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Abstract
Electronic documents constitute specific units of information, and protecting them against
unauthorized access is a challenging task. This is because a password protected document
may be stolen from its host computer or intercepted while on transfer and exposed to unlim-
ited offline attacks. The key issue is, therefore, making document passwords hard to crack.
We propose to augment a common text password authentication interface to encrypted doc-
uments with a biometric facial identity verification providing highly personalized security
mechanism based on pseudo-identities. In consequence the encrypted document can be
unlocked with the legitimate user’s face, while for everyone else stays encrypted with a hard to
crack text password. This paper makes two contributions: (1) The proposed scheme enables
password autofill without referring to any external service, which significantly limits the
possibilities of an attack by adversaries when opening, reading and editing the protected
document, (2) By the adoption of biometric verification techniques enabling fine-tuning of
false acceptance and false rejection rates, it provides for responsible adaptation to users.

Keywords Document encryption · Automatic password generation ·
Biometric identity verification · Reactive documents · Natural user interface

1 Introduction

Internet enables individuals to link across boundaries to work together for a common pur-
pose by sharing and exchanging electronic documents of any format and with an arbitrary
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content. When needed, the content may be encrypted with a text password or an equivalent
identity verification mechanism. As long as the document stays in its home directory this
mechanism may be reinforced by its host server, which is capable of successfully repelling
online attacks by limiting the acceptable number of guesses. However, when being trans-
ferred over the net, either uploaded/downloaded by users or sent as an email attachment,
the document has no external protection from any third party intercepting it and is on its
own against far more powerful offline attacks. In such a case, the password protecting it
should be sufficiently strong to withstand an unbounded number of possible guesses. A seri-
ous challenge addressed in this paper is to enable users to effortlessly encrypt and decrypt
documents with such strong passwords without the need memorize them.

1.1 The document password challenge

A password protecting document content must be strong enough to withstand offline attacks
for the entire life time of the document. This period may extend over several hours as well as
several months; as long as the business process is not completed, the protected content of its
documents may have value for potential attackers. Later, upon completion, the documents
may be destroyed or archived on a well (online) protected server. Only then would their
passwords no longer be needed.

The question is what the lower bound of the number of guesses may be assumed to
be secure for offline attacks, as hardware and cracking methods constantly improve. The
estimate given in [13] of 1014 guesses is probably far too low today, but on the other hand
the potential of 32-character passwords composed of symbols from the ASCII 95 printable
character set still seems inexhaustible in this respect. The standard Shannon’s metric for the
amount of information in a string of L = 32 characters selected at random from the set of
N = 95 uncorrelated symbols estimates the number of bits of entropy as Hsh = log2N

L =
L · log2N = 32 · log295 ≈ 210. In other words, when using the brute-force approach the
required number of guesses could be as high as 2210 ≈ 1, 9 · 1063. Passwords of this kind
are supported today by many document writer/authoring tools, including MS Word, Libre
Office and Acrobat Writer.

Although strong, such long and complex passwords are not only impossible to remember
but also often difficult to type correctly, making them useless when unique passwords are
needed for every document that the user may want to access.

A popular solution to this problem with regard to multiple accounts could be the auto-
matic password generator, capable of generating arbitrarily complex random strings of
symbols [7, 21, 32, 49]. It may be a part of a more general generative password manager [29]
that can also take care of storing generated passwords in some encrypted database or repro-
ducing them on demand to access the password protected local or remote entity. However,
this common register-first-login-next pattern that works in handling multiple user accounts
will not work for password encrypted documents exchanged in a business process, as the
document’s originator and recipient usually are not the same person and operate different
personal devices. Once generated on one device, the password (or a secret used to generate
it) should be securely transferred to another device. It may be particularly troublesome if
encrypted documents are exchanged as email attachments instead of being stored in a shared
repository protected online. Moreover, business processes may involve many collaborators
exchanging multiple documents many times. Passwords used to encrypt these documents
can often be of a one-time use and their number may vary in respect to the current dynamic
context of communication between collaborators, e.g. when many originators send different
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documents to one recipient or when just one originator sends multiple copies of a docu-
ment to many recipients. Keeping track of all the passwords used in this process by each
participant can be mentally difficult, error prone and annoying.

Another solution to mitigate the problem of memorizing strong passwords by human
users could be biometric authentication. It relies on performing measurements of the subject
to decide if the thus obtained data stay within the limits of his/her unique identity template,
or biometric reference data, regarding his/her fingerprint, voice or face. Although biometric
authentication serves essentially the same purpose as the password based authentication, it
may not be 100% accurate always. This is because it involves a non-zero Hamming distance
decision threshold to accept the input (biometric) representation of the user, whereas the
password based identity verification can accept only the exact submitted password string.
One serious problem is that if permanent (not resettable) biometric reference data are stolen
the attacker can use them to access other biometrically protected documents destined for the
same user. Moreover, a widespread use of biometric verification for protecting documents
exchanged in office practice could be limited by the fact that popular document writing and
authoring tools can offer so far only the less convenient text based password protection.

1.2 A reactive document solution

The challenge of using strong text passwords to make documents resistant to offline attacks
is addressed further in this paper by the solution layering passwordless biometric identity
verification atop automatic password generation. In that way, the protected document con-
tent can be encrypted with a strong password, whereas the document as a whole is a reactive
entity that can automatically generate the required password only if the user in front of the
supporting personal device camera is the legitimate person. We call the proposed solution
scheme For Your Eyes Only (FYEO); its contribution can be summarized in the following
points:

1. Biometric verification is based on a biometric identity template of the legitimate user.
The template is irreversible, so no meaningful biometric data of the legitimate user can
be reconstructed by an impostor to deceive the document to open up, and the password
cannot be generated unless the biometric verification of the recipient is positive.

2. Arbitrary strong passwords involving all printable characters can be generated using
the biometric identity template as a source of entropy. Any customary document writ-
ing/reading tool that supports text-based password protection of the document content
can be incorporated into the scheme.

3. The biometric identity template is delivered directly to the recipient’s device with the
password encrypted content, so the document can be decrypted offline, without the
support of any external authorization server.

4. The algorithm for generating a password is a secret that would be much more difficult
to reconstruct by an impostor than to guess the otherwise strong password (if at all
possible, due to the potential infinite number of algorithms to try).

In Section 2 the overall structure of the FYEO scheme is outlined and various threat sce-
narios are analyzed. Given several unique properties of the identity template it is argued
in Section 3 that sending the template along with the encrypted document in one bundle is
safe. In Section 4 the FYEO scheme is validated using a generic cost-effective feature based
identity verification mechanism and a few common sense text password generation meth-
ods. Section 5 provides a short survey of current research and technologies for biometric
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protection of digital content that the scheme proposed in the paper draws on, namely auto-
matic password generation tools, entropy sources and face unlocking systems. Section 6
concludes the paper by outlining implementation of the FYEO scheme in two experimental
document exchange platforms developed by authors.

2 The FYEO scheme

The process of encrypting and decrypting a document to be exchanged in this scheme
requires its sender and recipient to perform several simple steps described below. They all
involve a facial identity template (FIT) file generated separately for each prospective doc-
ument recipient on a dedicated server. The server is isolated from the Internet to prevent
attackers from intercepting photos of the subject that might be used later to deceive the
encrypted document to open up. As mentioned before, the FIT file content is not reversible,
i.e. once disposed on the server the original photos cannot be reconstructed from it. How-
ever, it suffices to verify the identity of the legitimate user and provides a source of entropy
for generating a strong text password.

2.1 FYEO processes

Prior to sending any decrypted document to its user, each prospective recipient has to reg-
ister at the FYEO enrollment point, shown in Fig. 1. A series of face shots is taken, with
the exact number depending on the actual quality assessed by the image to biometric data
encoder. The respective FIT file is generated and stored in the biometric data repository.
The personal identifier PID is also generated to provide the user with a secret value that can
affect the output of the password generation process.

The encryption process is outlined in Fig. 2. The yet unsecured document is picked by
a sender (originator) from the repository of original documents, or is created as a new one.
The recipient’s FIT file and PID code are fetched from the biometric data repository and
the password generation algorithm is picked from the repository of biometric password gen-
erators. Each algorithm is identified by its unique algorithm identifier AID. The biometric
password generator can be implemented as a plug-in to enable unlimited expansion of the
FYEO system. With that, new algorithms may be added and older ones removed when con-
sidered obsolete or expired. A password is generated by the generation algorithm module
based on the PID code and the content of the FIT file, passed next to the document writer
module to encrypt the original document. The encrypting application combining these two
modules can incorporate any third party document writer tool, if only the latter can support
document encryption based on text passwords. Finally the FIT file, the AID code and the
encrypted document are bundled in one package to be uploaded to the target user computer
or sent out as an email attachment.

