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Abstract
We have proposed a robust, secure and efficient image encryption algorithm based on
chaotic maps and algebraic structure. Nowadays, the chaotic cryptosystems gained more
attention due to their efficiency, the assurance of robustness and high sensitivity correspond-
ing to initial conditions. In literature, there are many encryption algorithms that can simply
guarantees security while the schemes based on chaotic systems only promises the uncer-
tainty, both of them can not encounter the needs of current scenario. To tackle this issue,
this article proposed an image encryption algorithm based on Lorenz chaotic system and
primitive irreducible polynomial substitution box. First, we have proposed 16 different S-
boxes based on projective general linear group and 16 primitive irreducible polynomials of
Galois field of order 256, and then utilized these S-boxes with combination of chaotic map
in image encryption scheme. Three chaotic sequences can be produced by the disturbed of
Lorenz chaotic system corresponding to variables x, y and z. We have constructed a new
pseudo random chaotic sequence ki based on x, y and z. The plain image is encrypted by
the use of chaotic sequence ki and XOR operation to get a ciphered image. To show the
strength of presented image encryption, some renowned analyses are performed.
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1 Introduction

Substitution box (S-box) is one of the fundamental constitute of symmetric key algorithms
which implement substitution. Substitution boxes are building blocks of symmetric cryp-
tosystems. The substitution tables (S-boxes) play a vital role in the encryption algorithms in
order to meet the definition of a perfect security. Sometime big structures like S-box slow-
down the processing of the encryption in a scenario where big data processing is required,
the main reason is the complexity of that system and this kind of negative effect reduce the
utility of that encryption algorithm in practical communication. In literature, there are many
chaotic schemes that are using one or multiple (S-boxes) to get more security, there is no
doubt that when one will use S-box the confusion creating ability of that algorithm between
ciphertext and secret key will improve but it will definitely slow down the speed of encryp-
tion [6, 9, 10, 13, 18, 23, 24, 27, 29, 33–36, 39–41]. In this paper, we have proposed an
image encryption algorithm that is based on chaotic maps and S-boxes. First, we have pro-
posed a novel 16 different S-boxes based on 16 different primitive irreducible polynomials
of Galois field of order 256 and project general linear group, then we used proposed S-
boxes in image encryption. The proposed work is to construct a secure and efficient image
encryption scheme based on straightforward and little complex steps, by chaotic Lorenz
system.

1.1 Related work

Last decade is considered as a remarkable era for secure communication and image pro-
cessing. In wireless communication, protection of digital data such as text, sound, image
and video has more importance because multimedia kind of stuff has taken hold on many
important fields like electronic commerce, banking industry, law enforcement agencies
requirements and personal data. The performance of old cryptosystems for image is poor in
encryption of bulk sized data [44, 45]. To tackle this problem, new schemes based on chaos
for image encryption have been developed.

In [3, 17], Amigo et al., and Jakimoski, has shown a link between secure communication
and chaos theory. They said chaotic maps could achieve some basic requirements of secure
communication such as randomness, robustness and sensitivity to initial conditions. In [2,
28], Ott and Alvarez has observed that values breaded by chaotic maps can be regained
based on initial conditions but extremely erratic, and this kind of behavior is valuable for
cryptosystems. Based on these properties, some cryptographers has proposed novel cryp-
tosystems in [11, 31]. Pseudorandom number generator based on chaotic maps is one of the
emerging field nowadays and can be utilized in different cryptosystems to get more security
[30]. In [21], the virtual analysis of Advanced Encryption Standard (AES), Data Encryp-
tion Standard (DES) and 3DES are presented. The scrutiny of AES is explained considering
the high throughput, area efficiency and elevated performance [20, 46]. It is presented that
AES is as authorized Advance Encryption standard (AES) and it is well apt for hardware
exercise. Moreover, the work described how to minimize the power dissipation and how to
map the S-box into prototype chip. Further, the work highlighted the secure components
of S-box which is using XOR operations instead of polynomial multiplication still there
is a limitation of complex look up tables that were used in the creation of S-box. In [14],
the cryptanalysis of previously published cryptosystem is presented. The already previously
published cryptosystem was based on the on iterating chaotic map. It is shown in [14] that
this previously published cryptosystem is weak and can easily be broken. To strengthen it,
[14] proposed novel improvements to the proposed chaotic cryptosystem.
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The rest of paper is arranged as follows: Some basic definitions of mathematical back-
ground for cryptography and details of chaotic map are given in Section 2. The detailed
description of proposed image encryption algorithm is given Section 3. Section 4 depicts
the results of simulation and different analyses. The conclusion of whole scheme is given in
Section 5.

2 Basic definitions

In this section, the structural units of proposed image encryption technique are briefly dis-
cussed. First, an introduction to the Galois field and its primitive irreducible polynomials
is presented followed with the basics of Projective General Linear Group. Secondly, the
comprehensive description of chaotic Lorenz map is discussed in this section.

2.1 Galois field and its primitive irreducible polynomials

From the knowledge of Galois field, we can say that if p is a non-zero element of a Princi-
ple Ideal Domain (PID) R, then R

p
will be a field if p is irreducible. Therefore, for a prime p

and q = pn, we can denote the finite field of order q as GF(q) = GF(pn). The polynomial
extension R[x] of intergral domanin R is also intergral domain, therefore, in case of poly-
nomial extension R[x]/ 〈p(x)〉 will be a field structure when p(x) is primitive irreducible
polynomial, where 〈p(x)〉 is a maximal ideal.

