller 

elephant.

Sg2im [16]

StackGAN [23]

AttnGAN [9]

Ours

Fig. 5 Sample images generated from the baseline models and our model using simple captions adapted from
COCO dataset
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graph framework to generate a single image for each scene graph triple. The model StackGAN
generates a single image for each sentence. We also show the images generated from our two-
stage model with and without the object layout module. For all models, we generated one
image for each key-phrase test-set and downsampled their output to 64 × 64 for fair and proper
comparison with our approach.

As shown in Figs. 4 and 5, the first baseline sg2im [14] captured the semantic context
provided by the graph and generated scenes with multiple objects and even multiple instances
of the same object type. However, (i) it failed to locate the objects in the right positions
because the graph convolution has benefits beyond simply predicting object positions, which
differed in most cases with the desired real object positions; and (ii) the generated images were
of poor quality. The baselines StackGAN [38] and AttnGAN [36], produced visually pleasing
and high-resolution images but completely failed to generate recognizable objects or shapes
and therefore failed to capture any semantic context provided from the scene graph framework.
In addition, the images had poor color contrast, and no sharp borders were available.

Our model, however, illustrates that we can control image generation through the injection
of object layout features during the generation process. This enabled us to control the object
category, location, and the size of multiple objects within a given image. The generated
bounding boxes and object labels thereby facilitated the generation of more complex scenes.
We preserved the location of objects and sizes while adding new objects to the image created
in the previous step in accordance with the relationships defined in the scene graph. This
preservation of object location was a missing feature in both baseline models because they
generated the objects at their positions in an end-to-end manner. Regarding the addition of
objects, we restricted the object to three entities due to the size restriction of the scene, since
adding more objects makes the scene cluttered and visually unclear.

To evaluate whether our method generates objects at the given positions, we generated
images that contain multiple objects and inspected them visually. Figure 4 shows some
example images, where we visualized the results of baseline models and our method using
the same caption text. The corresponding KNN scores for each output are averaged and
presented in Table 3. Noticeably, our method obtained the best KNN scores in most of the
outputs by showing a total score of 1.53 compared to 1.69, 1.63 and 1.71 for the sg2im,
StackGAN and AttnGAN models, respectively, which was a considerable improvement in
image quality, as seen from the KNN averaged score values shown in Table 3 below.

5.3 Ablation study

To evaluate the performance of our method using the object layout module, we compared the
image quality of two ablated versions of our model, as shown in Fig. 6. The results of the
evaluation demonstrated the importance of this module in our model. To do that, we selected

Table 3 Averaged and normalized KNN-GIQA score of all compared methods

Dataset Resolution Method Averaged KNN score Normalized KNN score

COCO 2017 [19] 64×64 Sg2im 1.69 0.29
COCO 2014 [1] 256×256 StackGAN 1.63 0.24
COCO 2014 [1] 256×256 AttnGAN 1.71 0.55
COCO 2014 [1] 256×256 Ours 1.53 0.15
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four captions from Fig. 4 and generated the images following two versions, namely, with or
without the object module. We clearly notice that when we add the object layout module to
stage-II, the generated images show recognizable objects compared to the version without the
object layout module. We also observed a relatively better KNN score for our model compared
to the version without the object layout module.

5.4 User study

Due to the subjectivity of inspecting the generated images, we further conducted a human
evaluation on the generated images in terms of semantic matching (i.e., how accurate the
generated image fits with the given input), object recognition (i.e., which objects were
recognizable in the generated image) and realism (i.e., how realistic or natural the generated
image looks). We compare our method with sg2im [14], StackGAN [38] and AttnGAN [36],
three state-of-the-art methods used for generating images from object labels and image
captions. Though the three models use different input modalities and different architectures,
it is expected that they should generate similar images, since they share the same COCO
dataset in terms of object categories and correspondence between the captions and objects.

We followed the work of [14] for user evaluation and provided users with a questionnaire
with 20 sections, where each section contained a caption and four generated images using the
three baseline models and our model. All four methods were shown anonymously and in a
random order to the user where each image is accompanied by a check box for one user group
and by a Likert scale for another user group. In addition, a list of objects was also presented for
each generated image, and the users were asked to tick the objects that appeared in each of the
images. Finally, the user chose whether each generated image appeared realistic. Note that we
downsampled all generated images to 64 × 64 to compensate for differing resolutions. In
practice, we used antialiasing as a high-quality downsampling filter in image processing.
Figure 7 shows the excerpt of our questionnaire from the user study.