Fig. 1 FYEO enrollment process
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Fig. 2 FYEO encryption process (originating device)

The decryption process is performed on the recipient’s (receiving) device, as shown in
Fig. 3. Upon attempting to open the received FYEO document bundle, the detach process
is started to extract the FIT file, the AID code and the encrypted document itself. Next, the
validity of the AID code is checked in the current user’s context (e.g. the expiry date, valid
time of the day and date of opening the document, the allowed geographical location of
the opening device, its required type or model, etc.) and availability of the corresponding
password generator plug-in on the receiving device. If these conditions are met the user is
prompted by a receiving device to take a face shot. The obtained image is processed by the
biometric verifier module, which verifies if the actual image of the recipient matches the
received FIT content and can be accepted. Next a text password is generated by the gener-
ation algorithm module based on the PID code provided by the recipient and the content
of the detached FIT file and passed to the document reader module to open the encrypted
document. The decrypting application combining the three aforementioned modules can
incorporate any third party document reader tool, which may not necessarily be the same as
the one used by the originator to encrypt the original document.

Fig. 3 FYEO decryption process (receiving device)
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2.2 Threat scenarios

Below we analyze several threats that password protected documents can face during their
lifetime and identify the related incidents, in particular the ones that may occur during trans-
fer of the document over the Internet. We also assess the adequate countermeasures that the
FYEO scheme can provide in that regard. They are listed in decreasing order of the chance
that each related risk may occur given the number of safeguards that may be currently avail-
able to the document. On this basis we will specify further in Section 3 the desired properties
of biometric data in FIT files that can be used to reduce the risk of successful offline attacks
on text passwords generated based on such data.

2.2.1 Illegal interception of the document bundle

The FYEO document bundle may be stolen by a third party while on transfer or just sent
by mistake to a wrong (but malicious) recipient. Its only protection would then be the pass-
word, which the attacker may try to guess. If he/she is unaware of the FYEO protection the
attacker most likely would attempt the brute force or dictionary attacks on the hash extracted
from the document. If the password is strong enough, e.g. is a long string of characters
selected at random from a rich set like ASCII95, the brute force or dictionary attacks would
fail. If however, the attacker is aware of the FYEO scheme, he/she may attempt to generate
the password based on the content of the intercepted FIT file. Due to lack of the password
generation software, however, the value of AID will be useless to the attacker, so the alter-
native to guessing of the password string might be guessing its generation algorithm. But
the set of non-trivial algorithms that based on a single fixed length FIT file can generate
strings of length L from a finite alphabet of N characters may potentially be infinite. So a
sensible attacker would rather return to guessing the password string directly, by searching
through NL strings, instead of attempting to reproduce the algorithm used to generate it.
But with N sufficiently large it would be hard anyway.

2.2.2 Theft of the receiving device

If a personal device of the legitimate recipient is stolen, the adversary may know the owner’s
identity and most likely will attempt using the FYEO decrypting application. He/she may
look for images of the identified user on the Web, as well as in the local directories of the
stolen device. Two types of “signal tapping” attacks are possible in such a case [34]. One
is the sensor attack, when the attacker submits a biometric input (e.g. generates images)
without being able to observe the discretization output of the biometric verifier module, as
shown in Fig. 3. Another is the discretizer attack, when the attacker is able to observe the
binary feature representation corresponding to the biometric input. For the sensor attack
a large set of biometric inputs may be attempted one after another until one of them is
accepted, whereas for the discretizer attack resubmitting past unsuccessful binary repre-
sentations may be avoided and the attack completed faster. But the sensor attack may be
too costly for the attacker if the biometric verifier of the FYEO decrypting application can
accept only a very narrow variability range of images of the legitimate subject and reject
any of his/her general photos available on the Web or in the stolen device. In other words it
should exhibit a relatively high false rejection rate (FRR). On the other hand, a discretizer
attack would require the attacker to have prior access to images originally submitted to the
biometric data encoder at the FYEO enrollment point shown in Fig. 1 in order to experiment
what input could generate the FIT file of interest. That however would not be possible with
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the enrollment point operated offline (out of the Internet). The biometric verifier module of
the decrypting FYEO application installed on the device would not help much either if it
had no generation capability of FIT files. Moreover, the FYEO decrypting application may
be protected against hacking by hardening its code at various levels through the applica-
tion of multiple layers of diversification and obfuscation, as developers of critical software
applications often do [19].

On top of that some sort of “semi-online” protection maybe implemented on the local
device by the decrypting application, which could corrupt or delete the encrypted document
after exceeding a certain number of failed attempts to verify biometrically the candidate
subject.

2.2.3 Takeover of the receiving device

A more dangerous scenario involves the attacker taking over the receiving device of the
legitimate user where the encrypted document is supposed to be opened. In such a case it
might be possible to covertly retrieve the PID code of the latter by logging the keys struck on
a keyboard to capture his/her images that the biometric verifier of the decrypting application
could accept. This threat may also involve a phishing attack with a legitimate email message
intercepted by the attacker (or a false one) prepared to retrieve the PID code and images
of the subject when opening it. Like for other threats related to the takeover of the receiv-
ing device, which may be possible for any document protection method (like capturing the
screen or the printer of the hacked device when the opened document is read or printed), the
primary preventive measure will be responsible access management to the personal device
by its owner; it should include keeping its OS up-to-date and installing only trusted appli-
cations, implementing dedicated frameworks for security policy enforcement [55] or even
adopting hardware based security technologies [59]. However, thanks to the fact that open-
ing of the encrypted document in the FYEO scheme does not require connection to any
external authentication service, a simple countermeasure to this type of attacks could be just
not opening the encrypted documents when the device is connected to any network. Upon
completing his/her work with the document the user’s PID code, his/her device’s camera as
well as any other sensitive information will no longer be needed – thus, not being available
to potential attackers when the network connection is reestablished.

2.2.4 Takeover of the originating device

Minimizing threats to originating devices depends on the particular user scenario. If the
encrypted document is to be sent for a one-time use by one or more recipients in a multicast
fashion, or made ready for download by the remote users, the originating device would
be most likely a document server operated by users’ organization. Its defenses could then
be based on the robust online protection mechanisms mentioned before. However, if the
previously received document is encrypted again for forwarding to the subsequent recipient,
the previously receiving personal device may become the originating one. In this case a
reasonable security policy would be the same as indicated before for the receiving device:
responsible (access) management and performing document encryption only in the offline
mode to prevent eavesdropping.

Upon taking over the originating device, the encryption process potentially may be
attacked at several points, as shown in Fig. 2. One is the biometric database, which does not
contain any useful data except user PIDs. They could be securely stored in a digital wal-
let or other local encrypted database, for example the Apple KeyChain password manager
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does so with passwords, account names, and credit card numbers [2]. Another is the library
of unsecured documents that may contain confidential content, e.g. working copies of doc-
uments currently being developed by the prospective originator. Their protection could rely
on either encryption with temporary passwords stored locally in the aforementioned digital
wallet, or creating each such document on the fly just before encrypting and sending, prior
to reconnecting the device to the Internet. These two precautionary measures are quite gen-
eral and may be recommended for any password based encryption of documents exchanged
over the net; they are not specifically required for the FYEO scheme to work.

On the other hand, the repository of biometric password generators is specific to FYEO.
Their protection against hackers may rely on the online protection mechanisms provided
by the server from where documents are originated. However, if a less powerful personal
device is used, all password generator plug-ins could be kept on the external memory card
used only when needed and only when the device is in the offline mode.

2.2.5 Hacked enrollment point

Photos of each prospective recipient of biometrically encrypted FYEO documents may
potentially be stolen during the enrollment process shown in Fig. 1 and used next to deceive
the decrypting application shown in Fig. 3. Since the enrollment point does not require any
network connection to work, it should stay offline all the time. As soon as the FIT file is
generated, all images of the registered subject must be effectively deleted from the server’s
disk. Upon completion of enrollment, they will no longer be needed for the FYEO scheme
to work.

3 Crafting the FIT file

In order to counteract the threat scenarios outlined in the previous section the content of
the FIT file shall exhibit several specific properties, along with other general precautions
associated with the use of personal devices. These properties are twofold. First, the FIT
file should be a renewable biometric template. According to the ISO24745 standard [20], it
should be possible to create different multiple FIT files from one or more images of the same
subject and each one may be used individually to verify his/her identity without revealing
information about the original reference. Second, the amount of correlation between the
numerical representation of each single FIT content should be minimized to provide a high
entropy source for generating strong text passwords. The password should be sufficiently
strong to reduce the probability of successful brute-force attacks [11]. Further below, we will
examine how the aforementioned properties of FIT files can be achieved to make the FYEO
scheme proposed in Section 2 compliant with the ISO24745 standard and its underlying
reference architecture for the protection of biometric information based on the concept of
pseudo identities [9].

3.1 Pseudo identity

According to the reference architecture mentioned before, the FIT file should provide
pseudo identity (PI) data that do not reveal any information allowing attackers to retrieve
the original biometric measurement data, i.e. images captured during the enrollment process
shown in Fig. 1. On the other hand the PI data should represent the protected identity of the
subject in the form enabling his/her verification by capturing the relevant biometric sample
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of the claimant, i.e. a photo shot during the decryption process shown in Fig. 3. Verifica-
tion of the subject may be further supported by other subject-dependent auxiliary data (AD)
embedded in the FIT file and supplementary data (SD) representing some knowledge or
application-based secrets provided by the subject independent of the FIT file. Note in Fig. 3
that the required SD component of FYEO combines both, the knowledge-based secret rep-
resented by the PID code known to the subject and a number of application-based secrets
known to the password generation plugin that checks the validity of the AID code. More-
over, the plugin code itself may constitute one more possession-based secret, if stored by
the recipient separately from the receiving device on a memory card for higher security [9].