GF(q) = GF(p)[x]
〈m(x)〉 (1)

Where m(x) is monic primitive irreducible polynomial of degree n in Galois field GF(pn).
The example of above formula is as follows:

GF(28) = GF(2)[x]
〈
x8 + x7 + x6 + x5 + x4 + x2 + 1

〉 (2)

GF(28)=
{
a1+a2x+a3x

2+a4x
3+a5x

4+ a6x
5+a7x

6 + a8x
7+〈m(x)〉 |ai ∈ GF(2)

}
(3)

The elements of GF(28) can be represented by a polynomial of degree 8 and 〈m(x)〉 is
the maximal ideal generated by monic irreducible polynomial, when the degree of polyno-
mial will exceed from 7 this maximal ideal will absorb it. Now, the question is how many
different irreducible polynomials are there corresponding to any Galosi field GF(pn). The
formula to find all irreducible polynomials is as follows:

1

n

d/n∑
μ(d)P n/d (4)

By using above formula, it can be seen in Table 1, that there are 30 irreducible polynomials
for GF(28). But for the construction of Galosi field which can generate its non-zero ele-
ments we need primitive irreducible polynomials. In Table 1, we have shown that out of 30
irreducible polynomials 16 are primitive irreducible. We have used Rabin’s test to find 30
irreducible polynomials, Rabin’s test is as follows:

Theorem 1 Let p1, p2, ..., pk be all the prime divisors of n, and denoted ni = n/pi , for
1 ≤ i ≤ k. A polynomial f ∈ Fq [x] of defree n is irreducible in Fq [x] ⇔ gcd(f, xqni −
xmodf ) = 1 for 1 ≤ i ≤ k, and f divides xqn − x.
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Table 1 Irreducible and primitive irreducible polynomials corresponding to GF(28)

8 degree polynomials of GF(28) Irreducible Prim. irreducible

x8 + x7 + x5 + x4 + 1 Yes No

x8 + x4 + x3 + x2 + 1 Yes Yes

x8 + x5 + x3 + x1 + 1 Yes Yes

x8 + x7 + x6 + x4 + x3 + x2 + 1 Yes No

x8 + x6 + x5 + x4 + x2 + x1 + 1 Yes No

x8 + x7 + x6 + x5 + x4 + x3 + 1 Yes No

x8 + x5 + x3 + x2 + 1 Yes Yes

x8 + x6 + x4 + x3 + x2 + x1 + 1 Yes Yes

x8 + x4 + x3 + x + 1 Yes No

x8 + x7 + x6 + x1 + 1 Yes Yes

x8 + x6 + x5 + x2 + 1 Yes Yes

x8 + x6 + x5 + x4 + x3 + x1 + 1 Yes No

x8 + x7 + x2 + x1 + 1 Yes Yes

x8 + x7 + x5 + x4 + x3 + x2 + 1 Yes No

x8 + x7 + x3 + x2 + 1 Yes Yes

x8 + x7 + x6 + x5 + x4 + x2 + 1 Yes Yes

x8 + x5 + x4 + x3 + x2 + x1 + 1 Yes No

x8 + x7 + x6 + x5 + x2 + x1 + 1 Yes Yes

x8 + x7 + x6 + x4 + x2 + x1 + 1 Yes No

x8 + x6 + x3 + x2 + 1 Yes Yes

x8 + x7 + x4 + x3 + x2 + x1 + 1 Yes No

x8 + x7 + x6 + x3 + x2 + x1 + 1 Yes Yes

x8 + x7 + x6 + x5 + x4 + x1 + 1 Yes No

x8 + x6 + x5 + x1 + 1 Yes Yes

x8 + x5 + x4 + x3 + 1 Yes No

x8 + x6 + x5 + x3 + 1 Yes Yes

x8 + x7 + x5 + x1 + 1 Yes No

x8 + x6 + x5 + x4 + 1 Yes Yes

x8 + x7 + x3 + x1 + 1 Yes No

x8 + x7 + x5 + x3 + 1 Yes Yes

A primitive polynomial is a polynomial that generates all elements of an extension field
from a base field. Primitive polynomials are also irreducible polynomials. For any prime or
prime power q and any positive integer n, there exists a primitive polynomial of degree n

over GF(q). There are

aq(n) = φ(qn − 1)

n
(5)

primitive polynomials over GF(q), where φ(n) is the totient function.

Theorem 2 A polynomial of degree n over the finite field GF(2) is primitive if it has
polynomial order 2n − 1.
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Theorem 1, gave us 30 irreducible polynomial of Table 1. Now, the question is how to
get 16 primitive irreducible polynomials from 30 irreducible polynomials. To explain this
procedure, we have considered an example of GF(24).

GF(24) = GF(2)[x]
〈
x4 + x3 + 1

〉 (6)

There are two primitive irreducible polynomials for GF(24). The process to check whether
an irreducible polynomial is primitive irreducible or not is shown in the example and counter
example below.

Let f (x) = x4 + x3 + 1 is an irreducible polynomial. suppose α is the root of f (x). If
α is the root of f (x) then we have

f (α) = α4 + α3 + 1 = 0 (7)

α4 = α3 + 1 (8)

Because the coefficients of polynomial are in GF(2), that is why −1 = +1.

α5 = α4 + α = α3 + 1 + α = α3 + α + 1 (9)

α6 = α4 + α2 + α = α3 + 1 + α2 + α = α3 + α2 + α + 1 (10)

α7 = α4 + α3 + α2 + α = α3 + 1 + α3 + α2 + α = α2 + α + 1 (11)

Where 2α3 = 0 due to GF(2).
α8 = α3 + α2 + α (12)

α9 = α4 + α3 + α2 = α3 + 1 + α3 + α2 = α2 + 1 (13)

α10 = α3 + α (14)

α11 = α4 + α2 = α3 + 1 + α2 = α3 + α2 + 1 (15)

α12 = α4 + α3 + α = α3 + 1 + α3 + α = α + 1 (16)

α13 = α2 + α (17)

α14 = α3 + α2 (18)

α15 = α4 + α3 = α3 + 1 + α3 = 1 (19)

It can be seen in above example that we are getting α15 = 1, and the order of GF(24)

is 16, it means f (x) = x4 + x3 + 1 is a primitive polynomial because it is generating
all non-zero elements of GF(24). Where α the root of primitive polynomial is known as
primitive element, in other words, because GF is also a cyclic group so α is the generator.
All irreducible polynomials are not primitive, to show this fact a counter example is as
follows:

Let f ′(x) = x4 + x2 + 1 is an irreducible polynomial. suppose β is the root of f (x). If
β is the root of f ′(x) then we have

f ′(β) = β4 + β2 + 1 = 0 (20)

β4 = β2 + 1 (21)

Because the coefficients of polynomial are in GF(2), that is why −1 = +1.