We involved two different user groups in our evaluation, successively. The first group
(group A) has twenty-one volunteer participants, from our institution and have different
scientific backgrounds in computing; most of them were postdoctoral fellow and research
assistants in the Department of Computer Science and Engineering at Qatar University. Eleven
participants had strong image processing backgrounds, while the other ten had computer
science and artificial intelligence backgrounds. On the other hand, the second group (group
B) has thirty volunteer participants; all of them were students from mechanical and civil
Engineering Departments at Qatar University.

We tested twenty input sentences resulting in sixty-eight and eighty generated images by
the four methods, for group A and group B respectively. We asked group A to evaluate the

Caption

A person above a playingfield 
and left of another person left of 

grass, with a car left of a car 

above the grass.

One broccoli left of another, 
which is inside vegetables and 

has a carrot below it.

Three people with the first two
inside a fence and the first left of 

the third.

A person above the trees inside 
the sky, with a skateboard 

surrounded by sky.

Ours without 
object layout

1.48 1.86 2.44 2.37

Ours

with object 

layout

1.31 1.67 1.40 2.15

Fig. 6 Sample images generated from the ablation study of our model including KNN scores
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generated images using a check box only, while group B was asked to evaluate the generated
images using the Likert scale of 1 to 5, where 5 means the best match and 1 means the worst.
The user evaluation was conducted to assess the image quality i.e., text-to-image semantic
matching, object recognition and image realism. We further analyze the outcomes of the user
evaluation and summarize the results from the two groups in Tables 4 and 5. The obtained
results show that our method significantly outperformed the baseline methods in two aspects.
First, in terms of the semantic matching between a caption and an image, the summarized
results from Table 4 show that our model achieved an accuracy of 48.6% compared to 34.4%,
12.9% and 11.2% for that of the sg2im, StackGAN and AttnGAN models, respectively. Most
of the users (58.6%) preferred the images generated by our approach, showing that our method
gives more semantically matching caption image pairs. Likewise, the summarized results from
Table 5, show that our method reached a mean value of 2.55 compared to 2.33, 2.03, and 2.29
that of the sg2im, StackGAN and AttnGAN models, respectively. Moreover, Fig. 8 shows that
our method ranked first in getting 5 as the best result within all 20 images evaluated by group
B. This is mainly attributed to the injection of the caption in our model in two different input
modalities. Notably, the semantic matching between the caption image pairs is supported in
two different ways: first, the caption is translated into a scene graph in stage-I, and then it is
used as a caption embedding in stage-II.

Second, in terms of realism, eleven users from group A found that our generated images
looked more real than the images generated by the three other baseline models, giving a

Fig. 7 An excerpt of our questionnaire used in our evaluation study

Table 4 Semantic matching, object recognition and realism percentages for the baseline models and our method
(results from group A)

Method Semantic matching Object recognition Realism

Yes No

Sg2im 34.4% 41.9% 38.2% 61.6%
StackGAN 12.9% 32.3% 24.6% 75.3%
AttnGAN 11.2% 28.1% 30.9% 75.4%
Ours 48.6% 38.1% 47.5% 52.4%
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percentage of 47.5% compared to 38.2%, 24.6% and 30.9% for the sg2im, StackGAN and
AttnGAN models, respectively. Likewise, fourteen users from group B found that our method
produces more real images, as can be seen from Table 5 showing the highest percentage of
45.5% among others. The reason behind this feature is that the added object layout module in
stage-II of our model explicitly adds the true object labels to the generation step, resulting in
more recognizable objects to some extent. This helps in generating more real images, in
addition to the availability of the discriminator resulting in the generation of highly
photorealistic images, as is known in all GAN-based architectures. Our model generated
realistic images for almost half of the captions, as shown in Tables 4 and 5.

The two abovementioned aspects, namely, semantic matching and realism, correlate
together, as we can see from the results that models with higher semantic matching accuracy
produce more realistic images than other models with lower semantic matching accuracy.