The reference architecture is intended by its authors to be technologically neutral and to
be able to accept any biometric verification method that could make it impossible or at least
computationally difficult to:

R1: retrieve the original biometric sample from the protected identity template;
R2: uniquely link subjects within and across databases through comparison of templates;
R3: search for subjects with very similar biometric characteristics;
R4: derive comparison scores to thwart discretizer attacks on the decrypting application.

Furthermore, the postulated biometric processing technique should:

R5: enable fine-tuning of false acceptance (FAR) and false rejection (FRR) rates,

to adjust the trade-off between individual security and comfort of using the biometric
verification scheme implemented on the basis of the selected method. In other words, while
the verification performance should be preferably in line with state-of-the-art biometric
verification methods, a limited amount of verification performance degradation (increased
FRR) is acceptable as long as this is balanced with the gain in security (decreased FAR).

Based on the above we incorporated in the prototype implementation of our FYEO
scheme the face identity verification engine developed by us earlier for protecting personal
devices, and derived from our general Classification Framework (CF) [47]. It implemented
a feature extraction method based on the 2D Gabor filter and Local Ternary Patterns. These
methods have been found particularly appropriate for facial expression recognition [26].
Their suitability has been proved regarding less powerful mobile devices for the signifi-
cantly lower computation time. Since computations of our engine combine the outputs of
the Gabor filter and Local Ternary Patterns, we will refer to it as the Dual-channel Face
Embedding Extractor (DFEE) engine. As argued further below DFEE satisfies require-
ments R1-R4 for PIs. Moreover, as demonstrated by the series of experiments reported in
Section 4.1, it allowed for effective tuning of the FAR/FRR rates specified by requirement
R5. That greatly facilitated the incorporation in the FYEO scheme of some additional secret
knowledge on the subject’s illumination and pose. The latter is the exact opposite of what
has been the ultimate objective of state-of-the-art face recognition engines, aimed rather
at reducing the FRR parameter to make classifiers robust for illumination or pose changes
[10, 60].

3.1.1 Dual-channel face embedding extractor engine

The architecture of the DFEE engine is outlined in Fig. 4. It uses a series of face shots from
the camera to extract PI data from the person’s face image and the negative set of images
of other persons representing the “rest of the world” AD data. Extracted PI and AD data
are written to the output FIT file. As argued further below this content is irreversible, i.e.
acquiring or reconstructing original images of a person based on PI and AD data would be
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Fig. 4 Architecture of the DFEE engine

impossible. The sample set module reads image files and assigns class labels to the train-
ing samples. Data are processed in several steps: first normalization (preprocessing) of each
input image is performed by the normalizer module under the control of the sample set mod-
ule. Next the transformer module performs transformations including feature selection and
extraction, and finally the classifier (matcher) module performs classification. In that pro-
cess, several “pipelines” are created; each one defined by a specific transformer-classifier
pair unaware of the existence of other pipelines. The multi-classification manager module
controls the training process. Upon creation, this object receives an additional parameter in
the form of a class inherited from the joiner (decision) module. The latter is responsible for
combining decisions coming from different pipelines into the final one.

Normalizer Proper extraction of the region of interest requires detection of eye centers
in each input image. It is done automatically with the cascaded classifier [53]. Processed
images are scaled to the size of 64 × 64 pixels. The precision of face image normalization
strongly affects the overall performance of the system, because the texture features used at
the later stage are sensitive to scaling and translations.

Transformers The cropped images are passed to the two feature extraction pipelines;
one of them calculates Local Ternary Patterns (LTP) derived from Local Binary Patterns
(LBP) [52], and another performs Gabor filtering [25]. Additionally, each pipeline creates
the secondary feature space by using Kernel Linear Discriminant Analysis (KLDA) [27].
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The LBP operator proposed in [36] considers a small, e.g. 3 × 3 neighborhood of each
pixel, and performs binarization in this area. The image is characterized by a set of histograms
of LBP codes, calculated for specific regions, e.g. uniformly distributed rectangular areas,
positioned around the nodes of a regular grid. Consequently, the LTP operator generates
sequences containing N ternary values (−1, 0, 1), which form the local texture descriptor
(N is the number of neighbors). The LTP histogram is twice that big as its LBP origin.

Gabor filtering [25] is based on the concept of the Gabor kernel defined as:

Ψk(p) = ||k||2
σ 2

e
− ||k||2 ||p||2

2σ2

(
eikp − e− σ2

2

)
(1)

where p denotes the point within the filter mask for which the value of Ψk is calculated and k
is the vector that encodes the wavelength together with the orientation of the filter. Typically,
five frequencies (wavelengths) and eight orientations are taken into account, resulting in a
40-element filter bank. The convolution of Ψk with the image provides the local texture descrip-
tion in the form of the 40-element vector j of complex numbers called a jet. The face verification
engine computes the jets for the same regions for which the LTP histograms are created.

The role of KLDA is to emphasize the differences between the given class and the “rest of
the world” by constructing a proper feature space. In order to use it one has to define metric
d(p,q). We use χ2 distance for histograms and L2 norm for feature vectors. The Gaussian
kernel values [52] are computed for each pair of training images as K(p,q) = e−d(p,q)/2σ 2

,
where σ is the parameter for controlling the balance between good generalization and low
training error, and stored in M × M matrix K . Next matrix K̄ = �K� is constructed,
where � = I − (1/M)1M1T

M and I denotes the identity matrix and 1M is the M-element
vector with all elements equal to 1/M . The eigendecomposition K̄ = U�UT is performed.
For each training image x the M-element vector kx containing distances between this
image and all other samples is derived. Then, the new representation of x is calculated as
y = �−1/2UT �kx. In the next step the mean within-class scatter matrix SW and the mean
between-class scatter matrix SB are calculated from y vectors to facilitate the construction
of matrix A = (SW+εI)−1SB, where typically ε = 0.001. Eigenvectors of A are calculated
and stored in matrix V. The final transformation matrix T that converts kx into the new rep-
resentation is calculated from the equation ωx = Tkx = VT �−1/2UT kx. The size of matrix
T depends on the number of training samples, however the negative set may be constructed
arbitrarily, in particular no rules exist how big it should be or what images should be used.

Classifier The simplest nearest neighbor classifier is used by both pipelines mentioned
before. For each person P the set of MP training images ti is collected, and test sample x is
accepted as representing the legitimate user if ∃ti D(x, ti ) < δ ·w, where i = 1, ...,Mp and
D(a,b) is the Euclidean distance calculated between feature vectors extracted from images
a and b and transformed by KLDA. Parameter δ is the maximum distance between training
samples ti describing a given person, and w is a tuning parameter that controls the balance
between the actual values of FAR and FRR.

Joiner The final identity verification is based on a simple voting scheme: if both pipelines
agree and provide the positive result, the user is allowed to open the file. Otherwise, the
access attempt is rejected.
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3.1.2 Pseudo identity conformance of DFEE

Before proceeding to the experimental measurement of how strong protection of FYEO
documents can be when based on illumination and pose secrets (requirement R5), first let’s
check whether DFEE can qualify for inclusion in the FYEO scheme by satisfying require-
ments R1-R4, which specify two fundamental properties of biometric template protection
schemes required by the ISO24745 standard, namely irreversibility and unlinkability [35].

Our biometric template is irreversible (requirement R1) because it is based on two many-
to-one transformations: Gabor filtering and Local Ternary Patterns. The original image
cannot be restored from the values of convolutions of intensity function with complex Gabor
kernels, nor from the histograms of ternary codes, obtained as a result of several local thresh-
olding operations. Moreover, thanks to the introduction of secrets related to illumination
and pose discussed further, the cross-database matching of facial identity templates is prac-
tically infeasible, since it was shown that images of the same person lit in different ways are
less similar to one another than photographs of different individuals taken under the same
lighting conditions [1]. Additionally, a precise generative model of a FIT content could not
be easily constructed even if the attacker would be able to acquire multiple templates created
for the same person under different conditions. Although some of the early face recognition
algorithms tried to utilize the fact that all of the images of a Lambertian surface taken from
a fixed viewpoint but under varying illumination lie in a 3D linear subspace of the high-
dimensional image space, a human face is actually not a Lambertian surface [5] (due to the
presence of cast shadows, for example). Therefore, the features of unknown images cannot
be deduced from the values stored in acquired FIT files, thus cross-database tracking of a
particular person is not possible (requirements R2 and R3). Moreover, DFEE can produce
renewable FITs, i.e. when a biometric database (see Fig. 2) is compromised, new instances
of FIT file can be reissued at the enrollment point in different configurations of the subject.
Besides pose and illumination, parameters of the grid used by the normalizer and trans-
former modules (shown in Fig. 4) may vary between databases. In particular the size of the
grid, positions of its nodes and their order may vary, making FIT files incomparable. To
diversify them further additional transformation functions can be applied during enrollment
and verification: face images can be distorted in the signal domain prior to feature extrac-
tion, or the feature values can be transformed using a noninvertible function, which should
be “smooth only locally and not globally” (examples of such transformations are provided
in [40]). The parameters of the function can be governed by a random key and treated as a
secret or at least stored separately.

