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Abstract
Medical imaging plays a significant role in different clinical applications such as medical
procedures used for early detection, monitoring, diagnosis, and treatment evaluation of
various medical conditions. Basicsof the principles and implementations of artificial
neural networks and deep learning are essential for understanding medical image analysis
in computer vision. Deep Learning Approach (DLA) in medical image analysis emerges
as a fast-growing research field. DLA has been widely used in medical imaging to detect
the presence or absence of the disease. This paper presents the development of artificial
neural networks, comprehensive analysis of DLA, which delivers promising medical
imaging applications. Most of the DLA implementations concentrate on the X-ray
images, computerized tomography, mammography images, and digital histopathology
images. It provides a systematic review of the articles for classification, detection, and
segmentation of medical images based on DLA. This review guides the researchers to
think of appropriate changes in medical image analysis based on DLA.

Keywords Deep learning . Convolutional neural networks .Medical images . Segmentation .

Classification . Detection

1 Introduction

In the health care system, there has been a dramatic increase in demand for medical image
services, e.g. Radiography, endoscopy, Computed Tomography (CT), Mammography
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Images (MG), Ultrasound images, Magnetic Resonance Imaging (MRI), Magnetic Reso-
nance Angiography (MRA), Nuclear medicine imaging, Positron Emission Tomography
(PET) and pathological tests. Besides, medical images can often be challenging to analyze
and time-consuming process due to the shortage of radiologists.

Artificial Intelligence (AI) can address these problems. Machine Learning (ML) is an
application of AI that can be able to function without being specifically programmed,
that learn from data and make predictions or decisions based on past data. ML uses three
learning approaches, namely, supervised learning, unsupervised learning, and semi-
supervised learning. The ML techniques include the extraction of features and the
selection of suitable features for a specific problem requires a domain expert. Deep
learning (DL) techniques solve the problem of feature selection. DL is one part of ML,
and DL can automatically extract essential features from raw input data [88]. The
concept of DL algorithms was introduced from cognitive and information theories. In
general, DL has two properties: (1) multiple processing layers that can learn distinct
features of data through multiple levels of abstraction, and (2) unsupervised or super-
vised learning of feature presentations on each layer. A large number of recent review
papers have highlighted the capabilities of advanced DLA in the medical field MRI [8],
Radiology [96], Cardiology [11], and Neurology [155].

Different forms of DLA were borrowed from the field of computer vision and applied to
specific medical image analysis. Recurrent Neural Networks (RNNs) and convolutional
neural networks are examples of supervised DL algorithms. In medical image analysis,
unsupervised learning algorithms have also been studied; These include Deep Belief
Networks (DBNs), Restricted Boltzmann Machines (RBMs), Autoencoders, and Genera-
tive Adversarial Networks (GANs) [84]. DLA is generally applicable for detecting an
abnormality and classify a specific type of disease. When DLA is applied to medical
images, Convolutional Neural Networks (CNN) are ideally suited for classification,
segmentation, object detection, registration, and other tasks [29, 44]. CNN is an artificial
visual neural network structure used for medical image pattern recognition based on
convolution operation. Deep learning (DL) applications in medical images are visualized
in Fig. 1.

Fig. 1 a X-ray image with pulmonary masses [121] b CT image with lung nodule [82] c Digitized histo
pathological tissue image [132]
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2 Neural networks

2.1 History of neural networks

The study of artificial neural networks and deep learning derives from the ability to create a
computer system that simulates the human brain [33]. A neurophysiologist, Warren
McCulloch, and a mathematician Walter Pitts [97] developed a primitive neural network
based on what has been known as a biological structure in the early 1940s. In 1949, a book
titled “Organization of Behavior” [100] was the first to describe the process of upgrading
synaptic weights which is now referred to as the Hebbian Learning Rule. In 1958, Frank
Rosenblatt’s [127] landmark paper defined the structure of the neural network called the
perceptron for the binary classification task.

In 1962, Windrow [172] introduced a device called the Adaptive Linear Neuron
(ADALINE) by implementing their designs in hardware. The limitations of perceptions were
emphasized by Minski and Papert (1969) [98]. The concept of the backward propagation of
errors for purposes of training is discussed in Werbose1974 [171]. In 1979, Fukushima [38]
designed artificial neural networks called Neocognitron, with multiple pooling and convolu-
tion layers. One of the most important breakthroughs in deep learning occurred in 2006, when
Hinton et al. [9] implemented the Deep Belief Network, with several layers of Restricted
Boltzmann Machines, greedily teaching one layer at a time in an unsupervised fashion. In
1989, Yann LeCun [71] combined CNN with backpropagation to effectively perform the
automated recognition of handwritten digits. Figure 2 shows important advancements in the
history of neural networks that led to a deep learning era.

2.2 Artificial neural networks

Artificial Neural Networks (ANN) form the basis for most of the DLA. ANN is a
computational model structure that has some performance characteristics similar to
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biological neural networks. ANN comprises simple processing units called neurons or
nodes that are interconnected by weighted links. A biological neuron can be described
mathematically in Eq. (1). Figure 3 shows the simplest artificial neural model known as
the perceptron.

y ¼ f wxT þ b
� � ð1Þ

Let be the vector of inputs (features), be the weight vector, be
the bias, f be the non-linear activation (sigmoid) function and y be the scalar, the output
of a node. For the construction of neural networks required parameters are i) The pattern
of connections between the neurons (architecture) ii) The method of determining the
weights on the connection (Training or learning) and iii) Activation function. Depending
on the pattern of connection between nodes in the neural networks, they are mainly
classified into two types, viz., a Feed-Forward Neural Network (FFNN) and Recurrent
Neural Networks (RNN) [42]. For FFRN the requirement is that network has to be a
directed acyclic graph. In RNN the connection between nodes forms a directed cycle. An
FFNN consists of one or more layers in which each layer comprises one or more nodes.
The network has one input layer and the last layer is called the output layer. The layers
between the input and the output layer are considered as a hidden layer. FFNN is used
for supervised [140] learning tasks like classification and regression.

2.3 Training a neural network with Backpropagation (BP)

In the neural networks, the learning process is modeled as an iterative process of
optimization of the weights to minimize a loss function. Based on network performance,
the weights are modified on a set of examples belonging to the training set. The
necessary steps of the training procedure contain forward and backward phases. For
Neural Network training, any of the activation functions in forwarding propagation is
selected and BP training is used for changing weights. The BP algorithm helps multilayer
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FFNN to learn input-output mappings from training samples [16]. Forward propagation
and backpropagation are explained with the one hidden layer deep neural networks in the
following algorithm.

The backpropagation algorithm is as follows for one hidden layer neural network

1. Initialize all weights to small random values.
2. While the stopping condition is false, do steps 3 through10.
3. For each training pair ((x1, y1)…(xn, yn) do steps 4 through 9.

Feed-forward propagation:

4. Each input unit (Xi, i = 1, 2, …n) receives the input signal xi and send this signal to all
hidden units in the above layer.