β5 = β3 + β (22)

β6 = β4 + β2 = β2 + 1 + β2 = 2β2 + 1 = 1 (23)

It can be seen that f ′(x) = x4 + x2 + 1 is irreducible but not primitive, because it is not
generating all non-zero elements of GF(24). Similarly, in Table 1, we have got all primitive
irreducible polynomials form irreducible polynomials.
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2.2 Projective General Linear group (PGL)

The Projective General Linear Group (PGL) can be defined as the group acting on
−
F=

GF(pn)
⋃ {∞} is the group of all transformations and is denoted by PGL(2, GF(pn)).

With the standard understanding about ∞, PGL(2, GF(pn)) is the set of all linear

fractional transformations (LFT) of
−
F= GF(pn)

⋃ {∞},

PGL(2, GF(pn)) =
{
g : −

F−→ −
F |g(z) = az + b

cz + d
, a, b, c, d ∈ GF(pn), ad − bc 
= 0

}

(24)
Linear fractional transformation g(z) is shortly denoted by LFT. We study a special class of
maps

f : PGL(2, GF(28)) × GF(28) −→ GF(28) (25)

A LFT of PGL(2, GF(28)) × GF(28) is a map of the form g(z) = az+b
cz+d

, a, b, c, d ∈
GF(28) and ad − bc 
= 0

Transformation is depending on the invertible 2 × 2 matrix

(
a b

c d

)

2.3 Chaotic Lorenz system

The idea to define the chaotic dynamics with the help of chaotic maps is a big breakthrough
in the filed of dynamical systems. In the atmosphere, the mathematical modelling of the air
flow was first presented by E. Lorenz [10, 23]. The system of chaotic differential equation
is given as

dx

dt
= a(y − x) (26)

dy

dt
= bx − y − xz (27)

dz

dt
= xy − cz (28)

Where the intervals for variables x, y and z are given −60 ≤ x ≤ 60, −60 ≤ y ≤ 60,
−60 ≤ z ≤ 60. For chaotic behavior, the values for parameters a, b, and c are a = 10,
b = 28 and c = 8/3 respectively.

3 Primitive irreducible polynomial S-boxes

Now from the above linear transforamtion, we have;

fi : PGL

(
2, GF(28) = GF(2)[x]

〈pi(x)〉
)

×
(

GF(28) = GF(2)[x]
〈pi(x)〉

)
−→

(
GF(28) = GF(2)[x]

〈pi(x)〉
)

(29)

Where pi(x), i = 1, 2, 3, ..., 16 are set of primitive irreducible polynomials of Table 1 for
GF(28). Therefore, we have 16 different fi , where i = 1, 2, 3, ...16 to construct 16 differ-
ent S-boxes with fixed a, b, c, d ∈ GF(28). The order of PGL

(
2,GF(28)

)
is 16776960,

therefore one can construct huge number of S-boxes by changing a, b, c, d ∈ GF(28).
In this section, we have given an example for the construction of one S-box based on
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a = 32, b = 22, c = 11, d = 8 ∈ GF(28) and p1(x) = x8 + x4 + x3 + x2 + 1. In polyno-
mial form, a = x5, b = x4 + x2 + x, c = x3 + x + 1, d = x3. Here it must be noted that
the sign ′+′ indicates XOR operation.

f1(z) = (x5)(z) + (x4 + x2 + x)

(x3 + x + 1)(z) + (x3)
. (30)

For z = 0

f1(0) = (x5)(0) + (x4 + x2 + x)

(x3 + x + 1)(0) + (x3)
= x4 + x2 + x

x3
= μ239

μ3
= μ239−3−1 = μ237 = 237

(31)
Where μ239 = μ4 + μ2 + μ, μ3 = x3 based on p1(x) = x8 + x4 + x3 + x2 + 1,
corresponding to different primitive polynomials pi(x) of GF(28) these values of μ power
will be different.

For z = 1

f1(1) = (x5)(1) + (x4 + x2 + x)

(x3 + x + 1)(1) + (x3)
= x5 + x4 + x2 + x

2x3 + x + 1

= x5 + x4 + x2 + x

x + 1
= μ249

μ25
= μ249−25−1 = μ225 = 225 (32)

Where μ249 = μ5 + μ4 + μ2 + μ, μ25 = μ + 1 based on p1(x) = x8 + x4 + x3 + x2 + 1
For z = 2

f1(2) = (x5)(2) + (x4 + x2 + x)

(x3 + x + 1)(2) + (x3)
= (x5)(x) + (x4 + x2 + x)

(x3 + x + 1)(x) + (x3)
= x6 + x4 + x2 + x

x4 + x3 + x2 + x

= x5 + x4 + x2 + x

x + 1
= μ219

μ76
= μ219−76−1 = μ144 = 144 (33)

Where μ219 = μ6 + μ4 + μ2 + μ, μ76 = μ4 + μ3 + μ2 + μ based on p1(x) =
x8 +x4 +x3 +x2 + 1. Similarly, for z = 3, 4, 5, ..., 255 all the elements can be constructed
corresponding to primitive irreducible polynomial p1(x) = x8 + x4 + x3 + x2 + 1. All
elements of p1(x) S-box are shown in Table 2.