Requirement R4, which is aimed at mitigating the risk of a successful discretizer attack
is also satisfied by the DFEE engine. As outlined in Fig. 4, during the enrollment phase the
respective FIT file is generated by DFEE, whereas during the decryption phase only a ver-
ification result is produced without generating (recoding) any new FIT file for comparison
with the original one.

3.1.3 FIT file content

The algorithms described above produce a FIT file with PI data values representing the indi-
vidual for whom the DFEE engine was trained. It contains numerous settings of a classifier
as a collection of XML data, e.g.:
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The <transform> element contains data of the KLDA transformation matrix T defined
in Section 3.1.1 before. Whereas data produced for the subsequent image files are stored
in elements marked with tags of the form <M[cl][im]>, where [cl] denotes the class
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number, i.e. ‘0’ for the TARGET (the series of the subject images) and ‘1’ for the OTHERS
(the series of the “rest of the world” images) portion of the FIT file and [im] is the number
of each image within the class. According to the ISO24745 standard and its underlying
reference architecture mentioned before they constitute respectively the PI and AD data. It
may be seen in the example listing that twelve images M00 . . .M011 from the training set
and 88 images M10 . . .M187 from the negative set were processed by DFEE to produce this
particular FIT file.

Further in Section 4 we will analyze to what extent illumination and pose of the person’s
face in the photo can control the data values in the TARGET part of the FIT file during the
training phase at the enrollment point, so as to be able to effectively tune DFEE to accept
that person’s image during the verification phase only in very specific shots.

3.2 FIT based password autofill

As illustrated before a FIT file produced by the DFEE engine consists of byte strings that
are predominantly made up of decimal digits. If used as a source of entropy for automatic
password autofill, e.g. by drawing random digits from it to provide input to the relevant
generation algorithm, the digits should exhibit randomness as close as possible to:

R6: the uniform distribution to guarantee maximum uncertainty of generated passwords.

In order to ensure that all non-numerical substrings including SPACE and TAB char-
acters, as well as those parts of numerical strings whose correlation may result from the
context of their occurrence in the FIT file must be removed. According to the example
listing in Section 3.1.3 the latter are the content of <sigma>, <epsilon>, <rows> and
<cols> elements, as well as sign, non-fractional parts of floating point numbers in <data>
elements and their respective exponent parts. Formally, for each number represented by
a string of the form F = “[−]d0.d1 . . . d16E[+|−]00d17”, where di=0,...,16 ∈ [0, 9] and
d17 ∈ [0, 3], substrings of the form “[−]d0.” and “E[+|−]00d17” have to be removed to
get only each number’s decimal fraction part. Thus obtained text file, each one of several
thousand lines (32-digit strings) may constitute a pool of random digits to be used as inputs
to various password generation algorithms.

However, when selecting the concrete generation method, one should make sure that the
related algorithm would not introduce in its output any subtle patterns of its own. Such
patterns could be implied by any particular statistical properties of thus obtained set of dig-
its, as well as by intrinsic properties of the function calculated by the password generation
algorithm. The latter may involve mathematical properties of the function’s class that the
attacker can discover such as converging to a repeatable cycle of output values or non-
injectivity, as well as arithmetic properties of its implementation implied by the limitations
of the underlying computer arithmetic such as round-up or truncation errors. To avoid that,
generation algorithms should use techniques advocated in [11], which are known to preserve
entropy present in a source of random data and to reduce any bias that may exist in it.

One group of these techniques applied to the FIT based pool of random digits calls for
selecting a random block of bytes and combining them by using a mixing function [8].
A simple one could calculate byte-wisely just a modulo check of the block, whereas a
stronger mixing function like SHA-256 [43] may calculate a more complex block hash.
By the argument provided in [11], combining uncorrelated input bytes in that way would
produce output symbols of lesser eccentricity. Probability of a single digit in the FIT based
dataset may be formally modeled as p = 0.1 ± Ein, where Ein � p denotes eccentricity
measuring imperfection of the desired ideal uniform distribution of input digits from the
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block. Since the modulo of the sum of two decimal digits (bytes) is addition without carry
in which the output symbol always changes with a change in either input symbol, the output
symbol eccentricity Eout would be less than the eccentricity of n added input symbols on
the order of Eout ≈ En

in. This property of the simple mixing function is exploited by the
sample automatic password generation algorithm shown in Fig. 5.

In step #1, a block of lines with decimal digits is selected at random in the FIT file crafted
accordingly and in step #2 its modulo checksum is calculated as a decimal string. Finally in
step #3 digits are drawn at random from that string and for each of them a symbol is selected
from a subrange of ASCII95 symbols. For 32-character passwords 32 digits need to be
drawn. This scheme can produce a considerably large set of password generation algorithms
since the pseudo-random number generator controlling the selection of blocks and digits
could be seeded with arbitrary values. Example passwords generated by the above scheme
for various seeds are listed in Table 1.

A variant of the password generation method outlined in Fig. 5 may use in step #2 the
much stronger SHA-256 mixing function and select in step #3 the output symbols from a
slightly reduced set of printable characters, e.g. ASCII85. The thus generated passwords
for the same seed values as used in Table 1 are listed in Table 2; they seem to be no less
demanding than the former ones.

Another group of techniques preserving entropy in a random data source may explore
one useful property of reversible compression – by being lossless it can effectively reduce
eccentricity of the imperfect randomness of the input symbols to be compressed. By the
argument provided in [11], if the same amount of information is to be present in the shorter
compressed output as in the longer input, then on average, the probabilities of symbols in
shorter sequences would be more uniformly distributed than the probabilities of symbols in
the longer sequences. In other words, the overall statistical quality of the compressed output
byte-stream can be improved. This idea is exploited by the sample automatic password
generation algorithm shown in Fig. 6.

In step #1, a line containing decimal digits is selected at random in the input FIT based
dataset. In step #2 the line is searched in a randomly selected direction (from left to right or
from right to left) for digits that upon concatenation in step #3 (steps #3LR or #3RL respec-
tively) would represent a decimal number constituting a code-point in the ASCII95 set of
printable characters. Selection of the first digit is made at random, whereas the subsequent
digits are selected on a random first-come basis until the legitimate code-point of a print-
able character is obtained. The number generated in this way, is a reversible compression of
a two- or three-digit string drawn from the selected line; by the argument mentioned above

Fig. 5 Password generation based on simple mixing byte blocks
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Table 1 Passwords generated when using a simple mixing function

it would represent a symbol of the reduced eccentricity in comparison to the eccentricity
of each input digit used to calculate it. By modeling the probability of drawing a single
input digit from the line selected randomly in step #1 as p = 0.1 ± Ein, where Ein � p,
concatenation of two or three decimal digits forming a string that represents either one of
68 two-digit code-points or one of 27 three digit code-points (out of the total of 95 print-
able ASCII output symbols) would yield eccentricity Eout of the output symbol reduced to
Eout ≈ 0.79E2

in + 0.21E3
in on average. Example passwords generated by this scheme for

the same seeds as used in Tables 1 and 2 are listed in Table 3.

4 Scheme validation

In Section 3.1.2 we verified the properties of the DFEE engine qualifying its incorporation
into the FYEO scheme with regard to irreversibility and unlinkability, preventing attackers
from comparing intercepted FIT files when searching for the same or a similarly looking
person on the Internet. The possible way around could be locating the subject behind his/her
email address extracted from the intercepted FYEO bundle to look for any available photos
of that person and to use them for signal tapping attacks. This, however, would require
access to the FYEO decrypting application installed on the subject’s personal device. And
even so, such attacks would be limited to sensor attacks, as no FIT files can be generated by
the underlying biometric verifier to prevent any comparisons of its output required by the
discretizer attacks.

The above exhausts the scope of requirements R1-R4. However, checking whether the
candidate biometric verification engine can meet requirements R5 and R6 require a series
of measurement experiments; results obtained for the DFEE engine are reported below.

Table 2 Passwords generated when using the SHA-256 mixing function
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Fig. 6 Password generation based on reversible compression of byte streams

Our experiments have been a rather routine activity, aimed to validate the FYEO scheme
against two crucial requirements specified in Section 3: R5 on finding the acceptable bal-
ance between the increased value of FRR limiting user’s comfort of using the scheme and
the decreased level of FAR indicating the gains in security of using it, and R6 on randomness
of the generated password strings. Test data for our validation experiments were selected
from widely available repositories of realistic images of different people, photographed in
various lighting conditions and poses. The obtained FRR and FAR values were analyzed
against requirement R5, whereas the data generated on their basis in the form of FIT files
were processed using algorithms specified in Figs. 5 and 6 to generate sample passwords.
These passwords were then examined using reliable tools to assess their strength.

Although results of these experiments presented further below one may consider not very
innovative, they have been of key importance for conducting legitimate comparisons of our
FYEO scheme with the related solutions described in Section 5 and for accepting it as a reli-
able security component in two experimental document exchange platforms implemented
by us as mentioned in Section 6.

