Skip to main content
Log in

A deep survey on supervised learning based human detection and activity classification methods

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Human detection and activity recognition is very important research area in the healthcare, video surveillance, pedestrian detection, intelligent vehicle system and home care center. Among the various human activity detection frameworks, the statistical based approach were most intensively studied and used in practice in which pattern recognition was traditionally formulated. More recently, supervised learning based techniques and methods imported from statistical learning theory have deserved increasing attention. Many new supervised learning methods such as transfer learning, multi-instance learning, and the new trends in deep learning techniques have used for the formulation of solutions to the human activity detection. This paper reviews the automatic human detection and their activity recognition in the video sequences and static images. We explain several problems of human detection and activity recognition in different steps such as processing, segmentation of human features extraction and classification. Moreover, discuss the problems in each step and provide the recent state- of-the-art methods, gaps between recent methods, technical difficulties, applications and their challenges. Several features extraction techniques and corresponding problems for human classification have been discussed in details. Special emphasis have been given on convolution neural network that solves the problem of human segmentation, efficient classification and activity recognition. The objective of this review paper is to summarize and review related of the established and recent methods used in various stages of a human detection and activity classification system and identify research topics and applications that are at the forefront of this exciting and challenging field. Further, the evaluation protocols (i.e. datasets and simulation tools) and possible solution of current limitation have been discussed briefly in this survey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Adeel A, Khan MA, Akram T, Sharif A, Yasmin M, Saba T, Javed K (2020) Entropy-controlled deep features selection framework for grape leaf diseases recognition. Expert Sys

  2. Afza F, Khan MA, Sharif M, Kadry S, Manogaran G, Saba T, Ashraf I, Damaševičius R (2021) A framework of human action recognition using length control features fusion and weighted entropy-variances based feature selection. Image Vis Comput 106:104090

    Article  Google Scholar 

  3. Afza F, Sharif M, Mittal M, Khan MA, Jude Hemanth D (2021) A hierarchical three-step superpixels and deep learning framework for skin lesion classification. Methods

  4. Aguilar WG, Luna MA, Moya JF, Abad V, Parra H, Ruiz H (2017) Pedestrian detection for UAVs using cascade classifiers with meanshift. In: 2017 IEEE 11th international conference on semantic computing (ICSC). IEEE, pp 509–514

  5. Aguilar WG, Luna MA, Moya JF, Abad V, Parra H, Ruiz H (2017) Pedestrian detection for UAVs using cascade classifiers with meanshift. In: 2017 IEEE 11th international conference on semantic computing (ICSC). IEEE, pp 509–514

  6. Aguilar WG, Luna MA, Moya JF, Abad V, Ruiz H, Parra H, Angulo C (2017) Pedestrian detection for UAVs using cascade classifiers and saliency maps. In: International work-conference on artificial neural networks. Springer, Cham, pp 563–574

  7. Akram T, Sharif M, Saba T (2020) Fruits diseases classification: exploiting a hierarchical framework for deep features fusion and selection. Multimedia Tools Appl 79(35):25763–25783

    Google Scholar 

  8. Akram T, Attique M, Gul S, Shahzad A, Altaf M, Syed Rameez Naqvi S, Damaševičius R, Maskeliūnas R (2021) A novel framework for rapid diagnosis of COVID-19 on computed tomography scans. Patt Anal Appl, 1–14

  9. Almadhor A, Rauf HT, Khan MA, Kadry S, Nam Y (2021) A hybrid algorithm (BAPSO) for capacity configuration optimization in a distributed solar PV based microgrid. Energy Rep

  10. Ameur H, Helali A, Nasri M, Maaref H, Youssef A (2014) Improved feature extraction method based on Histogram of Oriented Gradients for pedestrian detection. In: 2014 global summit on computer & information technology (GSCIT). IEEE, pp 1–5

  11. Ammar B, Wali A, Alimi AM (2011) Incremental learning approach for human detection and tracking. In: 2011 international conference on innovations in information technology (IIT). IEEE, pp 128–133

  12. An S-T, Kim J-J, Lee J-J (2011) SDAT Simultaneous detection and tracking of humans using Particle Swarm Optimization. In: 2011 international conference on mechatronics and automation (ICMA). IEEE, pp 483–488

  13. Anusha R, Jaidhar CD (2020) Human gait recognition based on histogram of oriented gradients and Haralick texture descriptor. Multimedia Tools Appl 1–22

  14. Arshad H, Khan MA, Sharif M, Yasmin M, Javed MY (2019) Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution. Int J Mach Learn Cybern 10 (12):3601–3618

    Article  Google Scholar 

  15. Balasubramanian P, Pathak S, Mittal A (2016) Improving gradient histogram based descriptors for pedestrian detection in datasets with large variations. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 104–113

  16. Barbu T (2014) Pedestrian detection and tracking using temporal differencing and HOG features. Comput Elect Eng 40(4):1072–1079

    Article  Google Scholar 

  17. Barron JL, Fleet DJ, Beauchemin SS (1994) Performance of optical flow techniques. Int J Comput Vis 12(1):43–77

    Article  Google Scholar 

  18. Bartoli F, Lisanti G, Seidenari L, Karaman S, Del Bimbo A (2015) Museumvisitors: a dataset for pedestrian and group detection, gaze estimation and behavior understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 19–27

  19. Bastani V, Campo D, Marcenaro L, Regazzoni C (2015) Online pedestrian group walking event detection using spectral analysis of motion similarity graph. In: 2015 12th IEEE international conference on advanced video and signal based surveillance (AVSS). IEEE, pp 1–5

  20. Beaudry C, Péteri R, Mascarilla L (2016) An efficient and sparse approach for large scale human action recognition in videos. Mach Vis Appl 27 (4):529–543

    Article  Google Scholar 

  21. Beiping H, Wen Z (2011) Fast human detection using motion detection and histogram of oriented gradients. J Comput 6(8):1597–1604

    Article  Google Scholar 

  22. Bell S, Lawrence Zitnick C, Bala K, Girshick R (2016) Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2874–2883

  23. Bellotto N, Hu H (2009) Multisensor-based human detection and tracking for mobile service robots. IEEE Trans Sys Man Cybern Part B Cybern 39 (1):167–181

    Article  Google Scholar 

  24. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Patt Anal Mach Intell 24(4):509–522

    Article  Google Scholar 

  25. Bhangale KB, Shekokar RU (2014) Human body detection in static images using HOG and piecewise linear SVM. Int J Innov Res Develop

  26. Bijalwan V, Semwal VB (2020) Wearable sensor based pattern mining for human activity recognition: Deep learning approach industrial robot

  27. Borges PVK (2013) Pedestrian detection based on blob motion statistics. IEEE Trans Circ Sys Video Technol 23(2):224–235

    Article  Google Scholar 

  28. Breitenstein MD, Reichlin F, Leibe B, Koller-Meier E, Gool LV (2011) Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE Trans Pattern Anal Machine Intell 33(9):1820–1833

    Article  Google Scholar 

  29. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167

    Article  Google Scholar 

  30. Cao J, Pang Y, Li X (2016) Pedestrian detection inspired by appearance constancy and shape symmetry. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1316–1324

  31. Cao J, Pang Y, Li X (2017) Learning multilayer channel features for pedestrian detection. IEEE Trans Image Process

  32. Chaquet JM, Carmona EJ, Fernández-Caballero A (2013) A survey of video datasets for human action and activity recognition. Comput Vis Image Understand 117(6):633–659

    Article  Google Scholar 

  33. Chen H-W, McGurr M (2014) Improved color and intensity patch segmentation for human full-body and body-parts detection and tracking. In: 2014 11th IEEE international conference on advanced video and signal based surveillance (AVSS). IEEE, pp 361–368

  34. Chen S, Zhang J, Li Y, Zhang J (2012) A hierarchical model incorporating segmented regions and pixel descriptors for video background subtraction. IEEE Trans Indust Inf 8(1):118–127

    Article  Google Scholar 

  35. Chen H, Chen D, Wang X (2016) Intrusion detection of specific area based on video. In: International Congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI). IEEE, pp 23–29

  36. Chen X, Henrickson K, Wang Y (2016) Kinect-based pedestrian detection for crowded scenes. Comput Aided Civ Infrastruct Eng 31(3):229–240

    Article  Google Scholar 

  37. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2016) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv:1606.00915

  38. Cho M, Kwak S, Laptev I, Schmid C, Ponce J (2015) Unsupervised object discovery and localization in images and videos. In: 2015 12th international conference on ubiquitous robots and ambient intelligence (URAI). IEEE, pp 292–293

  39. Chong P, Tay YH (2016) A novel pedestrian detection and tracking with boosted HOG classifiers and Kalman filter. In: 2016 IEEE student conference on research and development (SCOReD). IEEE, pp 1–5

  40. Cippitelli E, Gasparrini S, Gambi E, Spinsante S (2016) A human activity recognition system using skeleton data from rgbd sensors. Computat Intell Neurosci 2016:21