3.1 Analysis for evaluating the strength of S-box

In the analysis section, we shall determine the cryptographic strength of the propose S-box
with some suitable measures. To find the S-box with fitting confusion creating strength
many standard evaluating analysis are presented in literature such as Non-linearity, Bit inde-
pendent criterion (BIC), Strict avalanche criterion (SAC), Linear approximation probability
(LP) and Differential approximation probability (DP). We shall also use these criteria to test
the security of proposed S-box.

To measure the good properties of S-box benchmark criteria are presented in litera-
ture like bijectivity, differential approximation probability (DP), strict avalanche criterion
(SAC), bit independence criterion (BIC), nonlinearity, and linear probability (LP). We carry
out the security analysis of the proposed S-box of example given in Table 2 using these well
known criteria.

1. Bijectivity: [16, 22] If the linear sum of the Boolean function fi of each component of
the designed n×n S-box is 2n−1 , then f is a bijection. Mathematically, we can write as

wt(a1f1 + a2f2 + ... + anfn). (34)
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Table 2 The proposed S-box

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 237 225 144 236 211 25 147 20 185 127 132 195 123 136 197 170

1 109 112 61 84 183 4 186 54 234 121 177 129 215 48 41 1

2 162 228 194 150 141 175 74 91 70 50 47 85 176 40 34 102

3 119 223 202 206 7 22 98 158 190 148 69 30 38 113 179 224

4 131 104 165 178 106 169 174 116 26 154 21 90 65 157 76 64

5 45 5 253 86 172 124 180 67 247 115 42 118 217 240 189 192

6 199 12 6 125 216 254 251 231 210 227 126 160 151 107 73 139

7 77 122 188 8 16 232 153 111 143 203 24 39 95 99 78 182

8 89 213 241 171 81 9 72 13 105 205 3 59 120 245 35 168

9 137 27 66 97 79 71 55 226 201 187 214 239 80 2 208 255

10 63 156 249 135 83 248 110 140 29 163 155 219 184 49 68 173

11 200 10 149 51 23 57 157 14 94 58 15 209 18 103 193 142

12 133 11 56 181 242 43 96 196 33 229 37 220 130 60 88 212

13 46 93 44 221 62 87 114 100 75 246 230 222 204 235 19 164

14 128 233 252 117 82 146 138 17 161 191 53 218 166 52 145 23

15 159 108 198 28 92 31 243 207 32 134 244 0 250 152 36 101

where ai ∈ 0, 1, (a1, a2, ..., an) 
= (0, 0, ..., 0), wt() denotes the Hamming weight. In
effect, an inverse is important specifically in a substitution netwrok, therefore S-box
should be bijective.

2. Nonlinearity: The nonlinearity of an S-box can be tested by the following formula:

Nf = 2−n

⎛

⎝1 − maxω∈GF(2n)

∣∣∣∣∣∣
2−n

∑

x∈GF(2n)

(−1)f (x)⊕x.ω

∣∣∣∣∣∣

⎞

⎠ , (35)

where ω ∈ GF(28).
3. Strict avalanche criterion: This analysis depicts information that while one bit of eight

lengths input byte of plaintext modifies, will yield a 0.5 probability of the outcomes
changes in byte of 8 bits balanced for entries.

4. Bit independent criterion: For two Boolean function fj , fk , one can test the indepen-
dence criterion of a substitution box by validating if, for any two output bits of the
S-box, fj ⊕ fk (j 
= k) fulfills the SAC and nonlinearity.

5. XOR table and differential invariant: XOR table of substitution box basically depends
on the calculation of ρL(a, b) = {

x ∈ GF(28) : L(x) ⊕ L(a ⊕ x) = M
} ∀a, b ∈

GF(28). The differential invariant ρL(a, b) is found as follows:
ρL(a, b) = max︸︷︷︸

a,b∈GF(28),a 
=0

∣∣{x ∈ GF(28) : L(x) ⊕ L(a ⊕ x) = M
}∣∣.

Table 3 presents the results of above discussed analysis for our proposed S-boxes with
different Primitive polynomial of GF(28).
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Table 3 Analysis of proposed S-boxes with different Primitive polynomial of GF(28)

Pri. poly of GF(28) N.L BIC BIC of SAC SAC LP DP

x8 + x4 + x3 + x2 + 1 104.75 105.071 0.500 0.493 160/ 0.125 0.125

x8 + x5 + x3 + x1 + 1 105.75 104.929 0.502 0.503 158/ 0.140 0.242

x8 + x5 + x3 + x2 + 1 104.75 101.14 0.502 0.497 168/ 0.156 0.5

x8 + x6 + x4 + x3 + x2 + x1 + 1 105.75 105.35 0.502 0.502 160/0.125 0.125

x8 + x7 + x6 + x1 + 1 104.5 104.14 0.498 0.498 164/0.148 0.25

x8 + x6 + x5 + x2 + 1 105.5 105.71 0.502 0.505 160/0.125 0.125

x8 + x7 + x2 + x1 + 1 106.75 104.85 0.503 0.502 160/0.125 0.125

x8 + x7 + x3 + x2 + 1 104.25 104.42 0.501 0.512 162/0.132 0.25

x8 + x7 + x6 + x5 + x4 + x2 + 1 106.5 105 0.504 0.496 162/0.132 0.117

x8 + x7 + x6 + x5 + x2 + x1 + 1 106.25 103.71 0.500 0.498 162/0.132 0.125

x8 + x6 + x3 + x2 + 1 106 105.71 0.501 0.499 158/ 0.125 0.125

x8 + x7 + x6 + x5 + x2 + x1 + 1 106 103.57 0.502 0.497 166/0.156 0.25

x8 + x6 + x5 + x1 + 1 106.5 105.5 0.502 0.510 162/ 0.132 0.125

x8 + x6 + x5 + x3 + 1 106.25 105.37 0.504 0.507 158/0.132 0.125

x8 + x6 + x5 + x4 + 1 107.25 106.07 0.5 0.496 158/0.125 0.117

x8 + x7 + x5 + x3 + 1 106 105.35 0.503 0.516 162/0.132 0.125

4 Proposed algorithm for image encryption cryptosystem

In order to encrypt the digital information, we need to design a pseudorandom sequence
generator to transform the real solves of chaotic Lorenz system to a digital sequence. The
details are represented as follows. From the above system, we can get three real sequences
denoted as x, y and z. In order to achieve to a better randomness, we cut off the first N