4.1 Feasibility of fine tuning the FAR/FRR rates

We wanted the biometric identity verifier incorporated in the FYEO scheme to accept only
a few specific arrangements of the user’s face in relation to the device’s camera, while most
of the others should be rejected. These two image aspects would be very convenient to
model users’ behavior in front of the camera of the personal (mobile) device during work; it

Table 3 Passwords generated when using reversible compression of random byte strings
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could matter in which hand the smartphone is held, at what angle the screen of the notebook
or tablet is tilted, whether the personal computer is kept on the user’s lap, etc. Therefore
the objective of our experiments was to show that if the illumination and pose at the time
of identity verification do not match the conditions present when training DFEE, the value
of the FRR metric would increase considerably and make pointless the attacker’s break-in
attempts. Thus, paradoxically, our concern was to obtain high values of FRR and reach the
point when despite that, the legitimate subject would be able to pass the identity check.

When examining how the illumination conditions can affect the process of biometric
identity verification, we used the Extended Yale Face Database B (EYFD-B) [14] containing
5760 images of ten unique people, each one seen under 576 viewing conditions; samples
are shown in Fig. 7. Respectively, to study the impact of the subject’s pose on the biometric
identity verification process we used images of the CMU-PIE database [45], including over
40,000 facial images of 68 people, each person imaged across 13 different poses, under 43
different illumination conditions, and with four different expressions in both expression and
talking sessions; samples are shown in Fig. 8. In both types of experiments we used the
negative set containing about 100 images randomly selected from the FERET database of
25389 files in total [38].

4.1.1 Illumination experiment

All EYFD-B images are divided into subsets, according to angle γ = max(α, β) between
the direction of the light source and the camera axis, with α measured longitudinally and β

latitudinally in five 15◦ intervals from 0◦ to 75◦ inclusive. We selected images representing
the concrete lighting directions specified by azimuth A and elevation E. Each one may be
marked either with ‘+’ or ‘−’ indicating respectively its ‘right’ or ‘left’ and ‘up’ or ‘down’
values. Additionally, apart from the direction, in every subset deviation from the frontal
illumination was assigned to one of two classes, namely small deviation S or big deviation
B. For example A− E + B indicates the subset in which all faces are lit from the upper
left with a high deviation angle. As shown in Table 4, in this experiment we succeeded in
getting decreasing FRR values each time the actual illumination of the subject during the
testing phase is similar to the training phase. The cells with the bold content indicate which
testing sets yielded the lowest FRR value when a particular set of template images was used
to train the system.

Fig. 7 EYFD-B database (illumination) samples
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Fig. 8 CMU-PIE database (pose) samples

Note that when deviation from frontal illumination was high in the template images, the
lowest values of FRR were achieved when the light was shed from the same direction as in
the training images but the deviation from the frontal direction was small. For example the
best results were obtained for the A+ E− S testing set when DFEE was trained with the
A+ E− B set, for the A− E+ S testing set when trained with the A− E+ B set, and so on.

On the other hand, if the angle of light incidence was small in the template images,
the value of FRR reached minimum if in the test images that angle was also small but the
direction varied slightly (in most cases the light was shed from the top instead of from the
bottom or vice versa). For example, the lowest FRR value was obtained for the testing set
A+ E+ S when DFEE was trained with the A+ E− S set.

Based on the above it may be argued that effective tuning of the FAR/FRR rates is pos-
sible with illumination of the subject and the related data can be feasibly embedded in the
FIT files produced by the DFEE engine, as required by the standard for biometric template
protection schemes based on pseudo identities (requirement R5).

4.1.2 Pose experiment

Two tests were performed using the CMU-PIE images, which results are listed in Table 5:

Test 1: Training set included images from the expression session plus one photo from
the talking session, all captured with Camera #5 (side view). Testing set TA included all
images from the talking session captured with Camera #5; testing set TB included images
from expression and talking sessions captured with Cameras #7 and #27 to incorporate
photos with approximately frontal views and Camera #9 to incorporate views slightly
from above the subject.

Test 2: Training set included images from the expression session captured with Cameras
#7 and #27 plus one photo from the talking session. Testing set TC included all images
from the talking session captured with Camera #27; testing set TD included images from
expression and talking sessions captured with Cameras #5 and #9.

In this case the characteristics of the CMU-PIE database [45] allowed us to check only
two poses; however, since a large number of images was available for each, we were able to
divide the data into training and testing samples representing the same pose for the same per-
son. All the results were similar – whenever the pose did not conform to the one used during
the training process, FRR increased significantly and identity verification was practically
impossible.
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Table 4 Results of the
illumination experiment Training set (T rS) Testing set (T eS) FAR (%) FRR (%)

A + E − B A + E − S 3.59 45.50

A + E + B 1.23 93.92

A + E + S 2.32 86.87

A − E − B 0.15 97.16

A − E − S 1.18 82.88

A − E + B 0.24 99.61

A − E + S 0.93 88.65

A + E − S A + E − B 7.40 77.46

A + E + B 7.11 88.89

A + E + S 9.98 61.90

A − E − B 6.27 91.67

A − E − S 8.59 62.04

A − E + B 6.46 90.87

A − E + S 8.26 78.89

A + E + B A + E − B 3.25 93.99

A + E − S 3.33 86.26

A + E + S 3.68 81.85

A − E − B 0.47 97.84

A − E − S 0.32 99.10

A − E + B 0.44 97.30

A − E + S 0.10 100

A + E + S A + E − B 0.52 95.24

A + E − S 3.74 58.10

A + E + B 1.98 90.63

A − E − B 0.12 100

A − E − S 3.18 74.04

A − E + B 0.59 95.97

A − E + S 4.26 73.89

A − E − B A + E − B 0.17 94.59

A + E − S 0.42 93.24

A + E + B 0.11 99.32

A + E + S 0.58 93.44

A − E − S 1.06 82.88

A − E + B 0.57 92.66

A − E + S 1.56 84.86

A − E − S A + E − B 2.84 94.27

A + E − S 3.33 89.64

A + E + B 1.47 99.32

A + E + S 3.44 91.89

A − E − B 2.48 97.30

A − E + B 1.98 99.23

A − E + S 2.51 56.76
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Table 4 (continued)
Training set Testing set FAR (%) FRR (%)

A − E + B A + E − B 0.07 98.97

A + E − S 0.39 93.69

A + E + B 0.14 97.30

A + E + S 0.76 91.12

A − E − B 3.37 87.97

A − E − S 1.25 91.89

A − E + S 1.93 83.24

A − E + S A + E − B 0.24 92.34

A + E − S 0.95 78.15

A + E + B 0.68 96.96

A + E + S 1.54 61.00

A − E − B 0.21 95.14

A − E − S 1.79 45.41

A − E + B 0.38 91.44

It may be argued that effective tuning of the FAR/FRR rates is possible with the pose of
the subject and the related data can be feasibly embedded in the FIT files produced by the
DFEE engine. Like in the case of illumination aspects of the image considered before, the
requirement R5 can be satisfied with pose aspects as well.

4.1.3 Fine-tuning algorithm

As argued in Section 3.1 the orientation (lighting and pose) of the subject’s face in the field
of view of the camera cannot be recreated from the FIT file. In consequence, it can suc-
cessfully constitute a knowledge-based secret conforming to the ISO24745 standard [20].
Moreover, the experiments described earlier in this Section show that an efficient tuning of
the FAR/FRR rates is possible over a useful range of azimuth and elevation angles α and β.
Their results listed in Table 4 can be comprehensively visualized with the plot in Fig. 9.

Consider each photo t from sets T rS and T eS in Table 4 to constitute point ti =< r, αi, βi >

in a spherical coordinate system. Since in all photos the distance of the subject from the
source of light was constant and the subject’s face was always lit from the front all corre-
sponding points ti may be assumed to lie on the surface of the unit semi-sphere with the
center at < 0, 0, 0 >. With t0 = < 1, 0, 0 > as the reference point (all faces lit perpen-
dicularly, i.e. at angles α0 = β0 = 0) a deviation of photo t1 = < 1, α1, β1 > from t0

Table 5 Results of the pose
experiment Test # Testing set Poses compatible FAR (%) FRR (%)

1 TA yes 4.43 14.74

TB no 2.36 89.29

2 TC yes 1.66 12.48

TD no 0.62 94.29
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Fig. 9 FAR/FRR fine-tuning effectiveness

(faces lit at different azimuth and elevation angles α1 and β1) can be measured by central
angle Δσ between them and calculated as [58]:

Δσ = arccos (sin β0 sin β1 + cos β0 cos β1 cos(α0 − α1))

= arccos (cos β1 cos α1) (2)

Values of Δσ along axis X in Fig. 9 were calculated using the respective median values of
angles α1 and β1 found for each set T rSi ∪T eSi of photos, i = 1, . . . , 56, listed in Table 4.
For βi < 0 the corresponding value of Δσ was assumed negative. The trend lines for the
corresponding FAR and FRR values interpolate the respective datasets with a polynomial of
degree 6. It may be readily seen that for less significant deviations of ti from the reference
point t0 the values of FAR gently rise with the much steeper decrease of FRR values.