    Google Scholar 

  41. Conde C, Moctezuma D, De Diego IM, Cabello E (2013) HoGG Gabor and HoG-based human detection for surveillance in non-controlled environments. Neurocomputing 100:19–30

    Article  Google Scholar 

  42. Coutts FK, Marshall S, Murray P (2014) Human detection and tracking through temporal feature recognition. In: 2014 Proceedings of the 22nd European signal processing conference (EUSIPCO). IEEE, pp 2180–2184

  43. Cui X, Liu Q, Gao M, Metaxas DN (2011) Abnormal detection using interaction energy potentials. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 3161–3167

  44. Cui Y, Sun L, Yang S (2008) Pedestrian detection using improved histogram of oriented gradients. In: 5th international conference on visual information engineering VIE 2008. IET, pp 388–392

  45. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: CVPR IEEE computer society conference on computer vision and pattern recognition, 2005, vol 1. IEEE, p 2005

  46. Dalal N, Triggs B, Schmid C (2006) Human detection using oriented histograms of flow and appearance. In: Computer vision–ECCV 2006. Springer, Berlin, pp 428–441

  47. Dawn DD, Shaikh SH (2016) A comprehensive survey of human action recognition with spatio-temporal interest point (STIP) detector. Vis Comput 32 (3):289–306

    Article  Google Scholar 

  48. Dayananda Kumar NC, Suresh KV (2014) HOG-PCA descriptor with optical flow based human detection and tracking. In: 2014 international conference on communications and signal processing (ICCSP). IEEE, pp 90–904

  49. de Souza KJ, de Albuquerque Araújo A, do Patrocínio ZKG, Cousty J, Najman L, Kenmochi Y, Guimarães SJF (2016) Decreasing the number of features for improving human action classification. In: 2016 29th SIBGRAPI conference on graphics, patterns and images (SIBGRAPI). IEEE, pp 195–200

  50. Delibasis KK, Goudas T, Plagianakos VP, Maglogiannis I (2013) Fisheye camera modeling for human segmentation refinement in indoor videos. In: Proceedings of the 6th international conference on pervasive technologies related to assistive environments, vol 37. ACM

  51. Dhar P, Alvarez JM, Roy PP (2017) Efficient framework for action recognition using reduced fisher vector encoding. In: Proceedings of international conference on computer vision and image processing. Springer, Singapore, pp 343–354

  52. Dobhal T, Shitole V, Thomas G, Navada G (2015) Human activity recognition using binary motion image and deep learning. Proc Comput Sci 58:178–185

    Article  Google Scholar 

  53. Dong C, Wang H, Ye L, Shi X, Ni D, Wang W (2020) Application of machine learning algorithms in lane-changing model for intelligent vehicles exiting to off-ramp. Transportmetrica A: Transport Sci 1–27

  54. Doumanoglou A, Vretos N, Daras P (2016) Action recognition from videos using sparse trajectories, pp 10–5

  55. Du X, El-Khamy M, Lee J, Davis L (2017) Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection. In: 2017 IEEE winter conference on applications of computer vision (WACV). IEEE, pp 953–961

  56. Ekinci M, Gedikli E (2005) Silhouette based human motion detection and analysis for real-time automated video surveillance. Turk J Elect Eng Comput Sci 13(2):199–229

    Google Scholar 

  57. Elgammal A, Harwood D, Davis L (2000) Non-parametric model for background subtraction. In: Computer Vision—ECCV 2000. Springer, Berlin Heidelberg, pp 751–767

  58. Elzein H, Lakshmanan S, Watta P (2003) A motion and shape-based pedestrian detection algorithm. In: Intelligent vehicles symposium, 2003. Proceedings. IEEE. IEEE, pp 500–504

  59. Endres D, Christensen A, Omlor L, Giese M (2011) Segmentation of action streams human observers vs Bayesian binning. KI 2011: Adv Artif Intell 75–86

  60. Enzweiler M, Gavrila DM (2009) Monocular pedestrian detection: survey and experiments. IEEE Trans Patt Anal Mach Intell 31(12):2179–2195

    Article  Google Scholar 

  61. Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A (2008) The pascal visual object classes challenge 2007 (voc 2007) results (2007)

  62. Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A (2011) The pascal visual object classes challenge 2012 (voc2012) results (2012). In URL http://www.pascal-network.org/challenges/VOC/voc2011/workshop/index.html

  63. Fakharian A, Hosseini S, Gustafsson T (2011) Precise hybrid motion detection and tracking in dynamic background. In: 2011 19th Mediterranean conference on control & automation (MED). IEEE, pp 1398–1402

  64. Fathima AA, Vaidehi V, Rastogi Nishant, Manoj Kumar R, Sivasubramaniam S (2013) Performance analysis of multiclass object detection using SVM classifier. In: 2013 international conference on recent trends in information technology (ICRTIT). IEEE, pp 157–162

  65. Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2010) Object detection with discriminatively trained part-based models. IEEE Trans Patt Anal Mach Intell 32(9):1627–1645

    Article  Google Scholar 

  66. Fernández-Caballero A, Castillo JC, Serrano-Cuerda J, Maldonado-Bascón S (2011) Real-time human segmentation in infrared videos. Expert Sys Appl 38(3):2577–2584

    Article  Google Scholar 

  67. Fernando WSK, Herath HMSPB, Perera PH, Ekanayake MPB, Godaliyadda GMRI, Wijayakulasooriya JV (2014) Object identification, enhancement and tracking under dynamic background conditions. In: 2014 7th international conference on information and automation for sustainability (ICIAfS). IEEE, pp 1–6

  68. Gan G, Cheng J (2011) Pedestrian detection based on HOG-LBP feature. In: 2011 Seventh international conference on computational intelligence and security (CIS). IEEE, pp 1184–1187

  69. Gao W, Ai H, Lao S (2009) Adaptive contour features in oriented granular space for human detection and segmentation. In: IEEE conference on computer vision and pattern recognition, 2009. CVPR. IEEE, pp 1786–1793

  70. Garcia J, Gardel A, Bravo I, Lazaro JL, Martinez M (2013) Tracking people motion based on extended condensation algorithm. IEEE Trans Sys Man Cybern Sys 43(3):606–618

    Article  Google Scholar 

  71. Ghajari SA, Harounabadi A (2016) Detection of moving objects in videos by using intelligent algorithms. J Current Res Sci 1:505

    Google Scholar 

  72. Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp 1440–1448

  73. Gonzalez RC, Woods RE (2002) Digital image processing

  74. Gorelick L, Blank M, Shechtman E, Irani M, Basri R (2007) Actions as space-time shapes. IEEE Trans Patt Anal Mach Intell 29(12):2247–2253

    Article  Google Scholar 

  75. Granada R, Monteiro J, Barros RC, Meneguzzi F (2017) A deep neural architecture for kitchen activity recognition

  76. Guan Y, Huang Y (2015) Multi-pose human head detection and tracking boosted by efficient human head validation using ellipse detection. Eng Appl Artif Intell 37:181–193

    Article  Google Scholar 

  77. Guan YP (2010) Spatio-temporal motion-based foreground segmentation and shadow suppression. IET Comput Vis 4(1):50

    Article  Google Scholar 

  78. Guo G, Lai A (2014) A survey on still image based human action recognition. Patt Recogn 47(10):3343–3361

    Article  Google Scholar 

  79. Gupta M, Behera L, Subramanian VK (2011) A novel approach of human motion tracking with the mobile robotic platform. In: 2011 UkSim 13th international conference on computer modelling and simulation (UKSim). IEEE, p 2011

  80. Gupta M, Behera L, Subramanian VK, Jamshidi MM (2015) A Robust visual human detection approach with UKF-based motion tracking for a mobile robot. IEEE Sys J 9(4):1363–1375

    Article  Google Scholar 

  81. Gutchess D, Trajkovi? M, Cohen-Solal E, Lyons D, Jain AK (2001) A background model initialization algorithm for video surveillance. In: Proceedings of Eighth IEEE international conference on computer vision, 2001. ICCV 2001, vol 1. IEEE, pp 733–740

  82. Hanbury A (2008) A survey of methods for image annotation. J Vis Lang Comput 19(5):617–627

    Article  Google Scholar 

  83. Haritaoglu I, Harwood D, Davis LS (2000) Real-time surveillance of people and their activities. IEEE Trans Patt Anal Mach Intell 22(8):809–830

    Article  Google Scholar 

  84. Hariyono J, Hoang V-D, Jo K-H (2014) Moving object localization using optical flow for pedestrian detection from a moving vehicle. Sci World J 2014

  85. He N, Cao J, Song L (2008) Scale space histogram of oriented gradients for human detection. In: International symposium on information science and engineering, 2008 ISISE’08, vol 2. IEEE, pp 167–170

  86. He K, Zhang X, Ren S, Sun J (2015) Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Patt Anal Mach Intell 37(9):1904–1916

    Article  Google Scholar 

  87. Hiromoto M, Miyamoto R (2009) Cascade classifier using divided cohog features for rapid pedestrian detection. In: Computer vision systems. Springer, Berlin Heidelberg, pp 53–62