5. Each hidden unit (Zj, j = 1. ., p) compute output using the below equation, and it
transmits to the output unit (i.e.) z j in ¼ b j þ ∑n

i¼1wij xi applies to an activation
function Zj = f(Zj _ in).

6. Compute the out signal for each output unit (Yk,k = 1,….,m).
yk in ¼ bk þ ∑p

j¼1z j wjk and calculate activation yk = f(yk _ in)

Backpropagation

7. For input training pattern (x1, x2…., xn) corresponding output pattern (y1, y2,…, ym), let
(t1, t2,…. . tm) be target pattern. For each output, the neuron computes network error δk

At output-layer neurons δk = (tk − yk)f′(yk _ in)
8. For each hidden neuron, calculate its error information term δjwhile doing so, use δk of the

output neurons as obtained in the previous step

At Hidden layer neurons δ j ¼ f
0
z j in
� �

∑m
k δkwjk

9. Update weights and biases using the following formulas where ηis learning rate

Each output layer (Yk, k = 1, 2, …. m) updates its weights (J = 0, 1, …P) and bias
wjk(new) =wjk(old) + ηδkzj;bk(new) = bk(old) + ηδk
Each hidden layer (ZJ, J = 1, 2,…p) updates its weights (i = 0, 1,…n) biases:
wij(new) =wij(old) + ηδjxi; bj(old) = bj(old) + ηδj

10. Test stopping condition

2.4 Activation function

The activation function is the mechanism by which artificial neurons process and
transfers information [42]. There are various types of activation functions which can
be used in neural networks based on the characteristic of the application. The activation
functions are non-linear and continuously differentiable. Differentiability property is
important mainly when training a neural network using the gradient descent method.
Some widely used activation functions are listed in Table 1.
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3 Deep learning

Deep learning is a subset of the machine learning field which deals with the development of
deep neural networks inspired by biological neural networks in the human brain.

3.1 Autoencoder

Autoencoder (AE) [128] is one of the deep learning models which exemplifies the principle of
unsupervised representation learning as depicted in Fig. 4a. AE is useful when the input data
have more number of unlabelled data compared to labeled data. AE encodes the input x into a
lower-dimensional space z. The encoded representation is again decoded to an approximated
representation x′ of the input x through one hidden layer z.

Table 1 Activation functions

Function name Function equation Function derivate

Sigmoid [86] f xð Þ ¼ 1
1þe−x f

0
xð Þ = f (x)(1 − f (x))

Hyperbolic tangent [87] f xð Þ ¼ tanh xð Þ ¼ 2
1þe−2x −1 f

0
xð Þ = 1 − f (x) 2

Soft sign activation f xð Þ ¼ x
1þ xj j f

0
xð Þ ¼ 1

1þ xj jð Þ2
Rectified Linear Unit [68, 104] (ReLU)

f xð Þ ¼ 0 x < 0
x x ≥0

�
f
0
xð Þ ¼ 0 x < 0

1 x ≥0

�

Leaky Rectified Linear Unit [94]
(leaky ReLU) f xð Þ ¼ αx x < 0

x x ≥0

�
f
0
xð Þ ¼ α x < 0

1 x ≥0

�

Parameterized Rectified Linear Unit(PReLU) [47] PReLU is the same as leaky ReLU. The difference is ∝ can
be learned from training data via backpropagation

Randomized Leaky Rectified Linear Unit [180]
f xð Þ ¼ αx x < 0

x x ≥0

�
f
0
xð Þ ¼ α x < 0

1 x ≥ 0

�

Soft plus [32] f (x) = ln(1 + ex) f
0
xð Þ ¼ 1

1þe−x

Exponential Linear Unit (ELU) [24, 137]
f xð Þ ¼ ∝ ex−1ð Þ x < 0

x x≥0

�
f
0
xð Þ ¼ f xð Þ þ ∝x < 0

1 x≥0

�

Scaled exponential Linear Unit (SELU) [67]
f xð Þ ¼ λ

∝ ex−1ð Þ x < 0
x x≥0

�
f
0
xð Þ ¼ f xð Þ þ λ∝x < 0

λ x≥0

�
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Fig. 4 a Autoencoder [187] b Restricted Boltzmann Machine with n hidden and m visible units [88] c Deep
Belief Networks [88]
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Basic AE consists of three main steps:
Encode: Convert input vector x ϵ Rm into h ϵ Rn, the hidden layer by h = f(wx + b)where

w ϵ Rm*n and b ϵ Rn.m and n are dimensions of the input vector and converted hidden state.
The dimension of the hidden layer h is to be smaller than x.f is an activate function.

Decode: Based on the above h, reconstruct input vector z by equation z = f ′(w′h + b′) where

w
0
ϵ Rn*mand b

0
ϵRm:The f′is the same as the above activation function.

Calculate square error:Lrecons(x, z) = ∥ x − z∥2, which is the reconstruction error cost func-
tion. Reconstruct error minimization is achieved by optimizing the cost function (2)

J θð Þ ¼ ∑ x; zð Þ θ ¼ w;w
0
; b; b

0
n o

ð2Þ

Another unsupervised algorithm representation is known as Stacked Autoencoder (SAE). The
SAE comprises stacks of autoencoder layers mounted on top of each other where the output of
each layer was wired to the inputs of the next layer. A Denoising Autoencoder (DAE) was
introduced by Vincent et al. [159]. The DAE is trained to reconstruct the input from random
noise added input data. Variational autoencoder (VAE) [66] is modifying the encoder where
the latent vector space is used to represent the images that follow a Gaussian distribution unit.
There are two losses in this model; one is a mean squared error and the Kull back Leibler
divergence loss that determines how close the latent variable matches the Gaussian distribution
unit. Sparse autoencoder [106] and variational autoencoders have applications in unsupervised,
semi-supervised learning, and segmentation.

3.2 Restricted Boltzmann machine

A Restricted Boltzmann machine [RBM] is a Markov Random Field (MRF) associated with
the two-layer undirected probabilistic generative model, as shown in Fig. 4b. RBM contains
visible units (input) v and hidden (output) units h. A significant feature of this model is that
there is no direct contact between the two visible units or either of the two hidden units. In
binary RBMs, the random variables (v, h) takes (v, h) ∈ {0, 1}m + n. Like the general Boltzmann
machine [50], the RBM is an energy-based model. The energy of the state {v, h} is
defined as (3)

E v; hð Þ ¼ −∑n
i¼1∑

m
j¼1wijhiv j−∑m

j¼1bjv j−∑n
i¼1cihi ð3Þ

where vj, hi are the binary states of visible unit j ∈ {1, 2,…m} and hidden unit i ∈ {1, 2, .. n}, bj,
ci are their biases of visible and hidden units, wij is the symmetric interaction term between the
units vj and hi them. A joint probability of (v, h) is given by the Gibbs distribution in Eq. (4)

