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Abstract
This paper presents a method for Photo Response Non Uniformity (PRNU) pattern noise
based camera identification. It takes advantage of the coherence between different PRNU
estimations restricted to specific image regions. The main idea is based on the following
observations: different methods can be used for estimating PRNU contribution in a given
image; the estimation has not the same accuracy in the whole image as a more faithful
estimation is expected from flat regions. Hence, two different estimations of the reference
PRNU have been considered in the classification procedure, and the coherence of the sim-
ilarity metric between them, when evaluated in three different image regions, is used as
classification feature. More coherence is expected in case of matching, i.e. the image has
been acquired by the analysed device, than in the opposite case, where similarity metric
is almost noisy and then unpredictable. Presented results show that the proposed approach
provides comparable and often better classification results of some state of the art methods,
showing to be robust to lack of flat field (FF) images availability, devices of the same brand
or model, uploading/downloading from social networks.
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1 Introduction

The intensive use of images and more in general multimedia content makes them crucial
for investigation purposes but, on the other hand, makes investigations difficult from dif-
ferent points of view: large amount of data to process and analyse; authenticity assessment
of image content; identification of the source generating the image, robustness to image
manipulation and modification due to transmission, storage, posting on social networks and
so on. Photo Response Non Uniformity pattern noise (PRNU in the sequel) is a camera fin-
gerprint that can be used in different digital forensics procedures, as it allows to establish a
correspondence between a device and the images that have been acquired by it [2, 20, 24].
This kind of information can result useful, for example, in source camera identification,
source camera verification, image integrity and manipulation assessment [10, 11, 21, 29].

Specifically, PRNU represents a noise component in the image that is caused by sensors
imperfections. Due to its specific characteristic and its ability in uniquely identifying the
device, there has been a great interest in this kind of feature for addressing some critical
issues in the image forensic field. Unfortunately, due to its nature, i.e. noise component
hidden in the image content, its extraction is not trivial. Several methods have been proposed
in the literature in the last years and they mainly depend on the application purpose. In
fact, the working scenario can often change, requiring different operative procedures to get
the final result with the expected/required accuracy [8, 12, 14, 21, 25, 36, 37]. The most
common working scenarios are:

1. given one or more images acquired by an unknown device and a set of devices, establish
which of the avaliable devices took the images;

2. given one or more images acquired by an unknown device and a set of devices, establish
if one of the available devices took the images;

3. given a set of images, group them according to the corresponding source.

In some “relaxed” scenarios, it could be enough to identify the brand of the source device.
Source camera identification/verification methods are mainly based on two main phases:

i) PRNU extraction and ii) PRNU classification. The literature concerning this topic focused
on one of the two phases or both in dependence on the final task. In the first case denoising
procedures are applied as PRNU is considered a noise component whose contribution can
be found in a proper residual image [22, 23, 27, 34]. In the second case classification meth-
ods, mainly based on clustering techniques, are used [17, 19, 25]. In both cases, adopted
methods are required to be robust to PRNU extraction procedures as well as data coming
from different sources (notebook, social network [8], smartphone [37], etc.). As a matter of
fact, in forensic investigations very few data often are available. This makes source cam-
era identification problem further delicate. The pioneering work in this field is the one in
[24], where a model for the acquired image has been proposed and discussed. Using this
model, the extraction algorithm has then been derived by applying a proper denoising fil-
ter; classification is performed using the normalized correlation as similarity metric and a
proper statistical study is conducted for estimating device-based thresholds to use in the
final identification—see Fig. 1. With regard to the denoising step, several denoisers have
been proposed, including methods dealing with multiplicative noise [28]; similarly, several
similarity metrics have been introduced for the classification step even though correlation-
based metrics have shown to be somewhat effective for this purpose. That is why normalized
cross-correlation (NCC) is usually employed, even though many papers show the better
performance provided by peak-to-correlation energy (PCE) [16, 38]. Interesting reviews
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Fig. 1 Scheme of the source identification method in [24]. J1,dk
, ..., JMdk

,dk
are Mdk

images acquired by the
device dk whose PRNU is Kdk

. The latter is estimated by suitably combining the residual images obtained
by applying a denoiser to the Mdk

images. JC is the candidate image, i.e. the one whose source has to be
found; R is the estimation of the PRNU of the device that took JC and this estimation is extracted from JC

by means of a denoising filter. The comparison between R and Kdk
allows us to establish if dk is the source