  88. Hoai M, Lan Z-Z, De la Torre F (2011) Joint segmentation and classification of human actions in video. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 3265–3272

  89. Hoang V-D, Vavilin A, Jo K-H (2012) Fast human detection based on parallelogram haar-like features. In: IECON 2012-38th annual conference on IEEE industrial electronics society. IEEE, pp 4220–4225

  90. Hoang V-D, Le M-H, Jo K-H (2014) Hybrid cascade boosting machine using variant scale blocks based HOG features for pedestrian detection. Neurocomputing 135:357–366

    Article  Google Scholar 

  91. Hong G-S, Kim B-G, Hwang Y-S, Kwon K-K (2016) Fast multi-feature pedestrian detection algorithm based on histogram of oriented gradient using discrete wavelet transform. Multimedia Tools Appl 75(23):15229–15245

    Article  Google Scholar 

  92. Hoseinnezhad R, Vo B-N, Vo B-T (2013) Visual tracking in background subtracted image sequences via multi-Bernoulli filtering. IEEE Trans Signal Process 61(2):392–397

    Article  MathSciNet  MATH  Google Scholar 

  93. Hou YL, Pang GK (2011) People counting and human detection in a challenging situation. IEEE Trans Sys Man Cybern Part A: Sys Hum 41(1):24–33

    Article  Google Scholar 

  94. Hou R, Chen C, Shah M (2017) Tube convolutional neural network (T-CNN) for action detection in videos. arXiv:1703.10664

  95. Huang S-C (2011) An advanced motion detection algorithm with video quality analysis for video surveillance systems. IEEE Trans Circ Sys Video Technol 21(1):1–14

    Article  Google Scholar 

  96. Hu L, Ou J, Huang J, Chen Y, Cao D (2020) A review of research on traffic conflicts based on intelligent vehicles. IEEE Access 8:24471–24483

    Article  Google Scholar 

  97. Hussain N, Khan MA, Sharif M, Khan SA, Albesher AA, Saba T, Armaghan A (2020) A deep neural network and classical features based scheme for objects recognition: An application for machine inspection. Multimed Tools Appl https://doi.org/10.1007/s11042-020-08852-3

  98. Hussain T, Muhammad K, Ullah A, Del Ser J, Gandomi AH, Sajjad M, Baik SW, de Albuquerque VHC (2020) Multi-View Summarization and Activity Recognition Meet Edge Computing in IoT Environments. IEEE Internet Things J

  99. Idrees H, Soomro K, Shah M (2015) Detecting humans in dense crowds using locally-consistent scale prior and global occlusion reasoning. IEEE Trans Patt Anal Mach Intell 37(10):1986–1998

    Article  Google Scholar 

  100. Ikizler-Cinbis N, Sclaroff S (2010) Object, scene and actions: Combining multiple features for human action recognition. Computer Vision–ECCV 2010:494–507

    Google Scholar 

  101. Intriago-Pazmiño M, Vargas-Sandoval V, Moreno-Díaz J, Salazar-Jácome E, Salazar-Grandes M (2017) Algorithms for people recognition in digital images: a systematic review and testing. In: World conference on information systems and technologies. Springer, Cham, pp 436–446

  102. Jabri S, Duric Z, Wechsler H, Rosenfeld A (2000) Detection and location of people in video images using adaptive fusion of color and edge information. In: Proceedings of 15th international conference on pattern recognition, vol 4. IEEE, pp 627–630

  103. Jalal A, Kamal S, Kim D (2017) A depth video-based human detection and activity recognition using multi-features and embedded hidden Markov models for health care monitoring systems. Int J Interact Multimedia Artif Intell 4

  104. Jalal A, Khalid N, Kim K (2020) Automatic recognition of human interaction via hybrid descriptors and maximum entropy Markov model using depth sensors. Entropy 22(8):817

    Article  Google Scholar 

  105. Janbandhu V Human detection with non linear classification using linear SVM

  106. Jazouli M, Majda A, Zarghili A, Merad D (2015) New method for moving objects detection by radiometric similarity with a dynamic threshold. In: 2015 international conference on electrical and information technologies (ICEIT). IEEE, pp 229–232

  107. Jeong M, Ko BC, Nam J-Y (2017) Early detection of sudden pedestrian crossing for safe driving during summer nights. IEEE Trans Circ Sys Video Technol 27(6):1368–1380

    Article  Google Scholar 

  108. Ji S, Xu W, Yang M, Yu K (2013) 3D convolutional neural networks for human action recognition. IEEE Trans Patt Anal Mach Intell 35 (1):221–231

    Article  Google Scholar 

  109. Jia H-X, Zhang Y-J (2007) Fast human detection by boosting histograms of oriented gradients. In: 2007 Fourth international conference on image and graphics, 2007. ICIG. IEEE, pp 683–688

  110. Jiang Y, Ma J (2015) Combination features and models for human detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 240–248

  111. Jin C, Cui X, Woo T, Kim H (2016) Method for pedestrian detection using ground plane constraint based on vision sensor. In: 2016 International conference on electronics, information, and communications (ICEIC). IEEE, pp 1–4

  112. Jodoin P-M, Saligrama V, Konrad J (2012) Behavior subtraction. IEEE Trans Image Process 21(9):4244–4255

    Article  MathSciNet  MATH  Google Scholar 

  113. Jun B, Choi I, Kim D (2013) Local transform features and hybridization for accurate face and human detection. IEEE Trans Patt Anal Mach Intell 35(6):1423–1436

    Article  Google Scholar 

  114. Jung H-J, Hong K-S (2017) Modeling temporal structure of complex actions using Bag-of-Sequencelets. Patt Recogn Lett 85:21–28

    Article  Google Scholar 

  115. Kamal S, Jalal A (2016) A hybrid feature extraction approach for human detection, tracking and activity recognition using depth sensors. Arabian J Sci Eng 41(3):1043–1051

    Article  Google Scholar 

  116. Kamal S, Jalal A, Kim D (2016) Depth images-based human detection, tracking and activity recognition using spatiotemporal features and modified HMM. J Elect Eng Technol 11(3):1921–1926

    Google Scholar 

  117. Kammerl J (2011) Octree point cloud compression in PCL. http://pointclouds.org/news/compressing-point-clouds.html

  118. Kaur B, Sharma M, Mittal M, Verma A, Goyal LM, Jude Hemanth D (2018) An improved salient object detection algorithm combining background and foreground connectivity for brain image analysis. Comput Elect Eng 71:692–703

    Article  Google Scholar 

  119. Kaur R, Singh S (2014) Background modelling, detection and tracking of human in video surveillance system. In: 2014 Innovative applications of computational intelligence on power, energy and controls with their impact on humanity (CIPECH). IEEE, pp 54–58

  120. Khan MA, Akram T, Sharif M, Muhammad N, Javed MY, Naqvi SR (2019) Improved strategy for human action recognition; experiencing a cascaded design. IET Image Processing 14(5):818–829

    Article  Google Scholar 

  121. Khan MA, Ashraf I, Alhaisoni M, Damaševičius R, Scherer R, Rehman A, Bukhari SAC (2020) Multimodal brain tumor classification using deep learning and robust feature selection: A machine learning application for radiologists. Diagnostics 10(8):565

    Article  Google Scholar 

  122. Khan MA, Haider I, Nazir M, Armghan A, Lodhi HMJ, Khan JA (2020) Traditional features based automated system for human activities recognition. In: 2020 2nd international conference on computer and information sciences (ICCIS). IEEE, pp 1–6

  123. Khan MA, Kadry S, Alhaisoni M, Nam Y, Zhang Y, Rajinikanth V, Sarfraz MS (2020) Computer-aided gastrointestinal diseases analysis from wireless capsule endoscopy: A framework of best features selection. IEEE Access 8:132850–132859

    Article  Google Scholar 

  124. Khan MA, Khan MA, Ahmed F, Mittal M, Goyal LM, Jude Hemanth D, Satapathy SC (2020) Gastrointestinal diseases segmentation and classification based on duo-deep architectures. Patt Recogn Lett 131:193–204

    Article  Google Scholar 

  125. Khan MA, Javed K, Khan SA, Saba T, Habib U, Khan JA, Abbasi AA (2020) Human action recognition using fusion of multiview and deep features: An application to video surveillance. Multimed Tools Appl 1–27

  126. Khan MA, Qasim M, Lodhi HMJ, Nazir M, Javed K, Rubab S, Din A, Habib U (2020) Automated design for recognition of blood cells diseases from hematopathology using classical features selection and ELM. Microscopy Research and Technique

  127. Khan MA, Sarfraz MS, Alhaisoni M, Albesher AA, Wang S, Ashraf I (2020) StomachNet: optimal deep learning features fusion for stomach abnormalities classification. IEEE Access 8:197969–197981

    Article  Google Scholar 

  128. Khan MA, Zhang Y-D, Khan SA, Attique M, Rehman A, Seo S (2020) A resource conscious human action recognition framework using 26-layered deep convolutional neural network. Multimed Tools Appl 1–23