values of the real sequences. Here we set N = 100 and denote the three real sequences as
{xi} , {yi} , {zi}, where i = 1, 2, 3, ...,m×n, where m×n is the size of plain image. The t th

value of the sequences of x, y, and z are defined as xt , yt and zt . A disturbing procession is
added to avoid the appearance of the periodic absolutely. That is, change the value of x and
y with an interval of 10000:

{
xt = xt + 0.1, yt = yt − 0.2, if zt ≤ 0, t ≡ 1 mod (10000),

xt = xt + 0.2, yt = yt − 0.1, if zt > 0, t ≡ 1 mod (10000).
(36)

First, we discard the integral part of the real sequences for all of x, y and z:
⎧
⎪⎨

⎪⎩

xi = xi − f loor(xi),

yi = yi − f loor(yi), i = 1, 2, 3, ..., m × n,

zi = zi − f loor(zi).

(37)

Where f loor(x) denotes the maximum integer that is smaller than x. Second, develop a
new chaotic sequence as following:

ki = xi, yi, zi , xi+1, yi+1, zi+1, ..., xi+f loor( m×n
3 ), yi+f loor( m×n

3 ), zi+f loor( m×n
3 ) (38)

At last, we get the modified chaotic sequence ki , the beauty of proposed chaotic sequence
is that it has the flavor of three xi, yi and zi chaotic sequences of chaotic Lorenz system.
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During experiment we have changed the length of ki according to the size of plain image
m × n by discarding some of its values from the end.

In order to get an improved image encryption scheme, we have changed the position of
plaintext image pixels by randomness of ki . The proposed scheme consists of two phases,
first phase starts from equation 4 and ends at equation 8. The basic purpose of first phase
is to changed the pixel positions of image. The second phase consists of equation (9), (10)
and (11) and in this process we are attaining pixel value change based on XOR operation
to get a fully encrypted image. Let us suppose that the plain image is I with m rows and
n columns. For the sake of convince, we have changed the image I to a one dimensional
vector, say I1(1 :m×n).

I1((p − 1)n + q) = I (p, q) (39)

where p = 1, 2, 3, ...,m and q = 1, 2, 3, ..., n. Now, the chaotic sequence ki , will change
the vector I1 to I2 with the help of following procedure.

I2(i) = I1(ki) (40)

where i = 1, 2, 3, ...,m × n. Define a new sequence with elements from GF(28) based
on ki as follows.

l(i) = mod(round((ki × 104)), 256) (41)

After getting l(i) sequence of random decimal numbers from GF(28). We will XOR l(i)

with I2(i) to get the final vector I3(i). Reshape I5(i) in the form of m × n matrix to get the
first level ciphered image as shown in equation (11).

I3(i) = I2(i) ⊕ l(i) (42)

C.I = reshape(I3(i),m, n). (43)

As a last step for the proposed algorithm, we have applied the substitution step. We can
define the process of substitution in following steps:

1. Consider the pixelof the image in the form of binary byte i.e., 8 binary bits. We divide
this set into four LSBs (Least significant bits) and Most significant bits (MSBs).

2. In the next step, the MSBs and LSBs having 4 bits each are converted into decimal
values. Conventionally, the pixel value which has to be replaced by S-box value is
selected with the help of decimal value of LSBs and MSBs. The column of S-box is
selected by the decimal value of LSBs whereas the row of S-box is carefully chosen by
decimal value of MSBs.

3. One by one all the pixel values are substituted with the values of S-box.
4. In this case, as there are number of S-boxes so each pixel of the image is replaced by

single S-box, second pixel value is replaced by another S-box and this procedure will
continue till last pixel value.

5. For the selection of S-box out of 256 S-boxes with whom the original value will be
replaced is done with the help of x, y, z trajectories of Lorenz map. The proposed
algorithm in the form of a flowchart is shown in Fig. 1.

5 Simulation results and statistical analysis

For simulation results, we take an image of cameraman having size 256 × 256. Table 4 rep-
resents the initial values of the chaotic maps which are used as secret keys. The plain image
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Fig. 1 Flowchart of the proposed algorithm

and histogram of cameraman are depicted in Fig. 2a and c. Figure 2a undergoes the process
of encryption through our proposed encryption scheme and the encrypted image is given in
Fig. 2b. The strong visual results of encrypted image indicate the quality of encryption algo-
rithm. Furthermore, the histogram of encrypted image in Fig. 2d also confirms the strength
of our scheme. On the other hand, the proposed image encryption scheme is applied on
gray scale image having gray value of 124. The gray scale image is given in Fig. 3a and b
represents the encrypted image of the gray scale image. Moreover, Fig. 3c and d depicts
the histogram images of plaintext image and encrypted image respectively. The results of
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Table 4 The initial conditions of chaotic maps used as secret keys in the proposed encryption technique

Parameters a b c

10 28 8/3

encryption are satisfactory regardless of high autocorrelation in the plain image. Similarly,
the histogram of the encrypted gray scale image shows strength of our proposed technique.