device for JC

concerning the actual state of the art can be found in [1, 2, 23, 31, 35]. As mentioned
above, the main problem in PRNU extraction is the denoising method. In fact, residual
edges (i.e., structured information that is not preserved in the denoised image) in the residual
image (i.e., the difference between the noisy and the denoised image) can contribute to mis-
classifications or can alter the classification procedure. That is why some approaches try to
estimate PRNU just on flat regions, while some other apply proper weighting in the denois-
ing process that distinguishes between edges/textures and smooth regions [33, 39, 40]. The
latter approaches show a considerable improvement in PRNU extraction even though they
make it computationally intensive; this is the reason why faster denoising procedures are
preferable. A different strategy has been proposed in [32] and [6]. Instead of refining and
improving PRNU extraction procedures, the contribution of each pixel in the similarity met-
ric is weighted according to its probability to be corrupted by sources different from the
original PRNU. As in [32], in this paper the role of edges and textures in denoising process
is taken into account without neglecting the role of enhancement processing that is applied
whenever the reference PRNU for a given device is extracted from a set of images taken
from it. This paper is then an extension and a generalization of the one in [6], where the
initial idea and preliminary results have been presented. Specifically, the first two working
scenarios previously mentioned have been considered, and two feature vectors are defined
for each candidate image. Each feature vector refers to a different averaging-based method
for device PRNU estimation and it is composed of three correlation values: the one com-
puted using the whole PRNU image; the one computed using only the region containing
edges; the one computed using only flat regions. Due to the random nature of noise, it is
expected that in case of matching (i.e., the analysed image has been acquired by the device
under study), the two feature vectors are more correlated than in the case of no matching
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(i.e., the analysed image has not been taken with the device under study). Therefore, the role
played by the coherence between NCC values derived from different PRNU estimations in
the source identification process is studied in this paper. The proposed method has been
extensively tested on different publicly available databases. Experimental results show that
it contributes to improve the basic correlation-based source identification method by reach-
ing and often outperforming classification results provided by selected competing state of
the art methods. In particular, the proposed method seems to provide:

– less ambiguities in case of images acquired by different devices of the same model;
– more robustness to reference PRNU estimation from natural images (NI) instead of flat

fields (FF) images, i.e. the ones whose subject is a uniform and constant background;
– robustness to PRNU estimation from images coming from social networks.

The remainder of the paper is the following. Next section presents the proposed method
and its theoretical and practical motivations. Section 3 presents some experimental results,
comparative studies and discussions. The last section draws the conclusions and provides
guidelines for future work.

2 The proposedmethod

PRNU extraction must be based on a precise image modeling where the role of the
noise sources is defined; on the other hand, the model must be not complicated in order
to make PRNU estimation feasible. The common model, after some simplifications and
assumptions, adopted in the literature is the following [10, 24]

J (x) = I (x) + I (x)K(x) + N(x), (1)

where J is the acquired image, x is the pixel location, I is the original image content, K is
the PRNU noise component while N includes other noise sources that are independent of
K . Hence, K identifies in a unique way the device that took the image J ; it is zero-mean
and independent of I pointwise. From now on, the dependence on x will be omitted for
simplicity.

As it can be observed, if a denoising filter F is applied to J , the residual image, i.e.

R = J − F(J ), (2)

preserves K component.
By considering the first two scenarios described in the introduction, when several images

(especially FF images) are available for each device, the reference pattern K of the device
can be estimated by combining each single estimation of K that is derived from each
available image. Hence, whenever another image from the same device is available, high
correlation is expected between its residual R and the reference pattern K of the device.
That is why the normalized correlation is used to assess the similarity between K and R, i.e.

ρ(R,K) = < (R − R̄), (K − K̄) >

‖(R − R̄)‖ ‖(K − K̄)‖ , (3)

where < ·, · > denotes the inner product and ∗̄ is the mean value of ∗.
More precisely, by denoting with Ji,dj

the i−th image acquired by the j−th device,
Mdj

the number of images available for the same device and with Ri,dj
the corresponding
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residual image estimated as in (2), we have that the reference PRNU for the dj -th device,
namely Kdj

, is

Kdj
≈ 1

Mdj

∑

i

Ri,dj
. (4)

Previous equation refers to the ideal case, i.e. whenever Ri,dj
≈ Ii,dj

Kdj
+ Ni,dj

, Mdj
is

large, Kdj
and Ii,dj

are independent and Ii,dj
resembles a flat field image [2].

In order to better suppress eventual error sources, a maximum likelihood estimation of
the reference PRNU for the dj -th device [2, 24] can be derived as follows

Kdj ,MLE ≈
∑Mdj

i=1 Ri,dj
Ji,dj

∑Mdj

i=1 J 2
i,dj

. (5)

In this case [24] the following model for the residual image is considered Ri,dj
≈ Ji,dj

Kdj
+

Θi,dj
, where Θi,dj

are noise sources that are supposed to be independent of Kdj
. This kind

of estimation holds true even in case of natural (not FF) images.
It is worth observing that, whenever FF images are considered for the single device, Ii,dj

is almost constant, i.e. Ii,dj
(x) = Ci,dj

, ∀ x. As a result,

Ji,dj
= Ci,dj

+ Ci,dj
K + Ni,dj

and Kdj
can be estimated directly from Ji,dj

as follows

Kdj ,FF = J̄ − C̄

C̄
, (6)

where J̄ = 1
Mdj

∑
i Ji,dj

= C̄i,dj
+ C̄i,dj

K + N̄i,dj
, C̄ is the mean value of Ci,dj

and

N̄i,dj
≈ 0.

Better or different variants of the aforementioned estimations for the reference PRNU
can be considered in order to prevent eventual denoising artifacts, error in noise source
modelling and assumptions, and so on. This kind of operation is commonly denoted in the
literature as PRNU enhancement process [2]. In this paper, we focus on the basic estimations
described above as we expect a certain amount of coherence between PRNU estimations,
independently of the adopted but consistent procedure, as it will be clearer in the sequel.