  129. Khan MA, Akram T, Zhang Y-D, Sharif M (2021) Attributes based skin lesion detection and recognition: A mask RCNN and transfer learning-based deep learning framework. Patt Recogn Lett 143:58–66

    Article  Google Scholar 

  130. Khan MA, Kadry S, Parwekar P, Damaševičius R, Mehmood A, Khan JA, Naqvi SR (2021) Human gait analysis for osteoarthritis prediction: A framework of deep learning and kernel extreme learning machine. Complex Intell Syst

  131. Khan MA, Zhang Y-D, Sharif M, Akram T (2021) Pixels to classes: intelligent learning framework for multiclass skin lesion localization and classification. Comput Elect Eng 90:106956

    Article  Google Scholar 

  132. Khan MA, Hussain N, Majid A, Alhaisoni M, Bukhari SAC, Kadry S, Nam Y, Zhang YD (2021) Classification of positive COVID-19 CT scans using deep learning. Comput Mater Continua 66(3)

  133. Khan MA, Kadry S, Zhang Y-D, Akram T, Sharif M, Rehman A, Saba T (2021) Prediction of COVID-19-pneumonia based on selected deep features and one class kernel extreme learning machine. Comput Elect Eng 90:106960

    Article  Google Scholar 

  134. Khan MH, Shirahama K, Farid MS, Grzegorzek M (2016) Multiple human detection in depth images. In: 2016 IEEE 18th international workshop on multimedia signal processing (MMSP). IEEE, pp 1–6

  135. Khemchandani R, Sharma S (2017) Robust parametric twin support vector machine and its application in human activity recognition. In: Proceedings of international conference on computer vision and image processing. Springer, Singapore, pp 193–203

  136. Kim S, Kim M (2016) Occluded pedestrian classification using gradient patch and convolutional neural networks. In: International conference on computer science and its applications. Springer, Singapore, pp 198–204

  137. Kim Y, Moon T (2016) Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks. IEEE Geosci Remote Sens Lett 13(1):8–12

    Article  Google Scholar 

  138. Kim K, Oh C, Sohn K (2016) Non-parametric human segmentation using support vector machine. IEEE Trans Consum Elect 62(2):150–158

    Article  Google Scholar 

  139. Kolekar MH, Dash DP (2016) Hidden Markov model based human activity recognition using shape and optical flow based features. In: 2016 IEEE Region 10 conference (TENCON). IEEE, pp 393–397

  140. Kolekar MH, Dash DP (2016) Hidden Markov model based human activity recognition using shape and optical flow based features. In: 2016 IEEE Region 10 conference (TENCON). IEEE, pp 393–397

  141. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  142. Kumar R, Kumar R, Gopalakrishnan V, Iyer KN (2017) Fast human segmentation using color and depth. In: 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 1922–1926

  143. Kumar SS, John M (2016) Human activity recognition using optical flow based feature set. In: 2016 IEEE international carnahan conference on security technology (ICCST). IEEE, p 2016

  144. Kushwaha AKS, Sharma CM, Khare M, Srivastava RK, Khare A (2012) Automatic multiple human detection and tracking for visual surveillance system. In: 2012 international conference on informatics, electronics & vision (ICIEV). IEEE, pp 32–331

  145. Lampert CH, Blaschko MB, Hofmann T (2008) Beyond sliding windows: Object localization by efficient subwindow search. In: IEEE conference on computer vision and pattern recognition, 2008. CVPR 2008. IEEE, pp 1–8

  146. Laptev I, Marszałek M, Schmid C, Rozenfeld B (2008) Learning realistic human actions from movies. In: IEEE conference on computer vision and pattern recognition. CVPR 2008. IEEE, pp 1–8

  147. Le QV, Zou WY, Yeung SY, Ng AY (2011) Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: 2011 conference on computer vision and pattern recognition (CVPR). IEEE, p 2011

  148. Lee MW, Nevatia R (2007) Body part detection for human pose estimation and tracking. In: IEEE workshop on motion and video computing, 2007 WMVC’07. IEEE, pp 23–23

  149. Lee K-D, Mi YN, Chung K-Y, Lee Y-H, Kang U-G (2013) Context and profile based cascade classifier for efficient people detection and safety care system. Multimedia Tools Appl 63(1):27–44

    Article  Google Scholar 

  150. Lee K, Choo CY, See HQ, Tan ZJ, Lee Y (2010) Human detection using histogram of oriented gradients and human body ratio estimation. In: In 2010 3rd international conference on computer science and information technology, vol. 4, pp. 18-22. IEEE

  151. Lee Y-T, Su T-F, Su H-R, Lai S-H, Lee T-C, Shih M-Y (2013) Human segmentation from video by combining random walks with human shape prior adaption. In: 2013 Asia-Pacific signal and information processing association annual summit and conference (APSIPA). IEEE, pp 1–4

  152. Lee S-M, Yoon SM, Cho H (2017) Human activity recognition from accelerometer data using convolutional neural network. In: 2017 IEEE international conference on big data and smart computing (BigComp). IEEE, pp 131–134

  153. Levi K, Weiss Y (2004) Learning object detection from a small number of examples: The importance of good features. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004, vol 2. IEEE, pp II–53

  154. Levi D, Silberstein S, Bar-Hillel A (2013) Fast multiple-part based object detection using kd-ferns. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 947–954

  155. Li C, Guo L, Hu Y (2010) A new method combining HOG and Kalman filter for video-based human detection and tracking. In: 2010 3rd international congress on image and signal processing (CISP), vol 1. IEEE, pp 290–293

  156. Li D, Xu L, Goodman ED, Xu Y, Wu Y (2013) Integrating a statistical background-foreground extraction algorithm and SVM classifier for pedestrian detection and tracking. Integ Comput Aided Eng 20(3):201–216

    Article  Google Scholar 

  157. Li J, Wu Y, Zhao J, Guan L, Ye C, Yang T (2017) Pedestrian detection with dilated convolution, region proposal network and boosted decision trees. In: 2017 international joint conference on neural networks (IJCNN). IEEE, pp 4052–4057

  158. Li J, Liang X, Shen S, Xu T, Feng J, Yan S (2015) Scale-aware fast R-CNN for pedestrian detection. arXiv:1510.08160

  159. Li L, Hoe JKE, Yan S, Yu X (2009) ML-fusion based multi-model human detection and tracking for robust human-robot interfaces. In: Workshop on applications of computer vision (WACV). IEEE, p 2009

  160. Li L, Huang W, Gu IYH, Tian Q (2003) Foreground object detection from videos containing complex background. In: Proceedings of the eleventh ACM international conference on multimedia. ACM, pp 2–10

  161. Li L, Yan S, Yu X, Tan YK, Li H (2012) Robust multiperson detection and tracking for mobile service and social robots. IEEE Trans Sys Man Cybern Part B Cybern 42(5):1398–1412

    Article  Google Scholar 

  162. Li M, Zhang Z, Huang K, Tan T (2009) Rapid and robust human detection and tracking based on omega-shape features. In: 2009 16th IEEE international conference on image processing (ICIP). IEEE, pp 2545–2548

  163. Liang C-W, Juang C-F (2015) Moving object classification using local shape and HOG features in wavelet-transformed space with hierarchical SVM classifiers. Appl Soft Comput 28:483–497

    Article  Google Scholar 

  164. Lillywhite K, Lee D-J, Zhang D (2009) Real-time human detection using histograms of oriented gradients on a GPU. In: 2009 workshop on applications of computer vision (WACV). IEEE, pp 1–6

  165. Lim JJ, Zitnick CL, Dollár P (2013) Sketch tokens: A learned mid-level representation for contour and object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3158–3165

  166. Limtrakul D, Ongprasert K, Ayood P, Sapbamrer R, Siviroj P (2020) A comparison of child development, growth and illness in home-care and day-care center settings. J Health Res

  167. Lin D-T, Huang K-Y (2011) Collaborative pedestrian tracking and data fusion with multiple cameras. IEEE Trans Inf Foren Secur 6(4):1432–1444

    Article  Google Scholar 

  168. Lin Z, Davis LS (2008) A pose-invariant descriptor for human detection and segmentation. In: Computer Vision–ECCV 2008. Springer, Berlin, pp 423–436

  169. Lin Z, Davis LS (2010) Shape-based human detection and segmentation via hierarchical part-template matching. IEEE Trans Patt Anal Mach Intell 32(4):604–618

    Article  Google Scholar 

  170. Lin Z, Davis LS, Doermann D, DeMenthon D (2007) Hierarchical part-template matching for human detection and segmentation. In: IEEE 11th international conference on computer vision, 2007. ICCV. IEEE, pp 1–8

  171. Lin Z-J, Chen W-N, Zhang J, Li J-J (2017) Fast multiple human detection with neighborhood-based speciation differential evolution. In: 2017 Seventh international conference on information science and technology (ICIST). IEEE, pp 200–207

  172. Liu J, Li Z, Li M, Lu H, Ma S (2007) Human behaviour consistent relevance feedback model for image retrieval. In: Proceedings of the 15th ACM international conference on multimedia. ACM, pp 269–272

