Skip to main content
Log in

Tumor bagging: a novel framework for brain tumor segmentation using metaheuristic optimization algorithms

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Brain tumor segmentation is a challenging research problem and several methods in literature have been suggested for addressing the same. In this paper, we propose a novel framework called Tumor Bagging whose objective is to enhance the performance of brain tumor segmentation by combining more than one segmentation methods based on Multilayer Perceptron (MLP). For this purpose, three metaheuristic optimization algorithms viz. Gray Wolf Optimizer, Artificial Electric Field Optimization Algorithm and Spider Monkey Optimization have been exploited for learning the network parameters of MLP. The results from these three models are further combined based on majority voting method. We have exploited three different magnetic resonance modalities i.e. Fluid-Attenuated Inversion Recovery (FLAIR), contrast-enhanced T1, and T2 for experiments. Three brain tumor regions i.e. complete tumor, enhancing tumor, and tumor core are segmented. The advantage of the proposed method is its simplicity as well as it gives significant and improved performance using the bagging approach on the publicly available and benchmark BRATS dataset. Dice Similarity Coefficient (DSC) is a performance measure which combines positive predictive value and sensitivity. We have achieved a DSC score of more than 92% for detection of complete tumor region in high-grade as well as low-grade glioma subjects that is better than several state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://www.jmir.org/2013/11/e245/

References

  1. Alex V, Mohammed Safwan KP, Chennamsetty SS, Krishnamurthi G (2017) Generative adversarial networks for brain lesion detection. In: Medical imaging 2017: image processing, vol 10133. International Society for Optics and Photonics, pp 101330G

  2. Aljarah I, Faris H, Mirjalili S (2018) Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Comput 22(1):1–15

    Article  Google Scholar 

  3. Amin J, Sharif M, Raza M, Saba T, Anjum MA (2019) Brain tumor detection using statistical and machine learning method. Comput Methods Prog Biomed 177:69–79

    Article  Google Scholar 

  4. Bansal JC, Sharma H, Jadon SS, Clerc M (2014) Spider monkey optimization algorithm for numerical optimization. Memet Comput 6(1):31–47

    Article  Google Scholar 

  5. Bauer S, Nolte Lutz-P, Reyes M (2011) Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 354–361

  6. Bauer S, Wiest R, Nolte Lutz-P, Reyes M (2013) A survey of mri-based medical image analysis for brain tumor studies. Phys Med Biol 58(13):R97

    Article  Google Scholar 

  7. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), vol 1. pp 886–893

  8. Damodharan S, Raghavan D (2015) Combining tissue segmentation and neural network for brain tumor detection. Int Arab J Inf Technol (IAJIT) 12(1)

  9. Darko Z, Ben G, Ender K, Antonio C, Demiralp C, Shotton J, Thomas OM, Das T, Jena R, Price SJ (2012) Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel mr. In: Proceeding of the multimodal brain tumor image segmentation challenge. Springer, Heidelberg, pp 369–376

  10. DeAngelis LM (2001) Brain tumors. N Engl J Med 344(2):114–123

    Article  Google Scholar 

  11. Demirhan Ayṡe, Törü M., Güler I. (2014) Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks. IEEE J Biomed Health Inf 19(4):1451–1458

    Article  Google Scholar 

  12. Drevelegas A (2010) Imaging of brain tumors with histological correlations, Springer Science & Business Media, Berlin

  13. Fan J, Zhou N, Peng J, Gao L (2015) Hierarchical learning of tree classifiers for large-scale plant species identification. IEEE Trans Image Process 24 (11):4172–4184

    Article  MathSciNet  Google Scholar 

  14. Fletcher-Heath LM, Hall LO, Goldgof DB, Reed Murtagh F (2001) Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med 21(1-3):43–63

    Article  Google Scholar 

  15. Geremia E, Menze BH, Ayache N et al (2012) Spatial decision forests for glioma segmentation in multi-channel mr images. In: MICCAI Challenge on multimodal brain tumor segmentation, p 34

  16. Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on mri brain tumor segmentation. Magn Reson Imaging 31(8):1426–1438

    Article  Google Scholar 

  17. Gupta N, Bhateleb P, Khanna P (2019) Glioma detection on brain mris using texture and morphologicalfeatures with ensemble learning. Biomed Signal Process Control 47:115–125

    Article  Google Scholar 

  18. Haralick RM, Shanmugam K, et al. (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621

    Article  Google Scholar 

  19. Harris C, Stephens M (1988) A combined corner and edge detector. In: Alvey vision conference, vol 15. Citeseer, pp 147–151

  20. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin Pierre-Marc, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31

    Article  Google Scholar 

  21. Jolliffe IT (2002) Choosing a subset of principal components or variables. Springer, Berlin

    Google Scholar 

  22. Kamnitsas K, Bai W, Ferrante E, McDonagh S, Sinclair M, Pawlowski N, Rajchl M, Lee M, Kainz B, Rueckert D et al (2017) Ensembles of multiple models and architectures for robust brain tumour segmentation. In: International MICCAI brainlesion workshop, pages 450–462. Springer

  23. Kim J, Feng DD, Cai TW, Eberl S (2002) Automatic 3d temporal kinetics segmentation of dynamic emission tomography image using adaptive region growing cluster analysis. In: Nuclear science symposium conference record, 2002 IEEE, vol 3. IEEE, pp 1580–1583

  24. Kistler M, Bonaretti S, Pfahrer M, Niklaus R, Büchler P (2013) The virtual skeleton database: an open access repository for biomedical research and collaboration. J Med Internet Res 15(11):e245