Despite the variety of distortion sources, denoising procedure represents a crucial step
as the successive analyses are based on the residual image. The more the model hypotheses
are met, the more consistent PRNU estimation. In particular, the residual R has a noise
component and a structural component due to the fact that part of edges and structures are
smoothed in the denoising procedure and then they leave traces in the residual image; on the
other hand, some noise component remains in the denoised image, so that R may contain
only a part of PRNU image—see Fig. 2. As a result, without loss of generality, we can
briefly split the residual into two components as follows

R = IS + KN, (7)

where IS is the structural part still present in R while KN is the PRNU component in R. The
better the denoiser, the less IS and the more KN approaches K . This requirement is crucial
especially for the single residual R (PRNU image) that has to be compared with the device
PRNU (reference PRNU or reference pattern) in order to fix the origin of a given image
(candidate image). A method to address this issue is to use only image regions where the
aforementioned statement holds true, i.e. smooth and almost flat regions (the ones that do
not contain edges or textures) [34]; an alternative solution is to properly weight the similarity
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Fig. 2 Example of denoising artifacts in the residual image: top) candidate image; bottom) residual image
computed as in (2)

measure that is adopted in the classification process, according to edges or textures local
density [32]. Unfortunately, in the latter case some settings concerning the threshold to adopt
and the best weighting function remain open questions that can influence the final result. In
any case, the selection of the denoiser as well as K estimation procedure can considerably
change the final classification, as many papers in the literature have demonstrated [9, 22].

2.1 Conditioning of cross-correlation

It is worth noticing that if R denotes the residual extracted from an image whose origin
(device dj ) has to be assessed, by using the arguments used in [3] for the denoising problem,
(7) and the independence between IS and KN provide

ρ(R,Kdk
) = < (IS + KN) − (IS + KN), (Kdk

− K̄dk
) >

σRσKdk

= σKN,Kdk

σRσKdk

∀ k, (8)
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where σKN,Kdk
is the covariance between KN and Kdk

, while σR and σKdk
are the standard

deviations of R and Kdk
respectively. This equation holds true either in the matching case

(j = k), i.e whenever KN is a part of Kdj
, or in the no matching case (j �= k), i.e. whenever

KN is completely independent of Kdj
. This way of writing ρ is interesting as it well shows

the two different error sources in source camera identification:

– the denoiser, i.e. the term KN ;
– PRNU enhancement, i.e. the term Kdk

.

In addition, it allows us to make a simple but crucial observation. Without loss of generality,
we consider only the numerator in (8). Since the two terms are expected to be zero-mean, it
corresponds to the inner product between KN and Kdk

, i.e. < KN, Kdk
>. It is straightfor-

ward to observe that the inner product between two vectors is badly conditioned if the two
vectors are orthogonal, while it is well conditioned if the two vectors are linearly dependent.
In fact, by denoting with p =< y, x >= yT x the inner product between the two vectors x

and y, it follows
|δp|
|p| ≤ ‖yT ‖‖x‖

|yT x|
‖δx‖
‖x‖ ,

where δp is the absolute error for p caused by the absolute error δx for the vector x. The

quantity ‖yT ‖‖x‖
|yT x| resembles the condition number for the computation of p whenever y is

fixed and it is exactly the inverse of the cosine of the angle between y and x. As a result,
with reference to the numerator of (8), if denoising is accurate and j = k, i.e. KN ∼ Kdj

,
then the problem is well conditioned; on the contrary, if denoising is accurate but j �= k,
the problem is badly conditioned as it is expected that KN does not share anything with
Kdk

. This property still holds whenever the reference PRNU for a given device is estimated
using different but consistent estimation strategies. As a result, independently of the way K

is estimated, we expect that σR,Kdj
(matching case) computation is better conditioned and

stable than σR,Kdk
(no matching case) .

In addition, by assuming the estimation of Kdk
enough accurate, if j = k then Kdj

is
contained in the residual image R; since R = IS + KN , we can write Kdj

= KN + Kc
N and

then

ρ(R,Kdk
) = ρ(R, Kdj

) =
σKN,Kdj

σRσKdj

= σ 2
KN

+ σKN,Kc
N

σRσKdj

= σ 2
KN

+ σKN,Kc
N√

σ 2
IS

σ 2
Kdj

+ (σ 2
KN

+ σKN,Kc
N
)2 + σ 2

KN
σ 2

Kc
N

− σ 2
KN,Kc

N

= 1
√

1 +
σ 2

IS
σ 2

Kdj
+σ 2

KN
σ 2

Kc
N

−σ 2
KN ,Kc

N

(σ 2
KN

+σKN ,Kc
N

)2

,

where σ 2
KN

σ 2
Kc

N
− σ 2

KN,Kc
N

≥ 0 from the Cauchy-Schwarz inequality.

Hence, in case of a perfect denoiser, σ 2
IS

= 0 and Kc
N = 0, so that ρ approaches 1. Even

though it is not feasible in real situations, we expect that it is nearly true in correspondence
to flat regions. In this case, as IS contribution should be minor (as well as Kc

N ), the argument
in the square root in the last line of the previous equation is close to 1. On the contrary, for
textured/edges regions we expect a greater contribution from IS as well as from Kc

N and the
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argument in the square root is much greater than 1 so that ρ value decreases. As a result,
in the matching case we are able to predict, in some sense, the behaviour of ρ whenever
estimated in specific regions of the image, i.e. with or without edges or textures. On the
contrary, in the no matching case (j �= k) we cannot say anything more about σKN,Kdk

except for the fact that we expect values close to zero in all image regions.