5.1 Statistical analysis

The statistical analyses are used to evaluate the strength of proposed image encryption
technique. In this work, we have employed different statistical analyses to determine the
standard of our proposed image encryption technique. In addition to this, the results of
proposed technique are being compared with the results of well-known image encryption
techniques. The description of these analyses is given in the following subsections.

5.1.1 Correlation

The correlation of an image is given as [5, 26]:

Corr . =
∑

i,j

(i − μi)(j − μj)ρ(i, j)

ϕiϕj

. (44)

where (i, j) corresponds to image pixels positions, (ρ(i, j)) is pixel value at (ith) row
and (j th) column of image, μ is the variance, ϕ is the standard deviation. The correlation
analysis determines the similarity between two neighbor image pixels over the whole image
having range between [−1 1] with 1 showing the perfect correlation.

Figure 4a shows the distribution of horizontally adjacent pixels of cameraman image
and Fig. 4b shows the distribution of horizontally adjacent pixels of encrypted cameraman
image. The distribution of vertical adjacent pixels in ciphered cameraman image will act
similar as they respond in horizontal adjacent pixels.

Fig. 2 Simulation outcomes of proposed scheme a 256 × 256 size plain image of cameraman b cameraman
image after encryption with secret keys c histogram analysis of cameraman d histogram analysis of encrypted
cameraman
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Fig. 3 Simulation outcomes of new image encryption technique. a gray scale image having size 256 × 256,
b encrypted image of gray scale c histogram results of one gray scale image d histogram results of encrypted
one gray scale image

5.1.2 Entropy

The entropy of an image is given as [5, 26]:

Entropy = −
∑

i,j

pr(ρ(i, j)) log2 pr(ρ(i, j)). (45)

where i, j corresponds to image pixels positions, ρ(i, j) is pixel value at ith row and j th

column of image and pr(ρ(i, j)) is the probability of image pixel. Entropy shows the ran-
domness of image having range between [0 8] for an image having 256 gray scales. A
greater value of entropy shows the greater amount of randomness.

5.1.3 Contrast

The contrast of an image is given as [5, 26]:

Contrast =
∑

i,j

|i − j |2ρ(i, j). (46)

where i, j corresponds to image pixels positions, ρ(i, j) is pixel value at ith row and j th

column of image. The contrast analysis of the image enables the viewer to vividly identify
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Fig. 4 a The distribution of horizontally adjacent pixels of cameraman image and b encrypted camera-
man image. The distribution of vertical adjacent pixels ciphered cameraman image will behave the same as
horizontal adjacent pixels
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the objects in texture of an image. The contrast values ranges from [0 (size(Image)− 1)2].
The contrast value of a constant image is 0. The greater value of the contrast shows greater
variation in image pixels.

5.1.4 Homogeneity

In [5, 26], the homogeneity of image is defined as:

Homo. =
∑

i,j

ρ(i, j)

1 + |i − j | . (47)

where the location of image pixels is given by i, j . In this analysis, the closeness of gray
level cooccurrence matric (GLCM) diagonal and GLCM is calculated. The interval for
homogeneity is [0 1].

5.1.5 Energy

The energy of an image can be defined as [5, 26]:

Energy =
∑

i,j

ρ(i, j)2. (48)

where i, j depicts the position of image pixels. The above equation interprets the energy
analysis as the summation of square of all elements in GLCM. The value of energy lies in
the interval [0 1] and the constant image has maximum energy value of 1. Table 5 shows
the value of energy analysis and also the comparison with other existing techniques. This
comparison indicates the quality of our proposed scheme.

6 Security analysis

It is mandatory to compute the security analyses to assess the strength of any cryptosys-
tem. In this section, we assessed the security of our scheme with the help of certain security
analyses like key space, key sensitivity, avalanche analysis, noise resistant analysis and
cryptanalysis. The comparison of the outcomes of these analyses with the security analy-
ses of other schemes exemplify the strength of our proposed technique. Following sections
describe the security analyses in detail.

Table 5 Comparative statistical analysis on the encrypted images of lena resulted from applying proposed
image encryption algorithm and other related works

Analysis Corr. Entropy Homo. Contrast Energy

Ref. [32] 0.0687 7.1735 0.8121 8.3849 0.1254

Ref. [4] 0.0439 2.5643 0.5733 4.9454 0.4263

Ref. [42] 0.0313 7.9735 0.8251 8.1833 0.2132

Ref. [38] -0.0308 7.9311 0.8365 8.0522 0.1984

Ref. [1] -0.0293 7.9801 0.9102 8.6603 0.0674

Ref. [15] 0.0025 7.9972 0.8742 8.4251 0.0257

Proposed -3e-4 7.9521 0.9598 8.4587 0.3521
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6.1 Key space and key sensitivity

For any cryptographic system, the total number of secret keys which are used to encrypt the
data are named as key space and it has its importance as far as security of whole scheme is
concerned. In this work, the secret keys are the initial conditions of three different chaotic
maps. The secret key has average range of 1020 and we have used three different secret
keys so the total number of different keys can be given as 1020×3 = 1060. A recent per-
sonal computer will require over 1010 years to go through all possible blends of this huge
keyspace.

One of the features of the quality cryptosystem is there sensitivity to a tiny change in
secret keys. For instance, the change in secret key during decoding process will give alto-
gether a different decoded image. This mechanism is named as key sensitivity. Our proposed
encryption technique is sensitive to even a minor change in the initial conditions. To prove
this claim, we will change the secret keys and show the pictorial results. By using secret
keys as mentioned in Table 2, we have encrypted the cameraman image as given in Fig. 2a.
Considering four different cases of changing initial secret keys we have following results.