    Article  Google Scholar 

  25. Mazurowski MA, Buda M, Saha A, Bashir MR (2019) Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on mri. J Magn Reson Imaging 49(4):939–954

    Article  Google Scholar 

  26. Menze BH et al, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R (2015) The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans Med Imaging 34(10):1993–2024

    Article  Google Scholar 

  27. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  28. Mirjalili S (2015) How effective is the grey wolf optimizer in training multi-layer perceptrons. Appl Intell 43(1):150–161

    Article  Google Scholar 

  29. Nabizadeh N, Kubat M (2017) Automatic tumor segmentation in single-spectral mri using a texture-based and contour-based algorithm. Expert Syst Appl 77:1–10

    Article  Google Scholar 

  30. Padlia M, Sharma J (2019) Fractional sobel filter based brain tumor detection and segmentation using statistical features and svm. In: Nanoelectronics, circuits and communication systems. Springer, pp 161–175

  31. Pereira Sérgio, Pinto A, Alves V, Silva C (2016) Brain tumor segmentation using convolutional neural networks in mri images. IEEE Trans Med Imaging 35(5):1240–1251

    Article  Google Scholar 

  32. Prastawa M, Bullitt E, Ho S, Gerig G (2004) A brain tumor segmentation framework based on outlier detection. Med Image Anal 8(3):275–283

    Article  Google Scholar 

  33. Sachdeva J, Kumar V, Gupta I, Khandelwal N, Ahuja CK (2016) A package-sfercb-”segmentation, feature extraction, reduction and classification analysis by both svm and ann for brain tumors”. Appl Soft Comput 47:151–167

    Article  Google Scholar 

  34. Shen J, Deng RH, Cheng Z, Nie L, Yan S (2015) On robust image spam filtering via comprehensive visual modeling. Pattern Recogn 48(10):3227–3238

    Article  Google Scholar 

  35. Shen D, Guorong W u, Suk Heung-Il (2017) Deep learning in medical image analysis. Ann Rev Biomed Eng 19:221–248

    Article  Google Scholar 

  36. Shi Y, Wei Z, Ling H, Wang Z, Zhu P, Shen J, Li P (2020) Adaptive and robust partition learning for person retrieval with policy gradient. IEEE Trans Multimed

  37. Shivhare SN, Kumar N, Singh N (2019) A hybrid of active contour model and convex hull for automated brain tumor segmentation in multimodal mri. Multimed Tools Appl

  38. Soltaninejad M, Yang G, Lambrou T, Allinson N, Jones TL, Barrick TR, Howe FA, Ye X (2018) Supervised learning based multimodal mri brain tumour segmentation using texture features from supervoxels. Comput Methods Programs Biomed 157:69–84

    Article  Google Scholar 

  39. Taylor T, John N, Buendia P, Ryan M (2013) Map-reduce enabled hidden markov models for high throughput multimodal brain tumor segmentation. In: Multimodal brain tumor segmentation, p 43

  40. Tustison NJ, Shrinidhi KL, Wintermark M, Durst CR, Kandel BM, Gee JC, Grossman MC, Avants BB (2015) Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with antsr. Neuroinformatics 13(2):209–225

    Article  Google Scholar 

  41. Wadhwa A, Bhardwaj A, Verma VS (2019) A review on brain tumor segmentation of mri images .Magn Reson Imaging

  42. Wang L, Qian X, Zhang Y, Shen J, Cao X (2019) Enhancing sketch-based image retrieval by cnn semantic re-ranking. IEEE Trans Cybern

  43. Wei W u, Chen Albert YC, Zhao L, Corso JJ (2014) Brain tumor detection and segmentation in a crf (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features. Int J Comput Assist Radiol Surgery 9(2):241–253

    Article  Google Scholar 

  44. Yadav A et al (2019) Aefa: Artificial electric field algorithm for global optimization. Swarm Evol Comput 48:93–108

    Article  Google Scholar 

  45. Zacharaki EI, Wang S, Chawla S, Yoo DS, Wolf R, Melhem ER, Davatzikos C (2009) Classification of brain tumor type and grade using mri texture and shape in a machine learning scheme. Magn Reson Med 62(6):1609–1618

    Article  Google Scholar 

  46. Zhao X, Yihong W u, Song G, Li Z, Zhang Y, Fan Y (2018) A deep learning model integrating fcnns and crfs for brain tumor segmentation. Med Image Anal 43:98–111

    Article  Google Scholar 

  47. Zhao T, Zhang B, He M, Zhang W, Zhou N, Jun Y u, Fan J (2018) Embedding visual hierarchy with deep networks for large-scale visual recognition. IEEE Trans Image Process 27(10):4740–4755

    Article  MathSciNet  Google Scholar 

  48. Zikic D, Glocker1 B, Konukoglu1 E, Shotton1 J, Criminisi A, Ye DH, Demiralp C, Thomas OM, Das T, Jena R, Price SJ (2012) Context-sensitive classification forests for segmentation of brain tumor tissues. In: Proceeding of the multimodal brain tumor image segmentation challenge. Springer, Heidelberg, pp 22–30

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiv Naresh Shivhare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivhare, S.N., Kumar, N. Tumor bagging: a novel framework for brain tumor segmentation using metaheuristic optimization algorithms. Multimed Tools Appl 80, 26969–26995 (2021). https://doi.org/10.1007/s11042-021-10969-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-10969-y

Keywords

Navigation