2.2 The proposed source identificationmethod

Aforementioned observations further and more formally motivate the preliminary work pre-
sented in [6]. Specifically, in the source camera identification problem, it could be more
advantageous to exploit the fact that if an image is acquired by a given sensor, with high
probability we are able to measure this match with almost all consistent estimations of the
reference pattern (Fig. 3); on the contrary, if the image comes from another device, then we
expect more variable and less predictable correlation values whenever different estimations
of the reference pattern are considered. In addition, as mentioned in the previous section, in
the match case the relation between the ρ values computed on flat regions and on textured
regions is expected to be almost insensitive to different but coherent estimations of the refer-
ence PRNU. As a result, it would be convenient to adopt this coherence in the identification
process. In particular, in this work the coherence between ρ values computed on the whole
image, on image flat regions and on textured/edge regions has been analysed and adopted
for source identification purposes—see Fig. 4.

More formally, let Kdk,1 and Kdk,2 be two different estimations of Kdk
for a fixed device

dk and let {Pi}i=1,2 the features vectors computed with respect to the i − th estimation of
camera fingerprint Kdk

. By denoting with J the candidate image, Pi is the three component
vectors whose components are described below:

Fig. 3 Left column) Two different images from Dresden database; Middle column) ρ(R,Kdk
) versus device

number k computed for Kdk
estimated as in (6); Right column) ρ(R,Kdk

) versus device number k computed
for Kdk

estimated as in (5). Even though the reference pattern is differently estimated, in both cases the
maximum value is in correspondence to the device that took the image
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Fig. 4 Left column) Match case j = k. ρ(R,Kdj
) value evaluated for i) the whole image residual R, ii) the

only flat regions, iii) the only textured regions. Two different estimations for Rdj
have been considered. Each

row refers to a different candidate image. Right column) No match case j �= k. ρ(R,Kdk
) values for the

same images when compared with the reference PRNU of a difference source. Measures in the left column
are more coherent than those in the right column
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1. ρ(R,Kdk,i), i.e. the correlation between the candidate image residual R and the i − th

estimation of camera fingerprint Kdk
;

2. ρ(Rf lat , Kdk,i,f lat ), i.e. the correlation between the candidate image residual R

restricted to flat regions of J and Kdk,i restricted to the same region;
3. ρ(Redge, Kdk,i,edge), i.e. the correlation between the candidate image residual R

restricted to edge regions in J and Kdk,i restricted to the same region.

Independently of the inner dependency between the similarity metric evaluated in image
subregions, we expect that these dependencies are preserved more in the match case
whenever Kdk

estimation slightly changes.
The coherence between the two feature vectors is measured by means of their inner

product, i.e.

τJ,Kdk
=< P1, P2 > . (9)

The larger τJ,Kdk,i
, the higher the coherence between the normalized correlation evaluated

in different image regions with respect to different estimations of camera fingerprint, and
then the higher the probability that J comes from dk—see Fig. 5.

2.3 The algorithm

The source camera identification algorithm is summarized below.

Fig. 5 τJ,Kdk
computed with respect to k = 1, ..., 21 for 25 different images acquired by d6 (topleft), d11

(topright ), d13 (bottomleft) and d16 (bottomright)
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1. For each device dk in the database, estimate the reference pattern Kdk
using the first

predefined estimation mode and let Kdk,1 be the estimation
2. For each device dk in the database, estimate the reference pattern Kdk

using the second
predefined estimation mode and let Kdk,2 be the estimation

3. For each candidate image J ,

– apply a predefined denoising filter and estimate the residual image R as in (2);
– apply an edge detection filter for extracting edges/textured regions; extract flat

regions as edges/textures complementary regions;
– compute P1 = [ρ(R, Kdk,1), ρ(Redge,Kdk,1,edge), ρ(Rf lat , Kdk,1,f lat )] and P2 =

[ρ(R, Kdk,2), ρ(Redge,Kdk,2,edge), ρ(Rf lat , Kdk,2,f lat )];
– compute τJ,Kdk

as in (9);
– compare τJ,Kdk

with a predefined threshold value. If τJ,Kdk
overexceeds the

threshold value, then the image has been acquired by the device dk with high
probability.

Remark PRNU extraction requires the use of a denoising filter and, as pointed out in the
previous sections, it is required to be enough accurate. In this paper we do not focus on
the denoising filter and the widely used wavelet-based Mihcak filter [26], as suggested in
the pioneering paper [24], has been considered in the experimental results. As a matter of
fact, as also shown in some papers in the literature, different and better performing methods
could be used, as for example non-local based methods [4, 5, 7, 13], but they could result too
much computationally expensive. The wavelet-based denoising method represents a good
trade-off between accuracy and required computational effort.

2.4 Weighted coherencemeasure

As mentioned in the previous section, the inner product defined in (9) conveys some infor-
mation concerning the relation between the candidate image and a given device. This is the
reason why in this paper the inner product has been considered as a discrimination measure
in the source identification process. In order to further investigate this index, the following
corrections for τI,Kdk

have also been considered

1. w(J,Kdk
) = ρ(R,Kdk,1) τJ,Kdk

;
2. v(J,Kdk

) = ρ(Rf lat , Kdk,1,f lat ) τJ,Kdk
.