P v; hð Þ ¼ 1

Z
e−E v;hð Þ ð4Þ

Z is a “partition function” that can be given by summing over all possible pairs of visual v and
hidden h (5).
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Z ¼ ∑v;he
−E v;hð Þ ð5Þ

A significant feature of the RBM model is that there is no direct contact between the two
visible units or either of the two hidden units. In term of probability, conditional distributions
p(h| v) and p(v| h) is computed as (6) p hjvð Þ ¼ ∏n

i¼1p hijvð Þ
p hjvð Þ ¼ ∏n

i¼1p hijvð Þ; p vjhð Þ ¼ ∏m
j¼1p v jjh

� � ð6Þ

For binary RBM condition distribution of visible and hidden are given by (7) and (8)

p hj ¼ 1jv� � ¼ σ bj þ ∑m
i¼1wijvi

� � ð7Þ

p vi ¼ 1jhð Þ ¼ σ aj þ ∑n
j¼1wijh j

� �
ð8Þ

where σ(·) is a sigmoid function
RBMs parameters (wij, bj, ci) are efficiently calculated using the contrastive divergence

learning method [150]. A batch version of k-step contrastive divergence learning (CD-k)
can be discussed in the algorithm below [36]
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.3.3 Deep belief networks

The Deep Belief Networks (DBN) proposed by Hinton et al. [51] is a non-convolution model
that can extract features and learn a deep hierarchical representation of training data. DBNs are
generative models constructed by stacking multiple RBMs. DBN is a hybrid model, the first
two layers are like RBM, and the rest of the layers form a directed generative model. A
DBN has one visible layer v and a series of hidden layers h(1), h(2), …, h(l) as shown in
Fig. 4c. The DBN model joint distribution between the observed units v and the l hidden
layers hk( k = 1,…l) as (9)

P v; h1;…; hl
� � ¼ ∏l−2

k¼0P h kð Þjh kþ1ð Þ
� �� �

P h l−1ð Þ; h lð Þ
� �

ð9Þ

where v = h(0), P(hk| hk + 1) is a conditional distribution (10) for the layer k given the
units of k + 1

P h kð Þ
i ¼ 1jh kþ1ð Þ

� �
¼ σ b kð Þ

i þW kþ1ð Þ
:;i h kþ1ð Þ

� �
∀i;∀kϵ0; 1;…::l−2; ð10Þ

A DBN has l weight matrices:W(1),…. , W(l) and l + 1 bias vectors: b(0),…, b(l)P(h(l), h(l − 1)) is
the joint distribution of top-level RBM (11).

P h lð Þ; h l−1ð Þ
� �

∝e b lð Þh lð Þþb l−1ð Þh l−1ð Þþh l−1ð ÞW lð Þh lð Þð Þ ð11Þ

The probability distribution of DBN is given by Eq. (12)

P vi ¼ 1jh 1ð Þ
� �

¼ σ b 0ð Þ
i þW 1ð Þ

:;i h
1ð Þ

� �
∀i ð12Þ

3.4 Convolutional neural networks (CNN)

In neural networks, CNN is a unique family of deep learning models. CNN is a major artificial
visual network for the identification of medical image patterns. The family of CNN primarily
emerges from the information of the animal visual cortex [55, 116]. The major problem within
a fully connected feed-forward neural network is that even for shallow architectures, the
number of neurons may be very high, which makes them impractical to apply to image
applications. The CNN is a method for reducing the number of parameters, allows a network
to be deeper with fewer parameters.

CNN’s are designed based on three architectural ideas that are shared weights, local
receptive fields, and spatial sub-sampling [70]. The essential element of CNN is the handling
of unstructured data through the convolution operation. Convolution of the input signal x(t)
with filter signal h(t) creates an output signal y(t) that may reveal more information than the
input signal itself. 1D convolution of a discrete signals x(t) and h(t) is (13)

y tð Þ ¼ x tð Þ*h tð Þ ¼ ∑∞
t¼−∞x τð Þh t−τð Þ ð13Þ

A digital image x(n1, n2) is a 2-D discrete signal. The convolution of images x(n1, n2)
and h(n1, n2) is (14)
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y n1; n2ð Þ ¼ ∑M−1
k1¼0∑

N−1
k2¼0x k1;K2ð Þh n1−k1; n2−k2ð Þ ð14Þ

where 0 ≤ n1 ≤M − 1, 0 ≤ n2 ≤ N − 1.
The function of the convolution layer is to detect local features xl from input feature

maps xl − 1 using kernels kl by convolution operation (*) i.e. xl − 1 ∗ kl. This convolution
operation is repeated for every convolutional layer subject to non-linear transform (15)

x lð Þ
n ¼ f ∑Ml−1

m x l−1ð Þ
m *k lð Þ

mn þ b lð Þ
m

� �
ð15Þ

where k lð Þ
mn represents weights between feature map m at layer l − 1 and feature map n at

l:x l−1ð Þ
m represents the m feature map of the layer l − 1 and xln is n feature map of the layer

l. b lð Þ
m is the bias parameter. f(.) is the non-linear activation function. Ml − 1 denotes a set

of feature maps. CNN significantly reduces the number of parameters compared with a
fully connected neural network because of local connectivity and weight sharing. The
depth, zero-padding, and stride are three hyperparameters for controlling the volume of
the convolution layer output.

A pooling layer comes after the convolutional layer to subsample the feature maps. The
goal of the pooling layers is to achieve spatial invariance by minimizing the spatial dimension
of the feature maps for the next convolution layer. Max pooling and average pooling are
commonly used two different polling operations to achieve downsampling. Let the size of the
pooling region M and each element in the pooling region is given as xj = (x1, x2,…xM ×M), the
output after pooling is given as xi. Max pooling and average polling are described in the
following Eqs. (16) and (17).

xi ¼ max1≤ j≤M�M xj
� � ð16Þ

xi ¼ 1

M �M
∑M�M

j¼1 x j ð17Þ

The max-pooling method chooses the most superior invariant feature in a pooling region.
The average pooling method selects the average of all the features in the pooling area.
Thus, the max-pooling method holds texture information that can lead to faster conver-
gence, average pooling method is called Keep background information [133]. Spatial
pyramid pooling [48], stochastic polling [175], Def-pooling [109], Multi activation
pooling [189], and detailed preserving pooling [130] are different pooling techniques
in the literature. A fully connected layer is used at the end of the CNN model. Fully
connected layers perform like a traditional neural network [174]. The input to this layer
is a vector of numbers (output of the pooling layer) and outputs an N-dimensional vector
(N number of classes). After the pooling layers, the feature of previous layer maps is
flattened and connected to fully connected layers.