In other words, biometric identity verification based on less deviated photos can provide
more comfort for the legitimate user, whose chance of being rejected is relatively lower and
requires less effort (attempts) to “convince” the system to let him/her in. On the other hand,
the related increased FAR values indicate that such biometric identity verification system is
less secure, as chances of acceptance for impostors using photos of legitimate users in their
more obvious poses grow.

An upheaval in thinking about the secure verification of biometric identity, which we
wish to accentuate with Fig. 9, consists in the use of images that significantly deviate from
the commonly understood “normality” represented by the close proximity of t0. Our exper-
iments indicate that the limit of possible deviations is determined practically only by the
level of FRR that the user can accept. This is because that although FAR values are lower for
more significant deviations from t0 (the overall security of the system increases) the user’s
comfort decreases, as more attempts may be required from the legitimate user to get in.

The values of FAR and FRR marked in bold in Table 4 were found by us experimentally
as the ones that can ensure a relatively high system security with acceptable effort of the
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legitimate user. In that effect the FYEO enrollment point in Fig. 1 should implement steps
for FAR/FRR tuning specified by Algorithm 1.

The listed pseudocode may be implemented with any face extraction engine. In Step 3
image normalization operations are performed. In the case of our DFEE engine employed in
the FYEO scheme proposed in Section 2 they involve detection of eye centers and scaling,
as explained in Section 3.1.1. For other engines normalization may differ in some detail,
according to the particular extraction model. In Step 8 the user’s effort required to open the
encrypted document is estimated. Upon enrolling, the user can instantly assess how easy
it would be for him/her to remember and recreate important details of the pose in front
of the camera when opening later his/her encrypted documents. If too many attempts are
needed the tuning parameter w can be adjusted manually by the enrollment point operator
in Step 10 – to best fit the individual characteristics of each user. If that does not help, the
extractor should be retrained with other photos in Step 6. In the case of our DFEE engine
parameter w controls the maximum allowable distance between training and testing images
of the subject.

It is worth mentioning that other implementations of the face verification engine may
also be used by the FYEO scheme proposed in the paper. For example, embeddings pro-
vided by a deep neural network may be used instead of feature vectors, Euclidean distance
may be substituted with cosine distance or similarity value calculated with the use of the
probabilistic linear discriminant analysis (PLDA). However, in each case the general mech-
anism remains unchanged: the training data variance must be taken into account and fine
tuning of the relevant tolerance parameter w is necessary to set the proper FAR/FRR ratio
respectively for each enrolling person.
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4.2 Text password quality

Crafting the FIT file as proposed in Section 3.2, consisting of extraction of decimal fraction
strings of the respective numerical values in the transformation matrix and jets, is aimed
at providing the pool of equally probable input symbols to draw from when generating
passwords. Although the techniques outlined in Figs. 5 and 6 were argued to effectively
reduce bias in their distribution, in addition, we experimentally measured the degree of
imperfection of the entropy sources obtained from FIT files produced by the DFEE engine
in the illumination and pose experiments described before and assessed the guessability of
the text passwords generated thereof.

4.2.1 Randomness of FIT based datasets

To evaluate the entropy of the FIT based random digits we used 39 datasets with random
decimal digits, crafted as proposed in Section 3.2 on the basis of 38 FIT files generated
by the DFEE engine in the experiments reported in the previous subsection and one more
FIT file generated for its regular user. These datasets were analyzed first with the EasyFit
tool [33], to ascertain which probability distribution fits best their random content. Out
of four matching probability distributions, the highest goodness of fit metric GOF = 1
was returned in two standard fitness tests (Kolmogorov-Smirnov and Anderson-Darling)
for the discrete uniform distribution and the negative binomial distribution. Results of this
experiment are summarized by two plots shown in Fig. 10.

The lower plot indicates frequencies of all ten digits in each respective dataset. It can
be seen that the uniformity of their distribution is not perfect and a slight skew can be
observed at both ends of the [0, 9] range. It is most likely caused by the DFEE process
arithmetic rounding down to 9 or up to 0 the least significant digit d16 in the respective
decimal fraction portion of F strings. Clearly, mixing input digits in the password generation
process proposed in Fig. 5 should help to level it properly.

The upper plot indicates the probability of finding successfully s = 1 times the spe-
cific digit d ∈ [0, 9] in each analyzed dataset in r = 9 attempts, given the probability p

(frequency f ) of the digit in the file p = f (d). As predicted by the negative binomial dis-
tribution formula NB(r = 9, s = 1, p = f (d)) [54] each digit d ∈ [0, 9] is equally likely
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Fig. 10 Statistical properties of strings of digits in 39 preprocessed FIT files
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to be found. However, when experimenting with the number of attempts r < 9 a slight skew
at both extremes of the [0, 9] range was observed. This observation confirms the validity of
the approach to password generation proposed in Fig. 6 – by choosing a high enough value r

of digits searched to assemble the ASCII95 code-point their uniformity could be improved.

4.2.2 Password guessability

It is interesting to see if the passwords listed in Tables 1–3 have some patterns or repetitions
that might lower their entropy compared to the ideal upper bound Hsh calculated for 32
character passwords in Section 1. Of course, these patterns (if any) would not be of the same
nature as patterns that could be found in passwords made by people – including dictionary
words or spatial patterns, mangled or recoded phrases, or some combination thereof. Nev-
ertheless, we used two common techniques to assess guessability of our passwords in the
typical context of use of password encrypted documents. One involves password strength
meters often incorporated in popular document writing and authoring tools to aid users in
assessing the strength of passwords considered for document encryption. Another consid-
ers the variety of attacks on the already encrypted document performed by casual attackers,
who may have no hint on its password origins and may attempt customary attacks on the
extracted document hash by using a program or script cycling through combinations of
common words.

Password strength meters In the first experiment the popular zxcvbn password strength
estimation tool was used as a valid representation of popular text password strength
meters [57]. It models passwords as consisting of one or more concatenated patterns and
may be considered a major improvement over traditional password strength estimators.
Instead of counting the occurrence of special characters, mixed case characters, numeric
digits, etc., it calculates a password’s entropy to be the sum of its constituent patterns
decreasing the total password entropy and unmatched gaps between them, which are treated
as brute-force “patterns” increasing the entropy. The analysis is three-step. First, all the (pos-
sibly overlapping) patterns are detected and classified. Next, the entropy of each matched
pattern is calculated independent of the rest of the password assuming pessimistically that
the attacker knows the patterns that make up a password, but not necessarily how many or
in which order. Finally, given the full set of possibly overlapping matches, the tool finds the
simplest (of the lowest entropy) non-overlapping sequence by minimizing a certain heuris-
tic formula including the terms measuring how many guesses would be required in the worst
case, i.e. when the attacker knows the number of patterns in the sequence but not their order,
and additionally, does not know the length of the pattern sequence. The tool does not model
interdependencies between patterns, such as common phrases and other collocations, which
based on the development of Section 3 is not the case for our passwords. Results of this
analysis for passwords in Tables 1–3, sorted in the order of the values of seeds, are depicted
in Fig. 11.

It may be seen that the tool was able to find some components in each tested password
string that lowered its total entropy from the ideal upper bound value. Also, by reducing
the size of the set of symbols used to compose the passwords from ASCII95 to ASCII85
the total entropy of each password of the ‘sha256 (ASCII85)’ series slightly decreased.
However, the minimum entropy in the tested set remains well over Hmin = 140 bits, i.e. if
the attacker has any knowledge on the number of patterns considered by the zxcvbn tool
the number of guesses will still excess 2140 = 1, 39 · 1042 attempts. When compared to the
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Fig. 11 Assessment of the sample passwords strength

recommended lower bound for password offline guessability estimate of 1014 guesses given
in [13], the passwords listed in Tables 1–3 may be considered really strong.

Password cracking tools In the second experiment we used the Password Guessability
Service (PGS), which offers a realistic simulation of professional guessing attacks [37].
The service can simulate several different classes of cracking algorithms by generating
(guessing) candidate passwords to match the challenged one, including mangling rules to
transform existing strings into new ones, composing characters using a Markov model of let-
ters in natural language with finite automata representing password structures and setting-up
probabilistic context-free grammar rules (PCFG) in which non-terminals represent contigu-
ous substrings of a single character class of which the password may be composed of.
Mangled wordlist attacks are simulated by PGS with two popular password cracking tools,
John the Ripper (JTR) [48] and HashCat (HC) [50]. They both need an input wordlist
(stolen passwords and dictionaries) and the set of predefined rules. JTR iterates through the
entire wordlist using one mangling rule before proceeding to the subsequent rule, whereas
HC iterates over all mangling rules for the first wordlist entry before continuing to the sub-
sequent entry. Markov [28] and PCFG [56] based attacks require a prior analysis of the input
wordlist, treated as training data, to properly weight entries or respectively assign proba-
bilities to strings of letters based on their occurrence in the input set. Implementation of
these two techniques requires significantly more CPU and RAM resources than JTR and
HC. Therefore fewer guesses could be realistically attempted for more complex passwords.
The volume of training data used by PGS includes three sets of plaintext passwords that
are available online and three dictionary sources of nearly 50 millions of words in total, for
which several different passwords-composition policies have been defined. They classify
password generation rules with regard to the minimum password length and the number of

20114 Multimedia Tools and Applications (2021) 80:20089–20124



character classes occurring in the password (lowercase letters, uppercase letters, digits and
symbols).