In the first case, the classical correlation measure (basic algorithm in [24]) is used as a
corrective term for the proposed coherence measure; in the second case, the classical corre-
lation measure restricted to image flat regions has been selected as corrective term. In this
latter case better results are expected since measures in flat regions should be more accurate
as less affected by denoising artifacts.

3 Experimental results

The proposed method has been tested on publicly available databases in the forensics field,
the Dresden Image database [18] and Vision database [30]. The former includes hundred
images (natural and flat field) captured by several camera models and devices—a subset of
uncompressed images and devices, listed in Tables 1 and 2, have been used in our tests. The
latter is composed of videos and images both in the native format and in their social version
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Table 1 Selected images and devices from Dresden database

n Device No FF images No candidate images Images size

1 Olympus 1050SW 0 50 25 3648 × 2736

2 Olympus 1050SW 1 50 25 3648 × 2736

3 Olympus 1050SW 2 50 25 3648 × 2736

4 Olympus 1050SW 3 50 25 3648 × 2736

5 Olympus 1050SW 4 50 25 3648 × 2736

6 Panasonic DMC-FZ50 0 25 25 3648 × 2736

7 Panasonic DMC-FZ50 1 25 25 3648 × 2736

8 Panasonic DMC-FZ50 2 25 25 3648 × 2736

9 Ricoh Capilo GX100 0 25 25 3648 × 2736

10 Ricoh Capilo GX100 1 25 25 3648 × 2736

11 Ricoh Capilo GX100 2 25 25 3648 × 2736

12 Ricoh Capilo GX100 3 25 25 3648 × 2736

13 Samsung NV15 0 50 25 3648 × 2736

14 Samsung NV15 1 50 25 3648 × 2736

15 Samsung NV15 2 50 25 3648 × 2736

16 Sony DSC-T77 0 50 25 3648 × 2736

17 Sony DSC-T77 1 50 25 3648 × 2736

18 Sony DSC-T77 2 50 25 3648 × 2736

19 Sony DSC-T77 3 50 25 3648 × 2736

20 Sony DSC-W170 0 50 25 3648 × 2736

21 Sony DSC-W170 1 50 25 3648 × 2736

These images have been used in tests involving FF images

(Facebook, YouTube, and WhatsApp are considered), from 35 portable devices of 11 major
brands. In this paper, Facebook images have been analysed, as listed in Table 3.

For the estimation of camera fingerprint, i.e. the reference PRNU Kdk
, we use

Kdk,1 = 1

Mdk

Mdk∑

i=1

Hi,dk
(10)

where Hi,dk
(x) = Ji,dk

(x) − Ci,x2 − Ci,x1 , with Cn,x2 = 1
Nrows

∑
x1

Ji,dk
(x) and Ci,x1 =

1
Ncols

∑
x2

(Ji,dk
(x) − Ci,x2), in agreement with [24], while for Kdk,2 a different equation is

used according to the available images in order to be more consistent with the image model.
Specifically, if FF images are available, Kdk,2 is set equal to (6), as it refers to constant
images. On the contrary, if only NI are available, Kdk,2 is set equal to (5), as it is more robust
to eventual distortions introduced during the denoising step.

For edges extraction, the standard Canny edge detection algorithm has been selected
with Matlab default parameters and a dilation window size equal to 7 has been applied to
the output edge map. Even in this case, a classical edge detector has been considered for
simplicity. The size of the dilation window has been empirically set as the one that provided
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Table 2 Selected images and devices from Dresden database

Device No NI No candidate images Images size

Olympus 1050SW 0 25 10 3648 × 2736

Olympus 1050SW 1 25 10 3648 × 2736

Olympus 1050SW 2 25 10 3648 × 2736

Olympus 1050SW 3 25 10 3648 × 2736

Olympus 1050SW 4 25 10 3648 × 2736

Panasonic DMC-FZ50 0 25 10 3648 × 2736

Panasonic DMC-FZ50 1 25 10 3648 × 2736

Panasonic DMC-FZ50 2 25 10 3648 × 2736

Ricoh Capilo GX100 0 25 10 3648 × 2736

Ricoh Capilo GX100 1 25 10 3648 × 2736

Ricoh Capilo GX100 2 25 10 3648 × 2736

Ricoh Capilo GX100 3 25 10 3648 × 2736

Samsung NV15 0 25 10 3648 × 2736

Samsung NV15 1 25 10 3648 × 2736

Samsung NV15 2 25 10 3648 × 2736

Sony DSC-T77 0 25 10 3648 × 2736

Sony DSC-T77 1 25 10 3648 × 2736

Sony DSC-T77 2 25 10 3648 × 2736

Sony DSC-T77 3 25 10 3648 × 2736

Sony DSC-W170 0 25 10 3648 × 2736

Sony DSC-W170 1 25 10 3648 × 2736

These images have been used in tests involving natural images (NI)

the best results on average. As a matter of fact, the dilation factor should be fixed according
to the candidate image content. However, the estimation of the best dilation parameter would
require an additional computational effort and it is out of the scope of this paper.