The first successful seven-layered LeNet-5 CNN was developed by Yann LeCunn in 1990
for handwritten digit recognition successfully. Krizhevsky et al. [68] proposed AlexNet is a
deep convolutional neural network composed of 5 convolutional and 3 fully-connected layers.
In AlexNet changed the sigmoid activation function to a ReLU activation function to make
model training easier.
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K. Simonyan and A. Zisserman invented the VGG-16 [143] which has 13 convolutional
and 3 fully connected layers. The Visual Geometric Group (VGG) research group released a
series of CNN starting from VGG-11, VGG-13, VGG-16, and VGG-19. The main intention of
the VGG group to understand how the depth of convolutional networks affects the accuracy of
the models of image classification and recognition. Compared to the maximumVGG19, which
has 16 convolutional layers and 3 fully connected layers, the minimum VGG11 has 8
convolutional layers and 3 fully connected layers. The last three fully connected layers are
the same as the various variations of VGG.

Szegedy et al. [151] proposed an image classification network consisting of 22 different
layers, which is GoogleNet. The main idea behind GoogleNet is the introduction of inception
layers. Each inception layer convolves the input layers partially using different filter sizes.
Kaiming He et al. [49] proposed the ResNet architecture, which has 33 convolutional layers
and one fully-connected layer. Many models introduced the principle of using multiple hidden
layers and extremely deep neural networks, but then it was realized that such models suffered
from the issue of vanishing or exploding gradients problem. For eliminating vanishing
gradients’ problem skip layers (shortcut connections) are introduced. DenseNet developed
by Gao et al. [54] consists of several dense blocks and transition blocks, which are placed
between two adjacent dense blocks. The dense block consists of three layers of batch
normalization, followed by a ReLU and a 3 × 3 convolution operation. The transition blocks
are made of Batch Normalization, 1 × 1 convolution, and average Pooling.

Compared to state-of-the-art handcrafted feature detectors, CNNs is an efficient technique
for detecting features of an object and achieving good classification performance. There are
drawbacks to CNNs, which are that unique relationships, size, perspective, and orientation of
features are not taken into account. To overcome the loss of information in CNNs by pooling
operation Capsule Networks (CapsNet) are used to obtain spatial information and most
significant features [129]. The special type of neurons, called capsules, can detect efficiently
distinct information. The capsule network consists of four main components that are matrix
multiplication, Scalar weighting of the input, dynamic routing algorithm, and squashing
function.

3.5 Recurrent neural networks (RNN)

RNN is a class of neural networks used for processing sequential information (deal with
sequential data). The structure of the RNN shown in Fig. 5a is like an FFNN and the difference
is that recurrent connections are introduced among hidden nodes. A generic RNN model at
time t, the recurrent connection hidden unit ht receives input activation from the present data xt
and the previous hidden state ht − 1. The output yt is calculated given the hidden state ht. It can
be represented using the mathematical Eqs. (18) and (19) as

ht ¼ f whxxt þ whhht−1 þ bhð Þ ð18Þ

y ¼ softmax wyh þ by
� � ð19Þ

Here f is a non-linear activation function, whx is the weight matrix between the input and
hidden layers, whh is the matrix of recurrent weights between the hidden layers and itself
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wyh is the weight matrix between the hidden and output layer, and bhand by are biases
that allow each node to learn and offset. While the RNN is a simple and efficient model,
in reality, it is, unfortunately, difficult to train properly. Real-Time Recurrent Learning
(RTRL) algorithm [173] and Back Propagation Through Time (BPTT) [170] methods are
used to train RNN. Training with these methods frequently fails because of vanishing
(multiplication of many small values) or explode (multiplication of many large values)
gradient problem [10, 112]. Hochreiter and Schmidhuber (1997) designed a new RNN
model named Long Short Term Memory (LSTM) that overcome error backflow prob-
lems with the aid of a specially designed memory cell [52]. Figure 5b shows an LSTM
cell which is typically configured by three gates: input gate gt, forget gate ft and output
gate ot, these gates add or remove information from the cell.

An LSTM can be represented with the following Eqs. (20) to (25)

Input state it ¼ σ wixxt þ wihht−1 þ bið Þ ð20Þ

Input gate gt ¼ ϕ wgxxt þ wghht−1 þ bg
� � ð21Þ

Forget gate f t ¼ σ wfxxt þ wfhht−1 þ bf
� � ð22Þ

Output gate ot ¼ σ woxxt þ wohht−1 þ boð Þ ð23Þ

Internal state mt ¼ gt⊙it þ mt−1⊙ f t ð24Þ

Hidden state ht ¼ mt⊙ot ð25Þ

Fig. 5 a Recurrent Neural Networks [163] b Long Short-Term Memory [163] c Generative Adversarial
Networks [64]
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3.6 Generative adversarial networks (GAN)

In the field of deep learning, one of the deep generative models are Generative Adversarial
Networks (GANs) introduced by Good Fellow in [43]. GANs are neural networks that can
generate synthetic images that closely imitate the original images. In GAN shown in Fig. 5c,
there are two neural networks, namely generator, and discriminator, which are trained simul-
taneously. The generator G generates counterfeit data samples which aim to “fool” the
discriminator D, while the discriminator attempts to correctly distinguish the true and false
samples. In mathematical terms, D and G play a two player minimax game with the cost
function of (26) [64].

minGmaxDV D;Gð Þ ¼ Ex∼pdata xð Þ logD xð Þ½ � þ Ez∼Pz zð Þ log 1−D G zð Þð Þð Þ½ � ð26Þ

Where x represents the original image, z is a noise vector with random numbers. pdata(x)
and pz(z) are probability distributions of x and z, respectively. D(x) represents the
probability that x comes from the actual data pdata(x) rather than the generated data. 1
−D(G(z)) is the probability that it can be generated from pz(z). The expectation of x from
the real data distribution pdata is expressed by Ex∼pdata xð Þ and the expectation of z sampled

from noise is Ez∼Pz zð Þ: The goal of the training is to maximize the loss function for the

discriminator, while the training objective for the generator is to reduce the term log(1 −
D(G(z))).The most utilization of GAN in the field of medical image analysis is data
augmentation (generating new data) and image to image translation [107]. Trustability of
the Generated Data, Unstable Training, and evaluation of generated data are three major
drawbacks of GAN that might hinder their acceptance in the medical community [183].

3.7 U-net

Ronneberger et al. [126] proposed CNN based U-Net architecture for segmentation in
biomedical image data. The architecture consists of a contracting path (left side) to
capture context and an expansive symmetric path (right side) that enables precise
localization. U-Net is a generalized DLA used for quantification tasks such as cell
detection and shape measurement in medical image data [34].

3.8 Software frameworks

There are several software frameworks available for implementing DLA which are
regularly updated as new approaches and ideas are created. DLA encapsulates many
levels of mathematical principles based on probability, linear algebra, calculus, and
numerical computation. Several deep learning frameworks exist such as Theano,
TensorFlow, Caffe, CNTK, Torch, Neon, pylearn, etc. [138]. Globally, Python is prob-
ably the most commonly used programming language for DL. PyTorch and Tensorflow
are the most widely used libraries for research in 2019. Table 2 shows the analysis of
various Deep Learning Frameworks based on the core language and supported interface
language.
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4 Use of deep learning in medical imaging

4.1 X-ray image

Chest radiography is widely used in diagnosis to detect heart pathologies and lung diseases
such as tuberculosis, atelectasis, consolidation, pleural effusion, pneumothorax, and hyper
cardiac inflation. X-ray images are accessible, affordable, and less dose-effective compared to
other imaging methods, and it is a powerful tool for mass screening [14]. Table 3 presents a
description of the DL methods used for X-ray image analysis.