Case I: If the initial secret key k1 is slightly changed i.e., k1 = a = 10 to k′
1 = a =

10.0000000001 then it is observed that the decryption process does not get the
required results. Figure 5a depicts the decryption of plain-image with key k′

1. In
this process, the remaining two keys were remained the same.

Case II: For the second case, the key k2 is changed from its original value i.e., k2 = b =
28 to k′

2 = b = 28.0000000001 and again with this slight change in one key, the
decryption image does not resemble to the original plaintext image and hence
prove our claim of key sensitivity. The decryption is given in Fig. 5b.

Case III: The initial secret key k3 is slightly changed while keeping the remaining keys
same. A change of 0.0000000001 in k3 i.e k3 = c = 8/3 to k′

3 = c = 8/3 +
0.0000000001 provides a different original image as given in Fig. 5c.

Case IV: For the last case, the key k4 is changed like k1 = a = 10 to k′
1 = a =

9.99999999999 and the decrypted image is given in Fig. 5d.

In all four cases, even a slight change in the initial secret key could not obtain the original
image and hence prove our claim of key sensitivity for proposed algorithm.

6.2 Avalanche analysis

In block ciphers, the effect of avalanche mentions one of the properties of strong crypto-
graphic algorithms. If a single input bit change effect the half number of output bits, then it
is an apparent avalanche effect. Researchers prefer unified average change intensity (UACI)
and number of pixel change rate (NPCR) to measure the effect of avalanche criteria. The
detailed description of this effect is provide in [43] as:

NPCR =
∑

i,j D(i, j)

N × M
× 100%, (49)

UACI = 1

N × M

⎡

⎣
∑

i,j

|C1(i, j) − C2(i, j)|
255

⎤

⎦× 100%, (50)

24815Multimedia Tools and Applications (2021) 80:24801–24822



Fig. 5 Key sensitivity analysis a First secret key is changed from k1 = a = 10 to k′
1 = a = 10.0000000001

b Second secret key is k2 = b = 28 to k′
2 = b = 28.0000000001 c Third secret key is changed from

k3 = c = 8/3 to k′
3 = c = 8/3 + 0.0000000001 d Fourth secret key is changed from k1 = a = 10 to

k′
1 = a = 9.99999999999

Where the two ciphered digital images C1 and C2 are attained by changing the single bit
of plain image. Moreover, the height and width of cipher images are given by N and M

respectively. We can define the D(i, j) as

D(i, j) =
{

0 if C1(i, j) = C2(i, j),

1 if C1(i, j) 
= C2(i, j).

By adjusting the single pixel of plaintext image, the rate of change of pixel quantity of
encrypted image is measured by number of pixel change rate (NPCR) analysis. Moreover,
the normal power of contrast between plain and encrypted images is calculated by unified
average change intensity analysis (UACI). The calculated minimum value for NPCR must
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be 50percent . In our work, three different plain images of Lena, baboon and cameraman
have been through NPCR and UACI analyses. For each image, the position of bit is firstly
changed around first pixel then around middle pixel and finally around the last pixel. Table 6
depicts the outcomes of NPCR and UACI for all cases of three images. In this Table, the
value of NPCR remains greater than 99 percent and value of UACI is greater than 33 percent.
These results indicate the strong avalanche effects. In addition to this, a comparison has
been established between avalanche values of proposed scheme and AES

By using NPCR and UACI analyses, the key sensitivity of proposed scheme is also
evaluated. In first case, two same keys with difference of only 1 bit are used to calcu-
late the difference between two encrypted images. For the second case, the difference
of one bit between two keys would remain the same but we calculated the difference
between encrypted and decrypted images. Table 6 gives the results of both cases along with
comparison with AES. The results of Table 6 show the required avalanche effect.

6.3 Noise resistant analysis

The noise resistant encryption algorithm depicts the strength of any cryptosystem. Any
transmitted data may get effected by channel (irrespective of wired or wireless channel)
noise or deliberately added noise. It is observed that it is hard to decipher the abandoned
cipher image even the portion of the image is affected. Few methods like error detection and
correction have been used to counter these situations but at the cost of computational com-
plexity. For successful transmission and decryption of cipher data, the error detection and
correction are required before both the steps. So, ultimately it increases the complexity of
the system. In this proposed technique, the addition of noise does not become the hurdle to
decipher image correctly with some minor changes. To verify this claim, a series of exper-
iments regarding successful deciphering have been done with noise addition in the cipher
images. Figure 6a and b represent the plain image and encrypted images respectively. This

Table 6 The comparison of UACI and NPCR analysis of proposed technique and AES on the images of
Lena, Baboon and cameraman. For all three images three cases are proposed. Changing of single bit in first
pixel, mid pixel and last pixel. Moreover, the analysis of key sensitivity for two cases are also given

Analysis NPCR(%) UACI(%)

Images & Loc. Prop. AES Prop. AES

Cman first 99.5212 99.6048 33.5120 33.5360

mid 99.5862 99.6201 33.3014 33.5212

last 99.5410 99.5819 33.4120 33.5245

Lena first 99.2563 99.6094 33.2010 33.3996

mid 99.5210 99.6506 33.6320 33.3139

last 99.4198 99.6002 33.5202 33.5133

Baboon first 99.1252 99.6124 33.3620 33.4463

mid 99.5271 99.6033 33.4510 33.4561

last 99.6389 99.6185 33.6930 33.5252

Key S. Case I 99.4802 99.5972 33.7401 33.5029

Case II 99.0025 99.6460 33.2015 33.5468
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(b)(a) (d)(c)

(f) (g)(e) (h)

(a)

Fig. 6 a A test image, b encryption of test image using secret keys. c Adding noise in the cipher image by
changing first 10,000 pixels either by cropping or corrupting the file by using the white pixels. d Deciphered
image. e The cameraman noisy image, f encryption of cameraman image using secret keys. g Adding noise
in the cipher image by changing first 10,000 pixels either by cropping or corrupting the file by using the
white pixels. After decryption, h Deciphered image

encryption is done with the help of secret keys of Table 4. For noise resistance test, the
10,000 pixels of encrypted image are either cropped or made corrupted with white pixels as
shown in Fig. 6c. The deciphering of this image is given in Fig. 6d. Clearly, this pictorial
representation indicates the successful decryption with minor changes. To prove this claim
for other images, the cameraman image is encrypted with the secret keys of Table 4. The
plain image with noise and its encryption is given in Fig. 6e and f respectively. Now, again
we removed first 10, 000 pixels either with the help of cropping or by corrupting the image.
Interestingly, the decryption is successful with minor changes and as shown in Fig. 6g and h.