  173. Liu J, Luo J, Shah M (2009) Recognizing realistic actions from videos in the wild. In: IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009. IEEE, pp 1996–2003

  174. Liu J, Zhang S, Wang S, Metaxas DN (2016) Multispectral deep neural networks for pedestrian detection. arXiv:1611.02644

  175. Liu H, Xu T, Wang X, Qian Y (2013) Related HOG features for human detection using cascaded Adaboost and SVM classifiers. In: Advances in multimedia modeling. Springer, Berlin Heidelberg, pp 345–355

  176. Liu L, Shao L, Li X, Lu K (2016) Learning spatio-temporal representations for action recognition: A genetic programming approach. IEEE Trans Cybern 46(1):158–170

    Article  Google Scholar 

  177. Liu H, Ju Z, Ji X, Chan CS, Khoury M (2017) Study of human action recognition based on improved spatio-temporal features. In: Human motion sensing and recognition. Springer, Berlin Heidelberg, pp 233–250

  178. Liu H, Ju Z, Ji X, Chan CS, Khoury M (2017) Study of human action recognition based on improved spatio-temporal features. In: Human motion sensing and recognition. Springer, Berlin Heidelberg, pp 233–250

  179. Liu X, Jin Z, Gao M (2012) A robust approach for multi-human detection and tracking. In: 2012 2nd international conference on consumer electronics, communications and networks (CECNet). IEEE, pp 832–835

  180. Liu Y, Shan S, Zhang W, Chen X, Gao W (2009) Granularity-tunable gradients partition (GGP) descriptors for human detection. In: IEEE conference on computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE, pp 1255–1262

  181. Liu H, Tu J, Liu M (2017) Two-stream 3D convolutional neural network for skeleton-based action recognition. arXiv:1705.08106

  182. Liu T, Stathaki T (2017) Fast head-shoulder proposal for scare-aware pedestrian detection. In: Proceedings of the 10th international conference on pervasive technologies related to assistive environments. ACM, pp 319–324

  183. Lu Z, Zhang W, Liao Q (2016) Pedestrian detection aided by scale-discriminative network. In: 2016 IEEE symposium series on computational intelligence (SSCI). IEEE, pp 1–7

  184. Luo J, Ma Y, Takikawa E, Lao S, Kawade M, Lu B-L (2007) Person-specific SIFT features for face recognition. In: IEEE international conference on acoustics, speech and signal processing, 2007. ICASSP 2007, vol 2. IEEE, pp II-593

  185. Luo P, Tian Y, Wang X, Tang X (2014) Switchable deep network for pedestrian detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 899–906

  186. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  187. Maity S, Bhattacharjee D, Chakrabarti A (2017) A novel approach for human action recognition from silhouette images. IETE J Res 63(2):160–171

    Article  Google Scholar 

  188. Maity S, Bhattacharjee D, Chakrabarti A (2017) A novel approach for human action recognition from silhouette images. IETE J Res 63(2):160–171

    Article  Google Scholar 

  189. Maji S, Berg AC, Malik J (2008) Classification using intersection kernel support vector machines is efficient. In: IEEE conference on computer vision and pattern recognition, 2008. CVPR 2008. IEEE, pp 1–8

  190. Maji S, Berg AC, Malik J (2013) Efficient classification for additive kernel SVMs. IEEE Trans Patt Anal Mach Intell 35(1):66–77

    Article  Google Scholar 

  191. Malisiewicz T, Gupta A, Efros AA (2011) Ensemble of exemplar-svms for object detection and beyond. In: 2011 IEEE international conference on computer vision (ICCV). IEEE, pp 89–96

  192. Marin J, Vazquez D, Lopez AM, Amores J, Kuncheva LI (2014) Occlusion handling via random subspace classifiers for human detection. IEEE Trans Cybern 44(3):342–354

    Article  Google Scholar 

  193. Mehmood A, Khan MA, Sharif M, Khan SA, Shaheen M, Saba T, Riaz N, Ashraf I (2020) Prosperous human gait recognition: An end-to-end system based on pre-trained CNN features selection. Multimed Tool Appl

  194. Mittal A, Kumar D, Mittal M, Saba T, Abunadi I, Rehman A, Roy S (2020) Detecting pneumonia using convolutions and dynamic capsule routing for chest x-ray images. Sensors 20(4):1068

    Article  Google Scholar 

  195. Moctezuma D, Conde C, De Diego IM, Cabello E (2011) Person detection in surveillance environment with HoGG: Gabor filters and histogram of oriented gradient. In: 2011 IEEE international conference on computer vision workshops (ICCV Workshops). IEEE, pp 1793–1800

  196. Modarres AFA, Soryani M (2014) A pyramidal layered HMM for multiview human behavior recognition in asynchronous video streams. Int J Comput Appl 96(7)

  197. Mozafari AS, Jamzad M (2012) A new type of hybrid features for human detection. In: 2012 IEEE international conference on intelligent computer communication and processing (ICCP). IEEE, pp 237–240

  198. Mu Y, Yan S, Yi L, Huang T, Zhou B (2008) Discriminative local binary patterns for human detection in personal album. In: CVPR IEEE conference on computer vision and pattern recognition, 2008. IEEE, pp 1–8

  199. Muhammad K, Hussain T, Baik SW (2020) Efficient CNN based summarization of surveillance videos for resource-constrained devices. Patt Recogn Lett 130:370–375

    Article  Google Scholar 

  200. Muhammad K, Rodrigues JJPC, Kozlov S, Piccialli F, de Albuquerque VHC (2020) Energy-efficient monitoring of fire scenes for intelligent networks. IEEE Netw 34(3):108–115

    Article  Google Scholar 

  201. Mukherjee S, Das K (2013) An adaptive gmm approach to background subtraction for application in real time surveillance. arXiv:1307.5800

  202. Munder S, Gavrila DM (2006) An experimental study on pedestrian classification. IEEE Trans Patt Anal Mach Intell 28(11):1863–1868

    Article  Google Scholar 

  203. Murtaza F, Yousaf MH, Velastin SA (2015) Multi-view human action recognition using histograms of oriented gradients (HOG) description of motion history images (MHIs). In: 2015 13th international conference on frontiers of information technology (FIT). IEEE, pp 297–302

  204. Murtza I, Abdullah D, Khan A, Arif M, Mirza SM (2017) Cortex-inspired multilayer hierarchy based object detection system using PHOG descriptors and ensemble classification. Vis Comput 33(1):99–112

    Article  Google Scholar 

  205. Mustafah YM, Zainuddin NA, Rashidan MA, Aziz NNA, Saripan MI (2017) Intelligent Surveillance System for Street Surveillance. Pertanika J Soc Sci Human 25(1):181–189

    Google Scholar 

  206. Naheed N, Shaheen M, Khan SA, Alawairdhi M, Khan MA (2020) Importance of features selection, attributes selection, challenges and future directions for medical imaging data: A review. Comput Model Eng Sci 125(1):314–344

    Google Scholar 

  207. Narasimhan H, Agarwal S (2013) SVM pAUC tight: a new support vector method for optimizing partial AUC based on a tight convex upper bound. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 167–175

  208. Nasir IM, Khan MA, Yasmin M, Shah JH, Gabryel M, Scherer R, Damaševičius R (2020) Pearson correlation-based feature selection for document classification using balanced training. Sensors 20(23):6793

    Article  Google Scholar 

  209. Naz M, Shah JH, Khan MA, Sharif M, Raza M, Damaševičius R (2021) From ECG signals to images: a transformation based approach for deep learning. PeerJ Comput Sci 7:e386

    Article  Google Scholar 

  210. Nguyen DT, Li W, Ogunbona PO (2016) Human detection from images and videos: a survey. Patt Recogn 51:148–175

    Article  Google Scholar 

  211. Ni C, Chen W-N, Zhang J (2015) Fast detection of human using differential evolution. Signal Process 110:155–163

    Article  Google Scholar 

  212. Noman M, Yousaf MH, Velastin SA (2016) An optimized and fast scheme for real-time human detection using raspberry pi. In: 2016 international conference on digital image computing: techniques and applications (DICTA). IEEE, pp 1–7

  213. Olson T, Brill F (1997) Moving object detection and event recognition algorithms for smart cameras. Proc DARPA Image Understanding Workshop 20 (5):205–208

    Google Scholar 

  214. Ong L-Y, Lau S-H, Koo V-C (2017) Performance of invariant feature descriptors with adaptive prediction in occlusion handling. In: 2017 3rd international conference on control, automation and robotics (ICCAR). IEEE, pp 385–388

  215. Opelt A, Pinz A, Fussenegger M, Auer P (2006) Generic object recognition with boosting. IEEE Trans Patt Anal Mach Intell 28(3):416–431

    Article  MATH  Google Scholar 

  216. Oreifej O, Hon4d ZL (2013) Histogram of oriented 4d normals for activity recognition from depth sequences. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 716–723

  217. Oren M, Papageorgiou C, Sinha P, Osuna E, Poggio T (1997) Pedestrian detection using wavelet templates. In: 1997 IEEE computer society conference on computer vision and pattern recognition, 1997. Proceedings. IEEE, pp 193–199