S. Hwang et al. [57] proposed the first deep CNN-based Tuberculosis screening system
with a transfer learning technique. Rajaraman et al. [119] proposed modality-specific ensemble
learning for the detection of abnormalities in chest X-rays (CXRs). These model predictions
are combined using various ensemble techniques toward minimizing prediction variance.
Class selective mapping of interest (CRM) is used for visualizing the abnormal regions in
the CXR images. Loey et al. [90] proposed A GAN with deep transfer training for COVID-19
detection in CXR images. The GAN network was used to generate more CXR images due to
the lack of the COVID-19 dataset. Waheed et al. [160] proposed a CovidGAN model based on
the Auxiliary Classifier Generative Adversarial Network (ACGAN) to produce synthetic CXR
images for COVID-19 detection. S. Rajaraman and S. Antani [120] introduced weakly labeled
data augmentation for increasing training dataset to improve the COVID-19 detection perfor-
mance in CXR images.

4.2 Computerized tomography (CT)

CT uses computers and rotary X-ray equipment to create cross-section images of the body. CT
scans show the soft tissues, blood vessels, and bones in different parts of the body. CT is a high
detection ability, reveals small lesions, and provides a more detailed assessment. CT
examinations are frequently used for pulmonary nodule identification [93]. The detection
of malignant pulmonary nodules is fundamental to the early diagnosis of lung cancer
[102, 142]. Table 4 summarizes the latest deep learning developments in the study of CT
image analysis.

Li et al. 2016 [74] proposed deep CNN for the detection of three types of nodules that are
semisolid, solid, and ground-glass opacity. Balagourouchetty et al. [5] proposed GoogLeNet
based an ensemble FCNet classifier for The liver lesion classification. For feature extraction,

Table 2 Comparison of various Deep Learning Frameworks

Framework Core Language Interface provided Link

Caffe [61] C ++ Python,MATLAB, C ++ http://caffe.berkeleyvision.org/
CNTK [186] C ++ C ++,Python,Brain Script https://github.com/Microsoft/CNTK
Chainer – Python http://chainer.org/
DL4j Java Java, Python, Scala https://deeplearning4j.org/
MXNet C ++ Python, R, Scala, Perl,

Julia, C ++, etc.
https://github.com/dmlc/mxnet

MatConvNet [158] – MATLAB http://www.vlfeat.org/matconvnet/
Tensor Flow [1] C ++ – https://www.tensorflow.org/
Theano [6, 153] Python Python http://deeplearning.net/software/theano/
Torch [25] Lua – http://torch.ch/
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Table 4 A review of articles that use DL techniques for the analysis of the CT image

Reference Dataset Method Application Metrics

Van Ginneken
2015 [157]

LIDC (865 CT
scans)

CNN Nodule detects in chest CT with
pre-trained CNN models from or-
thogonal patches around the can-
didate

FROC

Li et al. 2016 [74] LIDC database. CNN Nodule classification with 2D CNN
that processes small patches
around a nodule

SN,
FP/exam

Accuracy
Setio et al. 2016

[136]
LIDC-IDRI,
ANODE09

Multi-view
Conv Net

CNN-based algorithms for
pulmonary nodule detection with
9-patches per candidate.

Sensitivity
FROC

Shin et al. 2016
[141]

ILD dataset CNN Interstitial lung disease (ILD) classi-
fication and Lymph node (LN)
detection using transfer
learning-based CNNs

AUC

Qiang, Yan et al.
2017 [117]

Independent
dataset

Deep SDAE-ELM Discriminative features of nodules in
CT and PET images are combined
using the fusion method for
classification of nodules

SN,SP,AUC,

Onishi Y et al.
2019 [108]

Independent
dataset

CNN CNN trained by Wasserstein GAN
for pulmonary nodule
classification

SN, SP,
AUC
Accuracy

Li et al. .2018
[75]

2017 LiTS,
3DIRCADb
dataset

H-Dense Unet H-Dense UNet for tumor and liver
segmentation from CT volume

DICE

Pezeshk et al.
2018 [114]

LIDC 3DFCN and
3DCNN

3DFCN is used for nodule candidate
generation and 3D CNN for
reducing the false-positive rate

FROC

Balagourouchetty
et.al 2019 [5]

634 liver CT
images

GoogLeNet based
FCNet
Classifier

The liver lesion classification using
GoogLeNet based ensemble
FCNet classifier

Accuracy,
ROC

Y.Wang et a2019
[166]

Independent
dataset

Faster RCNN and
ResNet

Intelligent Imaging Layout System
(IILS) for the detection and clas-
sification of pulmonary nodules

SN, SP AUC
Accuracy

Pang et al. 2020
[111]

Shandong
Provincial

Hospital

CNN
(DenseNet)

Classification of lung cancer type
from CT images using the
DenseNet network.

Accuracy

Masood et al.
2020 [95]

LIDC mRFCN Lung nodule classification and
detection using mRFCN based
automated decision support
system

SN, SP,
AUC,

Accuracy

Zhao and Zeng
2019 [190]

KiTS19
challenge

3D-UNet Multi-scale supervised 3D U-Net to
simultaneously segment kidney
and kidney tumors from CT im-
ages

DICE,
Recall

Accuracy
Precision

Fan et al. 2020
[35]

COVID-19
infection

dataset

Inf-Net COVID-19 lung CT infection
segmentation network

DICE, SN,
SP

MAE
Li et al. 2020 [79] 4356 Chest CT

images
COVNet COVID-19 detection neural network

(COVNet) used for the recogni-
tion of COVID-19 from volumet-
ric chest CT exams

AUC, SN,
SP

AUC: area under ROC curve; FROC: Area under the Free-Response ROC Curve; SN: sensitivity; SP: specificity;
MAE: mean absolute error LIDC: Lung Image Database Consortium; LIDC-IDRI: Lung Image Database
Consortium-Image Database Resource Initiative.
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basic Googlenet architecture is modified with three modifications. Masood et al. [95] proposed
the multidimensional Region-based Fully Convolutional Network (mRFCN) for lung nodule
detection/classification and achieved a classification accuracy of 97.91%. In lung nodule
detection, the feature work is the detection of micronodules (less than 3 mm) without loss of
sensitivity and accuracy. Zhao and Zeng 2019 [190] proposed DLA based on supervised MSS
U-Net and 3DU-Net to automatically segment kidneys and kidney tumors from CT images. In
the present pandemic situation, Fan et al. [35] and Li et al. [79] used deep learning-based
techniques for COVID-19 detection from CT images.