For the object recognition aspect, we measured the fraction of objects that users can
recognize in images from each method. The baseline model sg2im produced more recogniz-
able objects since it was trained on object categories from the COCO 2017 [19] dataset than
the other methods. In addition, the input modality in the sg2im method allowed objects to be
used that were not necessarily mentioned in the caption. Although sg2im showed 41.9% and
54.6% recognizable objects according to group A and group B, respectively, it did not produce
recognizable objects in many cases, since the result showed that most of the objects were not
recognizable. Our model showed a fair result in recognizing objects compared to the three
other baseline models.

In summary, according to the objective evaluation though GIQA-score and the subjective
evaluation through user evaluation, our method outperformed baseline models in generating

Table 5 Semantic matching, object recognition and realism percentages for the baseline models and our method
(results from group B)

Method Semantic matching Object recognition Realism

Average percentage Yes No

Sg2im 2.33 46.6% 54.6% 41.5% 58.5%
StackGAN 2.03 40.5% 48.5% 32.6% 67.3%
AttnGAN 2.29 45.8% 52.2% 44.6% 55.5%
Ours 2.55 50.9% 54.0% 45.5% 54.5%
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Fig. 8 Semantic matching of the user assessment for all methods (results from group B)
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images with higher quality, accurate semantic matching between text and image, and realistic
images. As a result, our method can generate images that are clearer and more visually
pleasing, semantically meaningful, and well-aligned with the captions. In addition, our method
provides a fair result for recognizing objects, which we believe enhances its ability in using
other techniques, such as an object shape predictor, as given in [10]. Indeed, the results
obtained in our experiments are very promising, as the image generation module learns how
to produce images with respect to textual descriptions, object positions, and object categories
while achieving the required image quality with high resolution. The results show that as the
text become more complex, our method is increasingly able to turn the texts into realistic
images when compared with the other models.

6 Conclusion

In this paper, we addressed the challenges of visualizing a story text that contains multiple
characters and representative semantic relationships. We proposed a novel approach for
generating images using a two-stage model architecture inspired by two state-of-the-art
GAN-based models for image generation. We employed the object layout module as a
technique to guide the image generation process towards producing more meaningful and
realistic images. Through extensive evaluation and qualitative results, we demonstrated that
our approach can indeed generate an image of very good quality representing the main objects
in the text. The object layout module can control the location, size and object category while
finalizing the fine-grained image generation in stage-II. Our work can be applied in different
domains specifically in the education of children with images rather than using raw texts.
Indeed, many studies demonstrate that children are more likely to learn concepts from realistic
images than from fictive stories [35]. While our proposed approach produces higher quality
images than the existing baseline approaches, the object shape, the location, and the size
attributes sampled are still, in some cases, not adequate with a realistic image and need further
improvement. In these cases, a manual adaptation may be applied to rectify the overall layout
of the proposed image and make it more realistic. Indeed, we believe that using ground-truth
data such as real layouts can help in this direction in generating natural images and limiting or
eliminating manual intervention. Specifically, the use of auxiliary loss for the discriminator,
e.g., by addressing the object recognition task, can also lead to some improvements, as has
been observed in prior work on other image generation tasks.

An interesting research direction we aim to explore further is to enrich the underlying scene
graph modality to capture the story text semantics as well as to expand the vocabulary size to
other specific domains rather than the COCO dataset general domain. Moreover, due to the
semantic complexity of the text and the limited quantity of image-caption paired data in the
COCO dataset, the model might not always be able to understand which objects in the image
correspond to which word in the caption (e.g., exact matching). In many cases, the model is yet
able to generate images that exhibit strong global consistency but do not produce recognizable
objects. Our approach would be enhanced by additionally predicting the specific object shape
within each bounding box as done for other approaches. To this effect, we further plan to
explore other datasets to resolve this issue limitations or build our own dataset (i.e., a bimodal
large-scale corpus).

We believe that more fine-grained control over the image layout can also lead to better
image quality. In the future, we plan to generate scene graphs automatically from the text
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input. We plan to investigate whether the quality of images can be improved by using an
attention mechanism during generation. In particular, we plan to use MirrorGAN to better
align the images with the given texts. This can also potentially make the task of only
generating certain regions in the image easier. Furthermore, we plan to explore better
architectures for image generation through layouts for higher image quality.
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