The passwords listed in Section 3.2 were submitted to PGS for guessability analysis with
passwords in Table 1 classified as ‘4class8’ (at least eight characters of all four character
classes) and respectively in Tables 2 and 3 as ‘3class16’ (at least 16 characters of at least
three character classes). In about two weeks after submission guess exhaustion was reported
by the PGS administrator with a short note that the JTR module performed on the order of
1.7 · 109 guesses and the Markov module performed on the order of 2.2 · 109 guesses. Not
a single password submitted for evaluation was cracked.

4.3 Scoping assessment of FYEO security

Given the threat scenarios specified in Section 2.2 and the results of experiments reported
in this section the overall security of the FYEO scheme may be finally assessed. We will
argue that FYEO can effectively counteract the widespread tendency of users who often
prioritize personal comfort over security. By being able to use passwords extremely diffi-
cult to remember and type they can achieve a high level of security in combination with
highly personalized and user-friendly access control. Moreover, the biometric verification
mechanism conforming to requirements R1-R5 discussed before is self-contained and does
not require the introduction of any extra solutions to the underlying operating system of the
user’s device.

The steps and activities that the adversary may take to succeed are indicated in Fig. 12.
They address only those aspects of document security that are directly related to the mecha-
nisms introduced by FYEO. In particular, we assume that all customary security precautions
have been properly taken by the receiving device owner/administrator, as the FYEO scheme
is not intended to compensate for their lack or replace the existing ones. It is assumed that
the user’s device is protected against the hacking of its camera or screen to prevent inter-
ception of the user photo or the document content when opened on the device, and the
FYEO application code is obfuscated to prevent interception of all internally generated data,
including the password. The extent of work that attackers need to undertake to finally break
all FYEO protections is classified below with regard to the degree of dedication of each
individual attacker and the resources at his/her disposal.

Casual attackers may intercept in step #1 the FYEO bundle with the encrypted document
while on transfer, but without being aware of the purpose of the attached FIT file. Then,
most likely in step #2, he/she may attempt usual brute force or dictionary attacks on the
password hash extracted from the document. Document protection would rely then solely
on the hard to crack text password. Even when the interception occurred on the recipient’s
mail server (or somehow the attacker was able to establish the recipient’s identity in step
#3), other types of attacks still would not be possible unless the adversary got access to the
password generation algorithm. That requires stealing or hacking the recipient’s device by
a highly motivated ‘committed attacker’.

Committed attackers may succeed in tracking down the device after establishing the iden-
tity of the owner of the said device in step #4. If properly secured, however, the code of
the decrypting application (see Fig. 3) would not generate the password without the prior
positive biometric verification of the impostor. Therefore in step #4 the latter would have
to attempt a sensor attack by using whatever general photos of the legitimate user (of the
now known identity) he/she could find on the Internet or on the stolen device. The attack
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Fig. 12 FYEO document lines of defense

would be limited, since the number of such general photos would not suffice to break the
illumination and pose ‘barriers’ embedded in the FIT file – if only the FAR/FRR rate was
set properly as explained in Section 4.1. A ‘committed attacker’ could also attempt to find
or intercept other original FIT files of the recipient (if any exist) of the previously estab-
lished identity – or FIT files with similar content of similar looking people – to carry out a
sort of the discretizer attack by attempting the respectively extended set of general photos
for all intercepted FIT files in step #5. This attack shall be considered a ‘pseudo-discretizer’
attack, as the adversary would be able to check the set of all collected photos only against the
intercepted FIT files; observing how the output characteristics of these files can be affected
by the input photos would not be possible, as this feature is provided only by the enroll-
ment point. Moreover, the password generation algorithm indicated by the AID code in the
intercepted bundle can be properly generated only for the original FIT file, not its similar
counterparts intercepted elsewhere. If during the experiments with multiple FIT files of the
same person of known identity or the collected general photos or both, the adversary can
possess or discover any fragmentary knowledge about the likely conditions of lighting or
pose of the subject he/she may attempt generating images in step #6.

Fanatic attackers may exhibit extreme dedication and attempt the most recent techniques
based on the deep generative models [41]. Although quite effective in terms of the overall
performance of the generation process and quality of the produced images, these models
need training sets with some essential ‘ground truth’ on the subject. The more the images
from this training set deviate from the images registered at the enrollment point (unknown
to the attacker), the more difficult the task of their generation will be. Note that all this time
it will be a sensor attack, without the possibility of an effective assessment by the adver-
sary whether the generated modifications to the input general images are getting closer to
the intercepted FIT file. For that reason, the iteration in step #6 would resemble a dictionary
attack on a text password, where instead of one-dimensional problem of generating variant
text strings with a certain linear structure, the attacker would face a two-dimensional prob-
lem of generating variant images with a certain spacial composition of pixels. Undoubtedly,
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the latter task will be at least as difficult as the former one, despite the use of the most
efficient methods of generating artificially modified versions of input images. Finally, the
ultimate protection against attacks using any acquired or generated images in steps #4, #5
and #6 in Figure 12 will be adding to the decrypting application a liveness verification
module, making such attacks infeasible [46]. If, however, the attacker could still break all
the barriers described above and somehow managed to pass the biometric verification pro-
cess in step #7 the FYEO document has yet several more lines of defense. The first one
may be a missing plug-in with the required password generation algorithm, kept by the user
separately from his/her stolen device on a memory card. Then the adversary may attempt
reconstructing the missing algorithm code. By the argument in Section 2.2.1 it would be
rather a hopeless task due to the fact that one may write infinitely many correct programs
to generate passwords based on the same (good enough) input entropy source. Therefore
more reasonable action would be to generate the passwords directly, not the algorithms for
generating them. Thanks to the password complexity, despite being able to pass biometric
verification, the attacker will practically be again at step #2 in Fig. 12. On the other hand,
if the plug-in could be acquired after all (e.g. stolen with the device), the generation of the
proper password would still require additional knowledge of the user PID and other con-
fidential data related to checking validity of the AID code. The ultimate way to break this
FYEO document line of defense in step #8 may be to terrorize the user by the attacker. Such
scenarios are, however, beyond the scope of this paper.

5 Related work

The passwordless approach introduced by the FYEO scheme draws on three concepts that
until today have seen numerous practical implementations in the area of user authentica-
tion and which are still the subject of intensive research. They are password managers,
capable of generating and retrieving complex passwords that need not be memorized by
users, uncertain biometric data as high entropy sources for generating strong passwords and
facial recognition unlocking systems providing a very convenient input mechanism for user
credentials in keyboardless personal devices.

Below, we review the current state of the art of these concepts in more detail with regard
to the findings reported in the paper and assess their significance to improving offline
security of electronic documents.

5.1 Passwordmanagers

There is a rich variety of password managers to choose from today [23]. They may be
stand alone programs, browser extensions, online services accessed through website por-
tals, as well as locally accessed hardware devices that serve as keys. Their detailed survey is
well beyond the scope of this paper, but it is worth summarizing briefly their core features
in order to contrast them with the password generation capability provided by our FYEO
scheme. They can generate on demand complex, unique and random password strings that
may be stored afterwards in an encrypted database for retrieval. For that purpose, they typi-
cally require a user to generate and remember one “master” password to unlock and access
the database, which can either be stored locally on the user’s device or stored remotely
through an online file-hosting service. In the latter case the saved password database can
be synced to the cloud to allow users to access their various site-specific passwords from
different personal devices. The generative subclass of password managers provide the users
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with an algorithm to reproduce passwords, so no database to store them is needed [31]. This
is also the case of the FYEO scheme.

Typically a generative password manager requires only one secret to be provided as input
by the user when generating password strings. The secret may be the master password, a
graphical password or a digital object. The choice of how that secret is used to generate site-
specific passwords is the primary difference between generative password managers. For
example, the PwdHash generator [42] can generate site-specific passwords by combining a
long-term user master password and data associated with the web site. The master password
is used as the salt, allowing for generation of multiple passwords for one website, or the
use of unique passwords for multiple accounts on one domain. The ObPwd generator [6]
generates site-specific passwords as a function of a site-specific digital object together with
optional parameters, including a long-term master password as a salt and the Web site URL.
A digital object could be a file chosen by the user from a collection of images, music or
videos and stored locally or accessed remotely, and constitutes a secret shared by the parties
allowed to access the password protected entity. PALPAS [18] generates passwords com-
plying with site-specific requirements using server-provided password policy data specified
formally with password definition rules, a stored secret master password and a user-specific
secret value as the salt, which is synchronized across all user devices using that server.
AutoPass [30] can automatically generate passwords in a site-specific form and store pass-
word generation data on a dedicated server as part of the user-specific configuration data
for that user and can synchronize the preserved passwords.