4.3 Mammograph (MG)

Breast cancer is one of the world’s leading causes of death among women with cancer. MG is
a reliable tool and the most common modality for early detection of breast cancer. MG is a
low-dose x-ray imaging method used to visualize the breast structure for the detection of breast
diseases [40]. Detection of breast cancer on mammography screening is a difficult task in
image classification because the tumors constitute a small part of the actual breast image. For
analyzing breast lesions from MG, three steps are involved that are detection, segmentation,
and classification [139].

The automatic classification and detection of masses at an early stage in MG is still a hot
subject of research. Over the past decade, DLA has shown some significant overcome in breast
cancer detection and classification problem. Table 5 summarizes the latest DLA developments
in the study of mammogram image analysis.

Fonseca et al. [37] proposed a breast composition classification according to the ACR
standard based on CNN for feature extraction. Wang et al. [161] proposed twelve-layer CNN
to detect Breast arterial calcifications (BACs) in mammograms image for risk assessment of
coronary artery disease. Ribli et al. [124] developed a CAD system based on Faster R-
CNN for detection and classification of benign and malignant lesions on a mammogram
image without any human involvement. Wu et al. [176] present a deep CNN trained and
evaluated on over 1,000,000 mammogram images for breast cancer screening exam
classification. Conant et al. [26] developed a Deep CNN based AI system to detect
calcified lesions and soft- tissue in digital breast tomosynthesis (DBT) images. Kang
et al. [62] introduced Fuzzy completely connected layer (FFCL) architecture, which
focused primarily on fused fuzzy rules with traditional CNN for semantic BI-RADS
scoring. The proposed FFCL framework achieved superior results in BI-RADS scoring
for both triple and multi-class classifications.

4.4 Histopathology

Histopathology is the field of study of human tissue in the sliding glass using a microscope to
identify different diseases such as kidney cancer, lung cancer, breast cancer, and so on. The
staining is used in histopathology for visualization and highlight a specific part of the tissue
[45]. For example, Hematoxylin and Eosin (H&E) staining tissue gives a dark purple color to
the nucleus and pink color to other structures. H&E stain plays a key role in the diagnosis of
different pathologies, cancer diagnosis, and grading over the last century. The recent imaging
modality is digital pathology

Deep learning is emerging as an effective method in the analysis of histopathology images,
including nucleus detection, image classification, cell segmentation, tissue segmentation, etc.
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Table 5 Summary of DLA for MG image analysis

Reference Dataset Method Application Metrics

Sahiner et al.1996
[131]

Manually extracted
ROIs from 168
mammograms

CNN CNN for classification of
masses and normal tissue on
MG.

ROC,TP,FP

Fonseca et al. 2015
[37]

– CNN CNN for feature extraction in
combing with an SVM as a
classifier for breast density
estimation

Accuracy

Huych et al. .2016
[56]

607 Digital MG
images(219
breast lesions)

CNN Pre-trained CNN models
(MG-CNN) for mass classi-
fication

AUC

Wang et al. .2017
[161]

840 standard
screening FFDMs

Deep CNN Detection of cardiovascular
disease based on vessel
calcification

FROC

Geras et al. 2017
[41]

Screening
mammograms
images 129, 208

MV-CNN Multi-view deep CNN for
breast cancer screening and
image resolution on the
prediction accuracy

Accuracy,
ROC, TP, FP

Zhang et al. 2017
[188]

3000 MG images CNN Data augmentation and transfer
learning methods with a
CNN for classification

ROC

Wu et al. 2017
[177]

200,000 Breast
cancer screening
exams

DCN Deep CNN for breast density
classification

AUC

Kyono et al. 2018
[69]

Private dataset of
8162 patients

MAMMO-CNN MAMMO is a novel
multi-view CNN with
multi-task learning (MTL) a
clinical decision
support system capable of
triaging MG

Accuracy

Lehman et al. [72] 41,479
Mammogram
images

ResNet-18 Deep learning-based CNN for
mammographic breast den-
sity classification

Accuracy

Kim et al. 2018
[65]

29,107 Digital MG
(24,765 normal
cases and 4339
cancer cases)

DIB-MG DIB-MG is weakly supervised
learning. DIB-MG learns
radiologic features without
any human annotations.

SN, SP,
Accuracy

Ribli et al. 2018
[124]

DDSM (2620),
INbreast (115),
Private database

Faster R-CNN,
VGG16

CNN detects and classifies
malignant or benign lesions
on MG images

AU

Chougrad et al.
2018 [23]

MIAS,DDSM,
INbreast, BCDR

VGG16,
ResNet50,

Inceptionv3

Transfer learning and
fine-tuning strategy based
CNN to classify MG mass
lesions

AUC, Accuracy

Karthik et al. 2018
[63]

WBCD DNN-RFS Deep neural network (DNN) as
a classifier model for breast
cancer data

Accuracy,
Precision,
SP, SN,
F-score

Cai et al. 2019 [13] 990 MG images,
540 Malignant
masses, and 450
benign lesions

DCNN Deep CNN for
microcalcification
discrimination for breast
cancer screening

Accuracy,
Precision,
SP, AUC,
SN

Wu et al. 2019
[176]

1000 000 images DCNN CNN-based breast cancer
screening classifier

AUC

Conant et al. .2019
[26]

12,000 cases,
including 4000

DCNN Deep CNN based system
detected soft tissue and

AUC
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[178]. Tables 6 and 7 summarize the latest deep learning developments in pathology. In the study
of digital pathology image analysis, the latest development is the introduction of whole slide
imaging (WSI). WSI allows digitizing glass slides with stained tissue sections at high resolution.
Dimitriou et al. [30] reviewed challenges for the analysis of multi-gigabyte WSI images for
building deep learning models. A. Serag et al. [135] discuss different public “Grand Challenges”
that have innovations using DLA in computational pathology.

4.5 Other images

Endoscopy is the insertion of a long nonsurgical solid tube directly into the body for the visual
examination of an internal organ or tissue in detail. Endoscopy is beneficial in studying several
systems inside the human body, such as the gastrointestinal tract, the respiratory tract, the
urinary tract, and the female reproductive tract [60, 101]. Du et al. [31] reviewed the
Applications of Deep Learning in the Analysis of Gastrointestinal Endoscopy Images. A
revolutionary device for direct, painless, and non-invasive inspection of the gastrointestinal
(GI) tract for detecting and diagnosing GI diseases (ulcer, bleeding) is Wireless capsule
endoscopy (WCE). Soffer et al. [145] performed a systematic analysis of the existing literature
on the implementation of deep learning in the WCE. The first deep learning-based framework
was proposed by He et al. [46] for the detection of hookworm in WCE images. Two CNN
networks integrated (edge extraction and classification of hookworm) to detect hookworm.
Since tubular structures are crucial elements for hookworm detection, the edge extraction
network was used for tubular region detection. Yoon et al. [185] developed a CNN model for
early gastric cancer (EGC) identification and prediction of invasion depth. The depth of tumor
invasion in early gastric cancer (EGC) is a significant factor in deciding the method of
treatment. For the classification of endoscopic images as EGC or non-EGC, the authors
employed a VGG-16 model. Nakagawa et al. [105] applied DL technique based on CNN to
enhance the diagnostic assessment of oesophageal wall invasion using endoscopy. J.choi et al.
[22] express the feature aspects of DL in endoscopy.