  218. Ott P, Everingham M (2009) Implicit color segmentation features for pedestrian and object detection. In: ICCV, pp 723–730

  219. Ouyang W, Wang X (2012) A discriminative deep model for pedestrian detection with occlusion handling. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 3258–3265

  220. Ouyang W, Wang X (2013) Joint deep learning for pedestrian detection. In: Proceedings of the IEEE international conference on computer vision, pp 2056–2063

  221. Ouyang W, Zeng X, Wang X (2013) Modeling mutual visibility relationship in pedestrian detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3222–3229

  222. Ouyang W, Zeng X, Wang X (2016) Partial occlusion handling in pedestrian detection with a deep model. IEEE Trans Circ Sys Video Technol 26 (11):2123–2137

    Article  Google Scholar 

  223. Paisitkriangkrai S, Shen C, Van Den Hengel A (2013) Efficient pedestrian detection by directly optimizing the partial area under the ROC curve. In: Proceedings of the IEEE international conference on computer vision, pp 1057–1064

  224. Paisitkriangkrai S, Shen C, van den Hengel A (2014) Strengthening the effectiveness of pedestrian detection with spatially pooled features. In: European conference on computer vision. Springer International Publishing, pp 546–561

  225. Pang Y, Cao J, Li X (2017) Learning sampling distributions for efficient object detection. IEEE Trans Cybern 47(1):117–129

    Article  Google Scholar 

  226. Pang Y, Yuan Y, Li X, Pan J (2011) Efficient HOG human detection. Signal Process 91(4):773–781

    Article  MATH  Google Scholar 

  227. Park D, Zitnick CL, Ramanan D, Dollár P (2013) Exploring weak stabilization for motion feature extraction. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2882–2889

  228. Parrotta E, Kister I, Charvet L, Sammarco C, Saha V, Charlson RE, Howard J et al (2020) COVID-19 outcomes in MS: Observational study of early experience from NYU multiple sclerosis comprehensive care center. Neurol Neuroimmunol Neuroinflam 7(5)

  229. Patil P, Kumar KS, Gaud N, Semwal VB (2019) Clinical human gait classification: Extreme learning machine approach. In: 2019 1st international conference on advances in science, engineering and robotics technology (ICASERT). IEEE, pp 1–6

  230. Patino L, Ferryman J (2016) Detecting threat behaviours. In: 2016 13th IEEE international conference on advanced video and signal based surveillance (AVSS). IEEE, pp 88–94

  231. Penne T (2011) Developpement dun systeme de tracking video sur camera robotisee. PhD diss. Universite Blaise Pascal-Clermont-Ferrand II

  232. Poppe R (2010) A survey on vision-based human action recognition. Image Vis Comput 28(6):976–990

    Article  Google Scholar 

  233. Porikli F, Tuzel O, Meer P (2016) Designing a boosted classifier on Riemannian manifolds. In: Riemannian computing in computer vision. Springer International Publishing, pp 281–301

  234. Prest A, Ferrari V, Schmid C (2013) Explicit modeling of human-object interactions in realistic videos. IEEE Trans Patt Anal Mach Intell 35 (4):835–848

    Article  Google Scholar 

  235. Priyadharsini S, Devi Mahalakshmi S, Vijayalakshmi K (2011) Shape based detection and retrieval. In: 2011 international conference on emerging trends in electrical and computer technology (ICETECT). IEEE, pp 531–535

  236. Priyadharsini S, Devi Mahalakshmi S, Vijayalakshmi K (2011) Shape based detection and retrieval. In: 2011 international conference on emerging trends in electrical and computer technology (ICETECT). IEEE, pp 531–535

  237. Qian H, Mao Y, Xiang W, Wang Z (2010) Recognition of human activities using SVM multi-class classifier. Patt Recogn Lett 31(2):100–111

    Article  Google Scholar 

  238. Qiang LIU, Zhang W, Hongliang LI, Ngan KN (2016) Hybrid human detection and recognition in surveillance. Neurocomputing 194:10–23

    Article  Google Scholar 

  239. Qiang LIU, Zhang W, Hongliang LI, Ngan KN (2016) Hybrid human detection and recognition in surveillance. Neurocomputing 194:10–23

    Article  Google Scholar 

  240. Rajaei A, Shayegh H, Charkari NM (2013) Human detection in semi-dense scenes using HOG descriptor and mixture of SVMs. In: 2013 3th international econference on computer and knowledge engineering (ICCKE). IEEE, pp 229–234

  241. Rahimi S, Aghagolzadeh A, Seyedarabi H (2013) Detection and tracking of occluded humans in three-camera network. In: 2013 First RSI/ISM international conference on robotics and mechatronics (ICRoM). IEEE, pp 32–37

  242. Rahimi S, Aghagolzadeh A, Seyedarabi H (2013) Human detection and tracking using new features combination in particle filter framework. In: 2013 8th Iranian conference on machine vision and image processing (MVIP). IEEE, pp 349–354

  243. Rashid M, Khan MA, Alhaisoni M, Wang S-H, Naqvi SR, Rehman A, Saba T (2020) A sustainable deep learning framework for object recognition using multi-layers deep features fusion and selection. Sustainability 12(12):5037

    Article  Google Scholar 

  244. Rauf HT, Ikram Ullah Lali M, Khan MA, Kadry S, Alolaiyan H, Razaq A, Irfan R (2021) Time series forecasting of COVID-19 transmission in Asia Pacific countries using deep neural networks. Pers Ubiquit Comput 1–18

  245. Rehman A, Khan MA, Saba T, Mehmood Z, Tariq U, Ayesha N (2020) Microscopic brain tumor detection and classification using 3D CNN and feature selection architecture. Microscopy Research and Technique

  246. Ren H, Heng C-K, Zheng W, Liang L, Chen X (2010) Fast object detection using boosted co-occurrence histograms of oriented gradients. In: 2010 17th IEEE international conference on image processing (ICIP). IEEE, pp 2705–2708

  247. Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: Towards real-time object detection with region proposal networks. In: dvances in neural information processing systems, pp 91–99

  248. Ren H, Liu W, Olsen SI, Escalera S, Moeslund TB (2017) Understanding behaviors in videos through behavior-specific dictionaries. Comput Vis Image Underst: 1–58

  249. Rother C, Kolmogorov V, Blake A (2004) Grabcut: Interactive foreground extraction using iterated graph cuts. In: ACM transactions on graphics (TOG), vol 23. ACM, pp 309–314

  250. Sabzmeydani P, Mori G (2007) Detecting pedestrians by learning shapelet features. In: IEEE conference on Computer vision and pattern recognition 2007. CVPR’07. IEEE, pp 1–8

  251. Saeed F, Khan MA, Sharif M, Mittal M, Goyal LM, Roy S (2021) Deep neural network features fusion and selection based on PLS regression with an application for crops diseases classification. Appl Soft Comput: 107164

  252. Sahoo SP, Ari S (2015) Automated human tracking using advanced mean shift algorithm. In: 2015 international conference on communications and signal processing (ICCSP). IEEE, pp 0789–0793

  253. Said Y, Atri M, Tourki R (2011) Human detection based on integral histograms of oriented gradients and SVM. In: 2011 international conference on communications, computing and control applications (CCCA). IEEE, pp 1–5

  254. Saito M, Kitaguchi K, Kimura G, Hashimoto M (2010) Human detection from fish-eye image by Bayesian combination of probabilistic appearance models. In: IEEE international conference on systems man and cybernetics (SMC). IEEE, p 2010

  255. Saligrama V, Konrad J, Jodoin P-M (2010) Video anomaly identification. IEEE Signal Process Mag 27(5):18–33

    Article  Google Scholar 

  256. Sanjay G, Amudha J, Jose JT (2015) Moving human detection in video using dynamic visual attention model. In: Advances in intelligent informatics. Springer, Cham, pp 117–124

  257. Sanoj CS, Vijayaraj N, Rajalakshmi D (2013) Vision approach of human detection and tracking using focus tracing analysis. In: 2013 international conference on information communication and embedded systems (ICICES). IEEE, pp 64–68

  258. Santos TT, Morimoto CH (2011) Multiple camera people detection and tracking using support integration. Patt Recogn Lett 32(1):47–55

    Article  Google Scholar 

  259. Santosh DHH, Venkatesh P, Poornesh P, Narayana Rao L, Arun Kumar N (2013) Tracking multiple moving objects using Gaussian mixture model. Int J Soft Comput Eng (IJSCE) ISSN 2231–2307

  260. Satpathy A, Jiang X, Eng H-L (2014) Human detection by quadratic classification on subspace of extended histogram of gradients. IEEE Trans Image Process 23(1):287–297

    Article  MathSciNet  MATH  Google Scholar 

  261. Satpathy A, Jiang X, Eng H-L (2014) Human detection by quadratic classification on subspace of extended histogram of gradients. IEEE Trans Image Process 23(1):287–297