On the other hand, there is a difference between the deciphering of plain text and digital
image. For noisy cipher text, the deciphering of the text gives a whole new text. There are
many examples in which the major concern is to recognize the face of the person and object
irrespective of quality of decipher images. For this reason, the deciphering of encrypted
images having added noise is major breakthrough.

6.4 Cryptanalysis

To evaluate the strength of proposed scheme against different malicious attacks, following
attacks are considered to evaluate the proposed cryptosystem.

6.4.1 Linear cryptanalysis

Linear approximation probability is used to analyze the imbalance of an event. The max-
imum value of imbalance of the event can also be obtained with the help of this analysis.
In this analysis, two masks Γ x and Γy, are applied to parity of both input and output bits,
respectively. In [25], it is defined as:

LP = maxΓ xΓy 
=0

∣∣∣∣
{x/X • Γ x = S(x) • Γy = Δy}

2n
− 1

2

∣∣∣∣ , (51)
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where all the inputs values are contained by set X and total number of this set are 2n. As we
have used 8 different S-boxes and the average maximum value of LP is LPmax = 2−4.21 and
having distinct 256 S-boxes the maximum LP is given as LP 4r

max = 2−4.21×256 = 2−1077.
By seeing the outcomes of LP, it is almost impossible for an invader to differentiate our
proposed cipher with the help of random permutation and hence, the proposed algorithm
will show resistance for countering linear cryptanalysis.

6.4.2 Differential cryptanalysis

One of the precise goals for assurance of uniform mapping, the input differential extraor-
dinarily supervises the differential at output end. These features certify the probability of
uniform mapping for every input bit i. The main purpose of approximation probability is to
calculate differential uniformity of S-box. In [8] it is given as:

DP(Δx → Δy) =
[ {x ∈ X/S(x) ⊕ S(x ⊕ Δx) = Δy}

2m

]
, (52)

where the input and output differentials are given by Δx and Δy respectively. For S-boxes,
the maximum average value of DP is DPmax = 2−4.05. Here, the number of active S-boxes
is exactly 256 i.e., DP 4r

max = 2−4.05×256 = 2−1036. By seeing this outcome, it is confirmed
that proposed scheme has the ability to resist against malicious differential cryptanalysis.

Moreover, we have done the security analysis of the proposed substitution box and
compared with the state-of-art recent works. Table 7 shows the comparative results strict
avalanche criterion, bit independent criterion, BIC for SAC, linear approximation probabil-
ity, and differential approximation probability of proposed and other S-boxes demonstrating
the superiority of our proposed S-Box.

6.5 Computational time

The other requirement for the encryption algorithm is the computational complexity, which
is required to be as minimum as possible for the effective and efficient implementation
of encryption algorithm over the different platforms. We have computed the time required
for the proposed encryption algorithm considering 12 rounds and a data block size of 20
MB. We have compared the computational time of the proposed algorithm and compared
with the state-of-art recent works. Table 8 shows the comparative results of computational

Table 7 Comparative analysis of strict avalanche criterion, bit independent criterion, BIC for SAC, linear
approximation probability, and differential approximation probability of proposed and other S-boxes

Methods SAC BIC BIC of SAC LP DP

Ref. [7] 0.4998 112 0.504 144/0.0625 0.0156

Ref. [12] 0.4999 112 0.504 144/0.0625 0.0156

Ref. [19] 0.4864 104 0.504 144/0.1563 0.0172

Ref. [37] 0.4939 107 0.504 160/0.0625 0.0625

Ref. [37] 0.5020 103 0.505 160/0.1250 0.0469

Ref. [37] 0.5040 112 0.504 144/0.0625 0.0156

Ref. [37] 0.5040 112 0.504 144/0.0625 0.0156

Ref. [37] 0.5040 112 0.504 144/0.0625 0.0156

Proposed 0.4999 112 0.504 144/0.0625 0.0156
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Table 8 Comparative results of computational time of proposed and other works demonstrating the
superiority of our proposed work

Methods Computational Time (sec)

Ref. [7] 12

Ref. [12] 21

Ref. [19] 17

Ref. [37] 14

Proposed 3.7

time of proposed and other works demonstrating the superiority of our proposed work. The
time is computed on a desktop machine using MATLAB software on Windows 10 with i5
processor and 8GB RAM.

7 Conclusion

In this paper, combination of proposed S-boxes and chaotic maps is used for image encryp-
tion algorithm. This scheme consists of two phases. In the first phase, substitution is
performed by using multiple S-boxes instead a single S-box. The application of several S-
boxes not only provide Additional security but also utilizes less round of encryption. The
initial values of Lorenz chaotic map help to operate each round of encryption. In addition
to this, permutation is performed in the second phase. The resistance of proposed encryp-
tion scheme is depicted through simulation and security analyses results. The outcomes of
cryptanalysis also confirm the robustness of our proposed scheme. This work also moti-
vates researchers to add different changes like increasing number of S-boxes and encryption
rounds by keeping standard of encryption and computational complexity.
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