Positron Emission Tomography (PET) is a nuclear imaging tool that is generally used by
the injection of particular radioactive tracers to visualize molecular-level activities within
tissues. T. Wang et al. [168] reviewed applications of machine learning in PET attenuation
correction (PET AC) and low-count PET reconstruction. The authors discussed the advantages

Table 5 (continued)

Reference Dataset Method Application Metrics

biopsy-proven
cancers

calcific lesions in the DBT
images

Rodriguez-Ruiz
et al. 2019 [125]

9000 Cancer cases
and

180,000 normal
cases
Radiologists

DCNN CNN based CAD system AUC

Ionescu et al. 2019
[59]

Private data set CNN Breast density estimation and
risk scoring

MIAS: Mammographic Image Analysis Society dataset; DDSM: Digital Database for Screening Mammography;
BI-RADS: Breast Imaging Reporting and Data System; `WBCD: Wisconsin Breast Cancer Dataset; DIB-MG:
data-driven imaging biomarker in mammography. FFDMs: Full-Field Digital Mammograms; MAMMO: Man
and Machine Mammography Oracle; FROC: Free response receiver operating characteristic analysis; SN:
sensitivity; SP: specificity.
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of deep learning over machine learning in the applications of PET images. AJ reader et al.
[123] reviewed the reconstruction of PET images that can be used in deep learning either
directly or as a part of traditional reconstruction methods.

5 Discussion

The primary purpose of this paper is to review numerous publications in the field of deep
learning applications in medical images. Classification, detection, and segmentation are

Table 7 Summary of articles using DLA for digital pathology image - Detection and classification of disease

Reference Staining/
image
modality

Method Application Data set

Xu et al. 2016
[182]

H&E Stacked sparse
autoencoders

Nucleus detection from Breast
Cancer Histopathology
Images

537 H&E images from
Case Western Reserve
University

Coudray et al.
(2018) [27]

H&E Patch-based
Inception-V3

model

Lung cancer histopathology
images classify them into
LUAD, LUSC, or normal
lung tissue

FFPE sections (140 s)
Frozen sections (98 s),
and lung biopsies (102 s)

Song et al.
2018 [146]

H&E Deep autoencoder Simultaneous detection and
classification of cells in
bone marrow histology
images

–

Yi et al. 2018
[184]

H&E FCN Microvessel prediction in H&E
Stained Pathology Images

Lung adenocarcinoma
(ADC) patients images 38

Bulten and
Litjens 2018
[12]

H&E,
IHC

Self-clustering
Convolutional
adverse Arial
Autoencoders

Classification of the pros take
into tumor vs non-tumor

94 registered WSIs from
Radboud University

Medical Center

Valkonen et al.
2019 [154]

ER, PR,
Ki-67

Fine-tuning partially
pre-trained CNN
network

Recognition of epithelial cells
in breast cancers stained for
ER, PR, and Ki-67

Digital Pan CK (152 –
invasive breast cancer
images)

Wei et al. 2019
[169]

H&E ResNet-18 based
patch classifier

Classification of histologic
subtypes on lung
adenocarcinoma

143 WSIs private set

Wang et al.
(2019) [167]

H & E Patch-based FCN and
context-aware
block selection +
feature aggregation
strategy

Lung cancer image
classification

Private (939 WSIs),
TCGA (500 WSIs)

Li et al. 2019
[80]

H & E FCN trained with a
concentric loss on
weakly annotated
centroid label

Mitosis detection in breast
histopathology images

ICPR12 (50 images),
ICPR14 (1696 images),
AMIDA13 (606
images), TUPAC16
(107 images)

Tabibu et al.
.2019 [152]

H & E Pre-trained Res Net
based

patch classifier

Classification of Renal Cell
Carcinoma subtypes and
survival prediction

TCGA(2, 093WSI)

Lin et al. 2019
[83]

H & E Fast Scan Net: FCN
based model

Automatic detection of breast
cancer metastases from
whole-slide image

2016 Camelyon Grand
Challenge (400 WSI)

NODE: Neural Ordinary Differential Equations; IoU: mean Intersection over Union coefficient
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essential tasks in medical image processing [144]. For specific deep learning tasks in medical
applications, the training of deep neural networks needs a lot of labeled data. But in the
medical field, at least thousands of labeled data is not available. This issue is alleviated by a
technique called transfer learning. Two transfer learning approaches are popular and widely
applied that are fixed feature extractors and fine-tuning a pre-trained network. In the classifi-
cation process, the deep learning models are used to classify images into two or more classes.
In the detection process, Deep learning models have the function of identifying tumors and
organs in medical images. In the segmentation task, deep learning models try to segment the
region of interest in medical images for processing.

5.1 Segmentation

For medical image segmentation, deep learning has been widely used, and several articles have
been published documenting the progress of deep learning in the area. Segmentation of breast
tissue using deep learning alone has been successfully implemented [104]. Xing et al. [179]
used CNN to acquire the initial shape of the nucleus and then isolate the actual nucleus using a
deformable pattern. Qu et al. [118] suggested a deep learning approach that could segment the
individual nucleus and classify it as a tumor, lymphocyte, and stroma nuclei. Pinckaers and
Litjens [115] show on a colon gland segmentation dataset (GlaS) that these Neural Ordinary
Differential Equations (NODE) can be used within the U-Net framework to get better
segmentation results. Sun 2019 [149] developed a deep learning architecture for gastric cancer
segmentation that shows the advantage of utilizing multi-scale modules and specific convo-
lution operations together. Figure 6 shows U-Net is the most usually used network for
segmentation (Fig. 6).

5.2 Detection

The main challenge posed by methods of detection of lesions is that they can give rise to
multiple false positives while lacking a good proportion of true positive ones. For tuberculosis
detection using deep learning methods applied in [53, 57, 58, 91, 119]. Pulmonary nodule
detection using deep learning has been successfully applied in [82, 108, 136, 157].

Shin et al. [141] discussed the effect of CNN pre-trained architectures and transfer learning
on the identification of enlarged thoracoabdominal lymph nodes and the diagnosis of intersti-
tial lung disease on CT scans, and considered transfer learning to be helpful, given the fact that
natural images vary from medical images. Litjens et al. [85] introduced CNN for the

Fig. 6 U-Net architecture for segmentation,comprising encoder (downsampling) and decoder (upsampling)
sections [135]
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identification of Prostate cancer in biopsy specimens and breast cancer metastasis identifica-
tion in sentinel lymph nodes. The CNN has four convolution layers for feature extraction and
three classification layers. Riddle et al. [124] proposed the Faster R-CNN model for the
detection of mammography lesions and classified these lesions into benign and malignant,
which finished second in the Digital Mammography DREAM Challenge. Figure 7 shows
VGG architecture for detection.