Table 3 Selected images and devices from Vision database

Device No NI images No candidate images Images size

Apple iPhone4s 25 10 2048 × 1536

LG D290 25 10 2048 × 1536

Apple iPhone5c 25 10 2048 × 1536

Apple iPhone5c (2) 25 10 2048 × 1536

Apple iPhone6 25 10 2048 × 1536

Apple iPhone6 Plus 25 10 2048 × 1536

Wiko Ridge4G 25 10 2048 × 1536

Apple iPhone5 25 10 2048 × 1536

These images have been used in tests involving Facebook images
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For comparative studies the reference pioneering method in [24] (basic method) and the
one in [32] have been considered. The former has been selected since we aim at measur-
ing to what extent the proposed method improves the original work. In other words, we are
interested in quantifying the benefit in using the proposed coherence measure as alternative
to the absolute correlation (plain mode) or as a corrective term (weighted mode) for it. It is
worth observing that the plain mode corresponds to the preliminary work presented in [6].
The method in [32] has been selected as it shares the same strategy, i.e. weighting correla-
tion measure according to image regions. However, the method in [32] defines the weight
as the local density of textured/edges region. On the contrary, in the proposed method we
focus on the inner dependencies between the correlation metric between more or less tex-
tured image regions rather than their contribution to the similarity metric. The results have
been compared using standard classification indices, as specificity, sensitivity, precision,
F1-score and accuracy [15].

The first test is oriented to compare the proposed method, i.e. the inner product τJ,Kdk

and its weighted version w(J,Kdk
), with the basic algorithm, i.e. ρ(R,Kdk,1), at a fixed

sensitivity value, i.e. the number of true positives and negatives is the same for all methods.
As a result, in this case a unique threshold is used for all candidate images and devices, and
it has been fixed as the one allowing the predefined sensitivity value. As a consequence, for
each method a different threshold has been used. As it can be observed in Tables 4 and 5,
both τJ,Kdk

and w(J,Kdk
) are able to outperform the basic ρ(J,Kdk,1) in terms of reduced

number of false positives. This means that the inner product provides a reduced number
of false positives assignments in the second working scenario (image source device could
not be in the available set of devices) and the weighted inner product further improves this
result. It is also worth observing that the same considerations are valid either the device
PRNU is estimated from FF images or from NI.

Table 4 Results in terms of number of true positives (TP), true negatives (TN), false negatives (FN), false
positives (FP), precision (Prec), F1 score (F1), specificity (Spec) and accuracy (Acc) provided by the pro-
posed method (inner product, τJ,Kdk

), its weighted version (w(J,Kdk
)) and the basic algorithm in [24]

(ρ(R,Kdk,1)) at three fixed sensitivity values

Sensitivity = 0.6838

Method (threshold) TP TN FN FP Prec F1 Spec Acc

τ J,Kdk
(1.92e-04) 359 10424 166 76 0.8253 0.7479 0.9928 0.9780

w(J,Kdk
) (2.58e-06) 359 10429 166 71 0.8349 0.7518 0.9932 0.9785

ρ(R,Kdk,1) (1.24e-2) 359 10413 166 87 0.8049 0.7394 0.9917 0.9771

Sensitivity = 0.8743

Method TP TN FN FP Prec F1 Spec Acc

τ J,Kdk
(7.03e-05) 459 10202 66 298 0.6063 0.7161 0.9716 0.9669

w(J,Kdk
) (5.22e-07) 459 10243 66 257 0.6410 0.7397 0.9755 0.9707

ρ(R,Kdk,1) (6.00e-3) 459 10171 66 329 0.5825 0.6992 0.9687 0.9642

Sensitivity = 0.9181

Method TP TN FN FP Prec F1 Spec Acc

τ J,Kdk
(1.04e-05) 482 7325 43 3175 0.1318 0.2305 0.6976 0.7081

w(J,Kdk
) (1.40e-08) 482 7478 43 3022 0.1376 0.2393 0.7122 0.7219

ρ(R,Kdk,1) (1.4e-3) 482 7019 43 3481 0.1216 0.2148 0.6685 0.6804

FF in Dresden database have been used for reference PRNU estimation. For each method, the adopted
threshold is indicated in the brackets
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Table 5 Results in terms of number of true positives (TP), true negatives (TN), false negatives (FN), false
positives (FP), precision (Prec), F1 score (F1), specificity (Spec) and accuracy (Acc) provided by the pro-
posed method (inner product, τJ,Kdk

), its weighted version (w(J,Kdk
)) and the basic algorithm in [24] (

ρ(R,Kdk,1)) at three fixed sensitivity values

Sensitivity = 0.6809

Method (threshold) TP TN FN FP Prec F1 Spec Acc

τ J,Kdk
(3.30e-3) 143 4195 67 5 0.9662 0.7989 0.9988 0.9837

w(J,Kdk
) (9.30e-05) 143 4194 67 6 0.9597 0.7967 0.9986 0.9834

ρ(R,Kdk,1) (2.80e-2) 143 4193 67 7 0.9533 0.7944 0.9983 0.9832

Sensitivity = 0.8524

Method TP TN FN FP Prec F1 Spec Acc

τ J,Kdk
(2.30e-3) 179 4188 31 12 0.9372 0.8928 0.9971 0.9902

w(J,Kdk
) (5.42e-05) 179 4189 31 11 0.9421 0.8950 0.9974 0.9905

ρ(R,Kdk,1) (2.30e-2) 179 4187 31 13 0.9323 0.8905 0.9969 0.9900

Sensitivity = 0.9104

Method TP TN FN FP Prec F1 Spec Acc

τ J,Kdk
(1.80e-3) 193 4180 17 20 0.9061 0.9125 0.9952 0.9916

w(J,Kdk
) (3.76e-05) 193 4179 17 21 0.9019 0.91038 0.9950 0.9914

ρ(R,Kdk,1) (2.1e-2) 193 4176 17 24 0.8894 0.9040 0.9943 0.9907

NI in Dresden database have been used for reference PRNU estimation. For each method, the adopted
threshold is indicated in the brackets