    Article  MathSciNet  MATH  Google Scholar 

  262. Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local SVM approach. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004, vol 3. IEEE, pp 32–36

  263. Schwartz WR, Davis LS, Pedrini H (2011) Local response context applied to pedestrian detection. In: Progress in pattern recognition, image analysis, computer vision, and applications. Springer, Berlin Heidelberg, pp 181–188

  264. Seguin G, Alahari K, Sivic J, Laptev I (2015) Pose estimation and segmentation of multiple people in stereoscopic movies. IEEE Trans Patt Anal Mach Intell 37(8):1643–1655

    Article  Google Scholar 

  265. Semwal VB, Nandi GC (2015) Toward developing a computational model for bipedal push recovery–a brief. IEEE Sensors J 15(4):2021–2022

    Article  Google Scholar 

  266. Semwal VB, Nandi GC (2015) Toward developing a computational model for bipedal push recovery-a brief. IEEE Sensors J 15.4:2021–2022

    Article  Google Scholar 

  267. Semwal VB, Nandi GC (2016) Generation of joint trajectories using hybrid automate-based model: A rocking block-based approach. IEEE Sensors J 16(14):5805–5816

    Article  Google Scholar 

  268. Semwal VB, Kumar C, Mishra PK, Nandi GC (2016) Design of vector field for different subphases of gait and regeneration of gait pattern. IEEE Trans Autom Sci Eng 15(1):104–110

    Article  Google Scholar 

  269. Semwal VB, Gaud N, Nandi GC (2019) Human gait state prediction using cellular automata and classification using ELM. In: Machine intelligence and signal analysis. Springer, Singapore, pp 135–145

  270. Semwal VB, Gaud N, Nandi GC (2019) Human gait state prediction using cellular automata and classification using ELM. In: Machine intelligence and signal analysis. Springer, Singapore, pp 135–145

  271. Senior A, Hampapur A, Tian Y-L, Brown L, Pankanti S, Bolle R (2006) Appearance models for occlusion handling. Image Vis Comput 24(11):1233–1243

    Article  Google Scholar 

  272. Sermanet P, Kavukcuoglu K, Chintala S, LeCun Y (2013) Pedestrian detection with unsupervised multi-stage feature learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3626–3633

  273. Shao L, Ji L, Liu Y, Zhang J (2012) Human action segmentation and recognition via motion and shape analysis. Patt Recogn Lett 33 (4):438–445

    Article  Google Scholar 

  274. Shao L, Li L, Yu M (2016) Kernelized multiview projection for robust action recognition. Int J Comput Vis 118(2):115–129

    Article  MathSciNet  Google Scholar 

  275. Sharif M, Attique M, Tahir MZ, Yasmim M, Saba T, Tanik UJ (2020) A machine learning method with threshold based parallel feature fusion and feature selection for automated gait recognition. J Organ End User Comput (JOEUC) 32(2):67–92

    Article  Google Scholar 

  276. Shehzad MI, Shah YA, Mehmood Z, Malik AW, Azmat S (2016) K-means based multiple objects tracking with long-term occlusion handling. IET Comput Vis 11(1):68–77

    Article  Google Scholar 

  277. Shi Y, Tian Y, Wang Y, Huang T (2017) Sequential deep trajectory descriptor for action recognition with three-stream cnn. IEEE Trans Multimedia

  278. Shoaib M, Dragon R, Ostermann J (2009) Shadow detection for moving humans using gradient-based background subtraction. In: IEEE international conference on acoustics, speech and signal processing, 2009. ICASSP 2009. IEEE, pp 773–776

  279. Simonyan K, Zisserman A (2014) Two-stream convolutional networks for action recognition in videos. In: Advances in neural information processing systems, pp 568–576

  280. Sindagi VA, Patel VM (2018) A survey of recent advances in cnn-based single image crowd counting and density estimation. Patt Recogn Lett 107:3–16

    Article  Google Scholar 

  281. Sowmiya D, Haritha M, AnandhaKumar P (2013) Human detection in public environment using GHOG: Gaussian of mixtures & histogram of oriented gradients. In: 2013 Fifth international conference on advanced computing (ICoAC). IEEE, pp 263–267

  282. Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking. In: IEEE computer society conference on computer vision and pattern recognition, vol 2. IEEE, p 1999

  283. Sun J, Zhang W, Tang X, Shum H-Y (2006) Background cut. In: Computer vision–ECCV 2006. Springer, Berlin Heidelberg, pp 628–641

  284. Surinta O, Karaaba MF, Schomaker LRB, Wiering MA (2015) Recognition of handwritten characters using local gradient feature descriptors. Eng Appl Artif Intel 45:405–414

    Article  Google Scholar 

  285. Tahir MB, Khan MA, Javed K, Kadry S, Zhang Y-D, Akram T, Nazir M (2021) Recognition of apple leaf diseases using deep learning and variances-controlled features reduction. Microprocess Microsys: 104027

  286. Tang S, Andriluka M, Schiele B (2014) Detection and tracking of occluded people. Int J Comput Vis 110(1):58–69

    Article  Google Scholar 

  287. Thombre DV, Nirmal JH, Lekha D (2009) Human detection and tracking using image segmentation and Kalman filter. In: International conference on intelligent agent & multi-agent systems, 2009. IAMA 2009. IEEE, p 2009

  288. Tian L, Wang S, Ding X (2012) Human detection and tracking using apparent features under multi-cameras with non-overlapping. In: International conference on audio, language and image processing (ICALIP). IEEE, p 2012

  289. Tong R, Xie D, Tang M (2013) Upper body human detection and segmentation in low contrast video. IEEE Trans Circ Sys Video Technol 23(9):1502–1509

    Article  Google Scholar 

  290. Tran D, Sorokin A (2008) Human activity recognition with metric learning. Comput Vis ECCV 2008:548–561

    Google Scholar 

  291. Ullah W, Ullah A, Haq IU, Muhammad K, Sajjad M, Baik SW (2020) CNN features with bi-directional LSTM for real-time anomaly detection in surveillance networks. Multimedia Tools Appl: 1–17

  292. Varol G, Laptev I, Schmid C (2017) Long-term temporal convolutions for action recognition. IEEE Trans Patt Anal Mach Intell

  293. Verbeke N (2007) Suivi d objets en mouvements dans une sequence video

  294. Vinay GK, Haque SM, Venkatesh Babu R, Ramakrishnan KR (2016) Sparse representation-based human detection: a scale-embedded dictionary approach. Signal Image Video Process 10(3):585–592

    Article  Google Scholar 

  295. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition, 2001. CVPR 2001, vol 1. IEEE, pp I–511

  296. Viola P, Jones MJ, Snow D (2005) Detecting pedestrians using patterns of motion and appearance. Int J Comput Vis 63(2):153–161

    Article  Google Scholar 

  297. Vo B-N, Vo B-T, Pham N-T, Suter D (2010) Joint detection and estimation of multiple objects from image observations. IEEE Trans Signal Process 58(10):5129–5141

    Article  MathSciNet  MATH  Google Scholar 

  298. Walha A, Wali A, Alimi AM (2015) Video stabilization with moving object detecting and tracking for aerial video surveillance. Multimedia Tools Appl 74(17):6745–6767

    Article  Google Scholar 

  299. Wang X, Yan WQ (2020) Human gait recognition based on frame-by-frame gait energy images and convolutional long short-term memory. Int J Neural Sys 30(01):1950027

    Article  Google Scholar 

  300. Wang Y-Y, Lee C-H (2011) Segmentation by temporal detection integration. In: 2011 18th IEEE international conference on image processing (ICIP). IEEE, pp 3125–3128

  301. Wang X, Han TX, Yan S (2009) An HOG-LBP human detector with partial occlusion handling. In: 2009 IEEE 12th international conference on computer vision. IEEE, pp 32–39

  302. Wang K, Wang X, Lin L, Wang M, Zuo W (2014) 3D human activity recognition with reconfigurable convolutional neural networks. In: Proceedings of the 22nd ACM international conference on multimedia. ACM, pp 97–106

  303. Wang H, Oneata D, Verbeek J, Schmid C (2016) A robust and efficient video representation for action recognition. Int J Comput Vis 119(3):219–238

    Article  MathSciNet  Google Scholar 

  304. Wang P, Collins L, Morton K, Torrione P (2017) Viewpoint adaptation for person detection

  305. Watanabe T, Ito S, Yokoi K (2009) Co-occurrence histograms of oriented gradients for pedestrian detection. In: Advances in image and video technology. Springer, Berlin Heidelberg, pp 37–47

  306. Wei D, Zhao Y, Cheng R, Li G (2013) An enhanced histogram of oriented gradient for pedestrian detection. In: 2013 Fourth international conference on intelligent control and information processing (ICICIP). IEEE, pp 459–463

  307. Weinland D, Ronfard R, Boyer E (2011) A survey of vision-based methods for action representation, segmentation and recognition. Comput Vis Image Understand 115(2):224–241

    Article  Google Scholar 

  308. Weston J, Watkins C (1998) Multi-class support vector machines. Technical Report CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of London