When applied to password protected documents, the aforementioned automatic pass-
word generation mechanisms requiring authentication servers could work for document
centric business processes involving downloadable documents, but would be less practical
when such processes are implemented using email attachments. For the latter, opening pass-
word protected documents each time they migrate to another device will generate additional
network traffic, put extra overhead on the business process and unnecessarily attract the
attention of potential attackers. On the contrary, implementation of the FYEO scheme does
not require any external server, as all data needed to regenerate the password for opening
the incoming document are in the FYEO bundle.

5.2 High entropy sources

The concept of using a user-selected digital object introduced by ObPwd and AutoPass
has several advantages. One is convenience for users, who instead of creating and recall-
ing text passwords satisfying complex composition rules can select and recall an object
they are familiar with, like personal photos or favored music pieces. Another is that no
long-term master passwords need to be stored, which might be easier to track down by
potential attackers than one of many inconspicuously looking files in the user directory.
Passwords generated based on the content of a digital object could certainly be more resis-
tant to dictionary attacks since their numeric content representing pixels or signal samples
could reasonably be considered a high-entropy source. Finally, the user may keep safe the
password-generating object on a separate memory card or have online access to it, so a sin-
gle object can provide for password regeneration to enable access from anywhere. However,
ObPwd generates passwords from the user-selected file by computing a hash of its content
without any deeper analysis of its statistical properties before qualifying it for the generation
process like in the manner presented by us earlier in this paper.

It is widely believed that physical processes can provide a source of unpredictable num-
bers, so if the output is large enough strong passwords could be generated. In [6] it was

20118 Multimedia Tools and Applications (2021) 80:20089–20124



estimated that ObPwd would need at least 160 bytes of such output under the pessimistic
assumption that on average, each byte would provide at least one bit of entropy. Typically
the volume of such data would be much higher and ObPwd assumes chunks of data of up to
100 KB for performance reasons. However, a more thorough analysis of the underlying pro-
cess semantics may be required if the same password shall be generated reproducibly, i.e.
each time the user would like to use it again. A good candidate for that are biometric objects,
providing streams of high entropy data and at the same time enabling biometric identity ver-
ification of the related subjects. Examples include physiological signals [39], brain signals
(EEG) [12] or electrocardiograms (ECG) [22]. One problem with the required reproducibil-
ity of the password generation process based on such “internal” biometrics modalities is
making it immune to noise and abnormal signal limitations. Besides that, acquiring EEGs
or ECGs for the decryption process outlined in Fig. 3 would be cumbersome, if specialized
devices and electrodes attached to the subject’s body are required to pass authentication.
Contrary to that, authentication performed by FYEO is contactless and yet involves data
produced by a physical process filtered out with a complex non-linear filter.

5.3 Facial recognition unlocking systems

From the user point of view the proposed FYEO scheme has many similarities to existing
biometric mechanisms for unlocking mobile devices, including the notable Apple’s Face ID
on iPhones and iPads or, more recently, Google’s Face Unlock system on Pixel 4 smart-
phones. This is because mobile devices, like FYEO documents on transfer, may be stolen
and thus exposed to offline attacks. Each mechanism utilizes the available camera system
provided by the personal device to capture images of verified subjects. Also they both enable
passwordless verification of users without any external server support and may be consid-
ered a very attractive alternative to typing complex passwords on small touchscreens of
mobile devices. Putting aside the obvious advantage of making the user’s face a password
capable of unlocking the device and selected applications installed on it, a few comments
on security and portability of the aforementioned mechanisms would be in place to compare
them to our solution.

When it comes to resistance to offline attacks it is worth noting that the device may freely
chose between biometric or password based identity verification. Typically, a biometrically
protected device would require a password after a number of unsuccessful scans of the
subject, after restarting it or after a prolonged period of inactivity. The same policy may be
implemented by the FYEO decrypting application in Fig. 3 in case of device theft with the
encrypted document, as described in Section 2.2.2. However, if the intercepted document
is directly attacked by the adversary its only protection is the password. Unlike the user-
provided passwords protecting personal devices, automatically generated FYEO passwords
discussed in Section 3.2 would certainly be much harder to crack.

Biometric protection of the personal device may take advantage of the specially designed
camera system. One example is Apple’s Face ID, which uses an infrared dot projector and
an infrared camera to read the dot pattern reflected off surfaces at various depths to create a
3D model of the subject’s face. This 3D technology is widely believed to be very secure and
highly accurate and can largely limit the risk of the system being bypassed using photos,
compared to the 2D facial authentication based on facial data captured from 2D maps of
the user’s face. On the other hand the less secure 2D facial recognition unlock technology
may be reinforced with a secure iris scanner, as in the Intelligent Scan feature offered by
Samsung’s Galaxy S9 and S9 Plus smartphones. Yet another solution can help a regular
camera device with a light beam emitted by the built-in flash LED to distinguish a captured
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facial image of the subject from a regular 2D photo by detecting corneal glint induced by
the beam [61].

The biometric verifier of the FYEO scheme can take advantage of so equipped personal
devices, if only their related operating system provides appropriate libraries for the on-
device user authentication needs, for example the Biometric API of the AndroidX Biometric
Library. In that case, instead of the FIT file any binary object could be inserted in the FYEO
bundle to provide the source of entropy for generating the required password. However,
it would be less safe, as the FIT file content is intrinsically related to the identity of the
legitimate recipient. Note that when sending the document to a specific email address, the
sender may not be sure that the person accepted by the remote face unlock system is the right
one (e.g different users sharing the same account). Besides, the FYEO scheme in the form
proposed in this paper provides for better portability of the related decrypting application,
as it is less dependent on the actual camera system of the receiving device.

Finally, a common feature of the face unlocking systems of modern smartphones and
the proposed FYEO scheme is the complete independence from the user identity verifica-
tion process of any external server, which allows users to work offline. For that purpose the
biometric verifier will need the facial data of the legitimate user to be stored locally. Face
unlock systems of mobile devices protect that data by storing them in an encrypted form in
their dedicated “secure enclave” piece of hardware. The data constitute a mathematical rep-
resentation of key details of the face, which may gradually evolve as the system is used and
re-trained to follow typical variations in a user’s appearance. For security reasons the facial
data must not suffice to reconstruct a person’s original image, as discussed in Section 3.1.
One of the biggest concerns after Face ID was released by Apple was the possibility that
the user would unknowingly unlock the phone in the immediate vicinity of the camera. This
was later rectified by requiring the user to take a proper pose in front of the camera. In that
regard the proposed FYEO scheme requiring the specific pose and illumination of the user
to unlock the encrypted document subsumes that Face ID refinement. Moreover, the FYEO
scheme does not need any “secure enclave” to keep the FIT file for processing, since neither
the original image of the subject nor the password generation algorithm can be reconstructed
from its content.

6 Conclusion

Although the approach to ensuring offline security of digital content proposed in the paper
incorporates several well-known concepts in the field of user authentication discussed
before, their combination in the FYEO scheme for protecting electronic documents is inno-
vative. It provides contactless authentication of legal users of the document based on their
high entropy biometric data, for which extremely strong passwords can be automatically
generated, a feature not yet available in the authoring and document exchange tools. More-
over, the entire authentication process is truly offline, as no external server or database are
needed.

Implementability of the FYEO scheme was assessed by us with two models of active
document architectures. One implementation was based on the Interactive Open Document
Architecture (IODA) [44] architecture, developed to augment the static content of digital
documents with data and services that could turn them into executable papers, suitable for
implementing reproducible research scenarios. The IODA executable paper is a reactive
document, which can respond to activities initiated by its user. User scenarios requiring the
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original document to be partially encrypted were exercised, with portions made available to
selected users. For that, extracting of the FIT file (see Fig. 3) was implemented as one of
document services. This solution could improve its security, as detaching the FIT file would
require specialized software available only at the legitimate client’s side. Another imple-
mentation involved the Mobile Interactive Document Architecture (MIND) [15] enabling
proactive document attachments to migrate in a distributed system on their own by using
standard email services. The MIND document is proactive and can initiate activities requir-
ing reaction of its recipient. It embeds a migration path, which defines a business process
involving collaborators in a virtual organization and combines a passive content with
active services that support interaction of documents with users and their personal devices.
The passive content of MIND documents may be password encrypted. As in the case of
IODA, extraction of the FIT file from the bundle embedded in the MIND document was
implemented as the document’s service.

We continue our work towards a more secure transfer of electronic documents exchanged
in collaborative processes by incorporating effective methods for determining liveness of
the subject in front of the camera [46] combined with identifying various emotional states
of the subject [24] developed in another project to make the FYEO scheme resistant to
physical attacks on users and to extend the catalogue of factors affecting tuning of the
FAR/FRR rates by facial expressions. Another issue to be addressed is extension of bio-
metric verification to lighting conditions for outdoor use. The candidate techniques involve
deep neural networks (DNN) [17, 51]; they seem to offer mechanisms to make some of their
general classes irreversible and suitable for generating pseudo-identities, as required by the
ISO24745 standard [3, 4]. Nevertheless, as observed by us in the experiments reported in
Section 4 the state-of-the-art biometric recognition techniques do not necessarily comply
with the irreversibility and unlinkability requirements for biometric verifiers [16].
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