In order to stress this point, the ROC (sensitivity vs 1-specificity) curves for the three
methods are depicted in Figs. 6 and 7. As it can be observed, the proposed procedure is able
to considerably improve the basic method in terms of True Positive Rate (TPR = Sensi-
tivity), especially in correspondence to high specificity values, i.e. low False Positive Rate
(FPR = 1-Specificity). In fact, as also outlined in [6], the use of the inner product allows us
to reduce the number of false positive assignments.

It is worth observing that we reach the same conclusions if all candidate images are anal-
ysed and a unique decision threshold value is applied to each metric for source identification
purposes. More precisely, two different thresholds have been selected as follows:

Fig. 6 Reference PRNU from FF images. Left) ROC curve of the basic algorithm compared with the one of
the inner product based algorithm. Right) ROC curve of the basic algorithm compared with the one of the
weighted inner product based algorithm
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Fig. 7 Reference PRNU from NI images. Left) ROC curve of the basic algorithm compared with the one of
the inner product based algorithm. Right) ROC curve of the basic algorithm compared with the one of the
weighted inner product based algorithm

– the one corresponding to the M − th highest metric value, with M equal to the total
number of candidate images used in the test;

– the one able to select the first 5% of the highest metric values (right tail of metric values
distribution).

Fig. 8 Top) Sorted cross-correlation (left) and inner product (right) evaluated for all the candidate images
listed in Table 1 when compared with all the devices listed in the same table. Bottom) Same plots restricted
to the first 1100 values. The marker indicates the threshold value corresponding to 5% of the whole metric
evaluations and to the first 525 values. Device PRNU has been estimated using FF
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Table 6 Results in terms of number of true positives (TP), true negatives (TN), false negatives (FN), false
positives (FP), precision (Prec), sensitivity (Sens), F1 score (F1), specificity (Spec) and accuracy (Acc) pro-
vided by the proposed method (inner product, τJ,Kdk

) and the basic algorithm in [24] (ρ(R,Kdk,1)) at the
threshold level corresponding to 5% of the distribution and the one corresponding to the number of candidate
images

Method TP TN FN FP Prec Sens F1 Spec Acc

(threshold)

Percentage = 5%

τ J,Kdk
409 10358 116 142 0.7423 0.7790 0.7602 0.9865 0.9766

(1.37e-04)

ρ(R,Kdk,1) 404 10353 121 147 0.7332 0.7695 0.7509 0.9860 0.9757

(9.4e-3)

525 imgs

τ J,Kdk
398 10373 127 127 0.7581 0.7581 0.7581 0.9879 0.9770

(1.44e-04)

ρ(R,Kdk,1) 394 10369 131 131 0.7505 0.7505 0.7505 0.9875 0.9762

(1.02e-2)

FF in Dresden database have been used for reference PRNU estimation. For each method, the adopted
threshold is indicated in the brackets

As Fig. 8 shows, the two thresholds are close to the optimal separation point of the mono-
tonic decreasing rearrangement of metric values, i.e. the one that separates the distribution
into two groups having different characteristics. Quantitative results are reported in Tables 6
and 7. As it can be observed, the inner product based method performs better than the basic
cross-correlation one in correspondence to this optimal point.

Table 7 Results in terms of number of true positives (TP), true negatives (TN), false negatives (FN), false
positives (FP), precision (Prec), sensitivity (Sens), F1 score (F1), specificity (Spec) and accuracy (Acc) pro-
vided by the proposed method (inner product, τJ,Kdk

) and the basic algorithm in [24] (ρ(R,Kdk,1)) at the
threshold level corresponding to 5% of the distribution and the one corresponding to the number of candidate
images

Method TP TN FN FP Prec Sens F1 Spec Acc

(threshold)

Percentage = 5%

τ J,Kdk
197 4177 13 23 0.8955 0.9381 0.9163 0.9945 0.9918

(1.7e-3)

ρ(R,Kdk,1) 195 4175 15 25 0.8864 0.9286 0.9070 0.9940 0.9909

(2.04e-2)

210 images

τ J,Kdk
192 4182 18 18 0.9143 0.9143 0.9143 0.9957 0.9918

(1.8e-3)

ρ(R,Kdk,1) 190 4180 20 20 0.9048 0.9048 0.9048 0.9952 0.9909

(2.11e-2)

NI in Dresden database have been used for reference PRNU estimation. For each method, the adopted
threshold is indicated in the brackets
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Table 8 Comparisons in terms of sensitivity for fixed specificity values: 0.990, 0.994 and 0.995