  309. Wojek C, Walk S, Schiele B (2009) Multi-cue onboard pedestrian detection. In: IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009. IEEE, pp 794–801

  310. Wong C, Zhang Z, McKeague S, Yang G-Z (2013) Multi-person vision-based head detector for markerless human motion capture. In: 2013 IEEE international conference on body sensor networks (BSN). IEEE, pp 1–6

  311. Wu B, Nevatia R (2005) Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors. In: 10th IEEE international conference on computer vision, 2005. ICCV 2005, vol 1. IEEE, pp 90–97

  312. Wu X, Jia Y (2012) View-invariant action recognition using latent kernelized structural SVM. In: European conference on computer vision. Springer, Berlin, Heidelberg, pp 411–424

  313. Wu S, San W, Wang S (2017) Variant semiboost for improving human detection in application scenes. IEEE Trans Circ Sys Video Technol

  314. Wu C-H, Gan W, De L, Jay Kuo CC (2017) Boosted convolutional neural networks (BCNN) for pedestrian detection. In: 2017 IEEE winter conference on applications of computer vision (WACV). IEEE

  315. Xia D, Sun H, Shen Z (2010) Real-time infrared pedestrian detection based on multi-block LBP. In: 2010 international conference on computer application and system modeling (ICCASM), vol 12. IEEE, pp V12–139

  316. Xiao Q, Song R (2017) Action recognition based on hierarchical dynamic Bayesian network. Multimedia Tools Appl: 1–14

  317. Xu G, Wu X, Liu L, Wu Z (2011) Real-time pedestrian detection based on edge factor and Histogram of Oriented Gradient. In: 2011 IEEE international conference on information and automation (ICIA). IEEE, pp 384–389

  318. Xu R, Guan Y, Huang Y (2015) Multiple human detection and tracking based on head detection for real-time video surveillance. Multimedia Tools Appl 74(3):729–742

    Article  Google Scholar 

  319. Xu R, Guan Y, Huang Y (2015) Multiple human detection and tracking based on head detection for real-time video surveillance. Multimedia Tools Appl 74(3):729–742

    Article  Google Scholar 

  320. Xu J, Fookes C, Sridharan S (2016) Automatic event detection for signal-based surveillance. arXiv:1612.01611

  321. Xu D, Ouyang W, Ricci E, Wang X, Sebe N (2017) Learning cross-modal deep representations for robust pedestrian detection. arXiv:1704.02431

  322. Yamada K (2016) Pedestrian detection with a resolution-aware convolutional network. In: 2016 23rd international conference on pattern recognition (ICPR). IEEE, pp 591–596

  323. Yamato J, Ohya J, Ishii K (1992) Recognizing human action in time-sequential images using hidden markov model. In: 1992 IEEE computer society conference on computer vision and pattern recognition, 1992. Proceedings CVPR’92. IEEE, pp 379–385

  324. Yan J, Zhang X, Lei Z, Liao S, Li SZ (2013) Robust multi-resolution pedestrian detection in traffic scenes. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3033–3040

  325. Yang M, Lv F, Xu W, Yu K, Gong Y (2009) 2009 IEEE 12th international conference on computer vision workshop (ICCV Workshops). IEEE, pp 522–529

  326. Yang J, Nguyen MN, San PP, Li X, Krishnaswamy S (2015) Deep convolutional neural networks on multichannel time series for human activity recognition. In: IJCAI, pp 3995–4001

  327. Yao S, Pan S, Wang T, Zheng C, Shen W, Chong Y (2015) A new pedestrian detection method based on combined HOG and LSS features. Neurocomputing 151:1006–1014

    Article  Google Scholar 

  328. Ye Q, Jiao J, Zhang B (2010) Fast pedestrian detection with multi-scale orientation features and two-stage classifiers. In: 2010 17th IEEE international conference on image processing (ICIP). IEEE, pp 881–884

  329. Zarka N, Alhalah Z, Deeb R (2008) Real-time human motion detection and tracking. In: 3rd international conference on information and communication technologies: from theory to applications, 2008. ICTTA 2008. IEEE, pp 1–6

  330. Zeng J-X, Lin C-Y, Lin W-Y (2015) 2015 IEEE international conference on consumer electronics-Taiwan (ICCE-TW). IEEE, pp 370–371

  331. Zeng M, Nguyen LT, Yu B, Mengshoel OJ, Zhu J, Wu P, Zhang J (2014) Convolutional neural networks for human activity recognition using mobile sensors. In: 2014 6th international conference on mobile computing, applications and services (MobiCASE). IEEE, pp 197–205

  332. Zhang M, Xin M (2016) Human detection using random color similarity feature and random ferns classifier. PloS one 11(9):e0162830

    Article  Google Scholar 

  333. Zhang S, Wang X (2013) Human detection and object tracking based on histograms of oriented gradients. In: 2013 Ninth international conference on natural computation (ICNC). IEEE, pp 1349–1353

  334. Zhang G, Gao F, Liu C, Liu W, Yuan H (2010) A pedestrian detection method based on SVM classifier and optimized histograms of oriented gradients feature. In: 2010 Sixth international conference on natural computation (ICNC), vol 6. IEEE, pp 3257–3260

  335. Zhang H, Reardon C, Parker LE (2013) Real-time multiple human perception with color-depth cameras on a mobile robot. IEEE Trans Cybern 43 (5):1429–1441

    Article  Google Scholar 

  336. Zhang S, Bauckhage C, Cremers A (2014) Informed haar-like features improve pedestrian detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 947–954

  337. Zhang S, Bauckhage C, Cremers AB (2014) Informed haar-like features improve pedestrian detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 947–954

  338. Zhang S, Bauckhage C, Klein DA, Cremers AB (2015) Exploring human vision driven features for pedestrian detection. IEEE Trans Circ Sys Video Technol 25(10):1709–1720

    Article  Google Scholar 

  339. Zhang S, Benenson R, Schiele B (2015) Filtered channel features for pedestrian detection. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1751–1760

  340. Zhang H-B, Lei Q, Chen D-S, Zhong B-N, Peng J, Du J-X, Su S-Z (2016) Probability-based method for boosting human action recognition using scene context. IET Comput Vis 10(6):528–536

    Article  Google Scholar 

  341. Zhang L, Lin L, Liang X, He K (2016) Is faster r-cnn doing well for pedestrian detection?. In: European conference on computer vision. Springer International Publishing, pp 443–457

  342. Zhang S, Klein DA, Bauckhage C, Cremers AB (2016) Fast moving pedestrian detection based on motion segmentation and new motion features. Multimedia Tools Appl 75(11):6263–6282

    Article  Google Scholar 

  343. Zhang Z, Liu S, Wang C, Xiao B, Zhou W (2016) Multiple continuous virtual paths based cross-view action recognition. Int J Patt Recogn Artif Intell 30(05):1655014

    Article  Google Scholar 

  344. Zhang S, Benenson R, Omran M, Hosang J, Schiele B (2017) Towards reaching human performance in pedestrian detection. IEEE Trans Patt Anal Mach Intell

  345. Zhao X, Li W, Zhang Y, Aaron Gulliver T, Chang S, Feng Z (2016) A faster RCNN-based pedestrian detection system. In: Vehicular Technology Conference (VTC-Fall), 2016 IEEE 84th. IEEE, pp 1–5

  346. Zhao Z-Q, Bian H, Hu D, Glotin H (2016) Pedestrian detection based on fast R-CNN and batch normalization

  347. Zhao Y, Yuan Z, Chen D, Lyu J, Liu T (2017) Fast pedestrian detection via random projection features with shape prior. In: 2017 IEEE winter conference on applications of computer vision (WACV). IEEE, pp 962–970

  348. Zhen X, Zheng F, Shao L, Cao X, Xu D (2017) Supervised local descriptor learning for human action recognition. IEEE Trans Multimedia

  349. Zheng G, Chen Y (2012) A novel hybrid human detection system. In: Global high tech congress on electronics (GHTCE), 2012 IEEE. IEEE, pp 10–13

  350. Zheng C-H, Pei W-J, Yan Q, Chong Y-W (2017) Pedestrian detection based on gradient and texture feature integration. Neurocomputing 228:71–78

    Article  Google Scholar 

  351. Zhou C, Tang L, Wang S, Ding X (2009) Human detection based on fusion of histograms of oriented gradients and main partial features. In: 2nd international congress on image and signal processing, 2009 CISP’09. IEEE, pp 1–5

  352. Zhu Q, Yeh M-C, Cheng K-T, Avidan S (2006) Fast human detection using a cascade of histograms of oriented gradients. In: 2006 IEEE computer society conference on computer vision and pattern recognition, vol 2. IEEE, pp 1491–1498

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Roy.

Ethics declarations

Conflict of Interests

Authors have no conflict of interest to declare

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A., Mittal, M., Goyal, L.M. et al. A deep survey on supervised learning based human detection and activity classification methods. Multimed Tools Appl 80, 27867–27923 (2021). https://doi.org/10.1007/s11042-021-10811-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-10811-5

Keywords

Navigation