An object detection framework named Clustering CNN (CLU-CNNs) was proposed by Z.
Li et al. [76] for medical images. CLU-CNNs used Agglomerative Nesting Clustering Filtering
(ANCF) and BN-IN Net to avoid much computation cost facing medical images. Image
saliency detection aims at locating the most eye-catching regions in a given scene [21, 78].
The goal of image saliency detection is to locate a given scene in the most eye-catching
regions. In different applications, it also acts as a pre-processing tool including video saliency
detection [17, 18], object recognition, and object tracking [20]. Saliency maps are a commonly
used tool for determining which areas are most important to the prediction of a trained CNN on
the input image [92]. NT Arun et al. [4] evaluated the performance of several popular saliency
methods on the RSNA Pneumonia Detection dataset and was found that GradCAM was
sensitive to the model parameters and model architecture.

5.3 Classification

In classification tasks, deep learning techniques based on CNN have seen several advance-
ments. The success of CNN in image classification has led researchers to investigate its
usefulness as a diagnostic method for identifying and characterizing pulmonary nodules in
CT images. The classification of lung nodules using deep learning [74, 108, 117, 141] has also
been successfully implemented.

Breast parenchymal density is an important indicator of the risk of breast cancer. The DL
algorithms used for density assessment can significantly reduce the burden of the radiologist.
Breast density classification using DL has been successfully implemented [37, 59, 72, 177].
Ionescu et al. [59] introduced a CNN-based method to predict Visual Analog Score (VAS) for
breast density estimation. Figure 8 shows AlexNet architecture for classification.

Alcoholism or alcohol use disorder (AUD) has effects on the brain. The structure of the
brain was observed using the Neuroimaging approach. S.H.Wang et al. [162] proposed a
10-layer CNN for alcohol use disorder (AUD) problem using dropout, batch normaliza-
tion, and PReLU techniques. The authors proposed a 10 layer CNN model that has
obtained a sensitivity of 97.73, a specificity of 97.69, and an accuracy of 97.71. Cerebral
micro-bleeding (CMB) are small chronic brain hemorrhages that can result in cognitive
impairment, long-term disability, and neurologic dysfunction. Therefore, early-stage iden-
tification of CMBs for prompt treatment is essential. S. Wang et al. [164] proposed the
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transfer learning-based DenseNet to detect Cerebral micro-bleedings (CMBs). DenseNet
based model attained an accuracy of 97.71% (Fig. 8).

5.4 Limitations and challenges

The application of deep learning algorithms to medical imaging is fascinating, but many
challenges are pulling down the progress. One of the limitations to the adoption of DL in
medical image analysis is the inconsistency in the data itself (resolution, contrast, signal-to-
noise), typically caused by procedures in clinical practice [113]. The non-standardized acqui-
sition of medical images is another limitation in medical image analysis. The need for
comprehensive medical image annotations limits the applicability of deep learning in medical
image analysis. The major challenge is limited data and compared to other datasets, the sharing
of medical data is incredibly complicated. Medical data privacy is both a sociological and a
technological issue that needs to be discussed from both viewpoints. For building DLA a large
amount of annotated data is required. Annotating medical images is another major challenge.
Labeling medical images require radiologists’ domain knowledge. Therefore, it is time-
consuming to annotate adequate medical data. Semi-supervised learning could be implemented
to make combined use of the existing labeled data and vast unlabelled data to alleviate the
issue of “limited labeled data”. Another way to resolve the issue of “data scarcity” is to
develop few-shot learning algorithms using a considerably smaller amount of data. Despite the
successes of DL technology, there are many restrictions and obstacles in the medical field.
Whether it is possible to reduce medical costs, increase medical efficiency, and improve the
satisfaction of patients using DL in the medical field cannot be adequately checked. However,
in clinical trials, it is necessary to demonstrate the efficacy of deep learning methods and to
develop guidelines for the medical image analysis applications of deep learning.

6 Conclusion and future directions

Medical imaging is a place of origin of the information necessary for clinical decisions. This
paper discusses the new algorithms and strategies in the area of deep learning. In this brief
introduction to DLA in medical image analysis, there are two objectives. The first one is an
introduction to the field of deep learning and the associated theory. The second is to provide a
general overview of the medical image analysis using DLA. It began with the history of neural
networks since 1940 and ended with breakthroughs in medical applications in recent DL
algorithms. Several supervised and unsupervised DL algorithms are first discussed, including
auto-encoders, recurrent, CNN, and restricted Boltzmann machines. Several optimization
techniques and frameworks in this area include Caffe, TensorFlow, Theano, and PyTorch
are discussed. After that, the most successful DL methods were reviewed in various medical

Fig. 8 CNN architecture for classification [144]

24389Multimedia Tools and Applications (2021) 80:24365–24398



image applications, including classification, detection, and segmentation. Applications of the
RBM network is rarely published in the medical image analysis literature. In classification and
detection, CNN-based models have achieved good results and are most commonly used.
Several existing solutions to medical challenges are available. However, there are still several
issues in medical image processing that need to be addressed with deep learning. Many of the
current DL implementations are supervised algorithms, while deep learning is slowly moving
to unsupervised and semi-supervised learning to manage real-world data without manual
human labels.

DLA can support clinical decisions for next-generation radiologists. DLA can automate
radiologist workflow and facilitate decision-making for inexperienced radiologists. DLA is
intended to aid physicians by automatically identifying and classifying lesions to provide a
more precise diagnosis. DLA can help physicians to minimize medical errors and increase
medical efficiency in the processing of medical image analysis. DL-based automated diagnos-
tic results using medical images for patient treatment are widely used in the next few decades.
Therefore, physicians and scientists should seek the best ways to provide better care to the
patient with the help of DLA. The potential future research for medical image analysis is the
designing of deep neural network architectures using deep learning. The enhancement of the
design of network structures has a direct impact on medical image analysis. Manual design of
DL Model structure requires rich knowledge; hence Neural Network Search will probably
replace the manual design [73]. A meaningful feature research direction is also the design of
various activation functions. Radiation therapy is crucial for cancer treatment. Different
medical imaging modalities are playing a critical role in treatment planning. Radiomics was
defined as the extraction of high throughput features from medical images [28]. In the feature,
Deep-learning analysis of radionics will be a promising tool in clinical research for clinical
diagnosis, drug development, and treatment selection for cancer patients. Due to limited
annotated medical data, unsupervised, weakly supervised, and reinforcement learning methods
are the emerging research areas in DL for medical image analysis. Overall, deep learning, a
new and fast-growing field, offers various obstacles as well as opportunities and solutions for a
range of medical image applications.
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