Method/Specificity 0.990 0.994 0.995

Basic ρ(R,Kdk,1) 0.7181 0.6381 0.6286

Inner product τJ,Kdk
0.7371 0.6666 0.6057

Weighted Inner Product w(J,Kdk,1) 0.7657 0.6705 0.6571

Weighted Inner Product - flat v(J,Kdk,1) 0.8038 0.7105 0.6781
Method in [32] 0.7705 – 0.6773

The reference PRNU is estimated from FF images

Best results are in bold

Fig. 9 1st row) ρ(R,Kdk,1), k = 1, ..., 21 (left) computed for 25 candidate images acquired by: left)
Olympus Device 1 (x-indices 1–25 in the plot); middle) Olympus Device 2 (x-indices 26–50 in the plot);
right) Olympus Device 3 (x-indices 51–75 in the plot). 2nd row) τJ,Kdk ,1 , k = 1, ..., 21 (right) computed
for 25 candidate images acquired by: left) Olympus Device 1 (x-indices 1–25 in the plot); middle) Olympus
Device 2 (x-indices 26–50 in the plot); right) Olympus Device 3 (x-indices 51–75 in the plot). 3rd row)
Same values in the first row but restricted to the first 5 devices of the same Olympus model. 4th row) Same
values in the second row but restricted to the first 5 devices of the same Olympus model
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Table 9 First three devices for Olympus. Comparisons in terms of sensitivity for fixed specificity values:
0.990, 0.994 and 0.998

Method/Specificity 0.990 0.994 0.998

Olympus - Device 1

Basic ρ(R,Kdk,1) 0.48 0.44 0.44

Inner product τJ,Kdk
0.56 0.52 0.40

Weighted Inner product w(J,Kdk,1) 0.56 0.48 0.44

Weighted Inner product - flat v(J,Kdk,1) 0.52 0.48 0.44

Olympus - Device 2

Basic ρ(R,Kdk,1) 0.40 0.40 0.40

Inner product τJ,Kdk
0.52 0.48 0.44

Weighted Inner product w(J,Kdk,1) 0.44 0.44 0.44

Weighted Inner product - flat v(J,Kdk,1) 0.48 0.48 0.44

Olympus - Device 3

Basic ρ(R,Kdk,1) 0.36 0.36 0.36

Inner product τJ,Kdk
0.44 0.40 0.36

Weighted Inner product w(J,Kdk,1) 0.40 0.36 0.36

Weighted Inner product - flat v(J,Kdk,1) 0.44 0.40 0.40

The reference PRNU is estimated from FF images

Best results are in bold

In the previous test the inner product shows to convey information concerning the image
source, while the global weighting procedure improves the classification results provided by
the basic algorithm. To further confirm this fact, the value ρ(Rf lat , Kdk,1,f lat ) has been con-
sidered as weighting coefficient for the inner product as it is expected to be more accurate
than the global correlation value. The result is also compared with the method in [32], where
a pointwise weighted correlation is employed for classification purposes. The methods are
compared in Table 8, where fixed specificity values have been considered.

As it can be observed, the weighting method always guarantees an improvement and
the more consistent the weight the higher the improvement. It is also worth observing that
the proposed global weighting procedure is able to reach comparable results to the local
weighting procedure in [32]. However, it is interesting to observe that the main contribution

Table 10 Comparisons in terms of sensitivity for fixed specificity values: 0.990, 0.994, 0.995, 0.998, 0.999
and 0.9995

Method/Specificity 0.990 0.994 0.995 0.998 0.999 0.9995

ρ(R,Kdk,1) 0.9619 0.9286 0.9095 0.7857 0.6048 0.5857

τJ,Kdk
0.9762 0.9524 0.9333 0.7857 0.6524 0.6429

w(J,Kdk,1) 0.9762 0.9429 0.9286 0.7905 0.6476 0.6095

v(J,Kdk,1) 0.9762 0.9524 0.9381 0.7881 0.6857 0.6571

ρ(Rf lat , Kdk,1,f lat ) 0.9667 0.9191 0.9048 0.6952 0.6952 0.6429

The reference PRNU is estimated from NI images

Best results are in bold
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Table 11 First three devices for
Olympus Method/Specificity 0.990 0.995

Olympus - Device 1

Basic ρ(j,Kdk
) 0.80 0.70

Inner product τJ,Kdk
0.90 0.90

Olympus - Device 2

Basic ρ(R,Kdk,1) 0.60 0.60

Inner product τJ,Kdk
0.80 0.80

Olympus - Device 3

Basic ρ(R,Kdk,1) 0.80 0.60

Inner product τJ,Kdk
0.80 0.70

Comparisons in terms of
sensitivity for fixed specificity
values: 0.990, 0.994 and 0.998.
The reference PRNU is estimated
from NI images

Best results are in bold

of the proposed inner product consists in better addressing the separation problem for some
devices for which the correlation measure results more noisy, as the Olympus one in Dres-
den database. As Fig. 9 shows, there’s not a threshold that allows to assign each candidate
image to the analysed device so that many false assignments can occurr. However, it is also
possible to observe that inner product results less noisy than cross-correlation. By repeating
the previous comparative test device-per-device, whose results are in Table 9, it is evident
that the inner product greatly improves the one of the basic algorithm.

The same considerations are valid if NI are used for device PRNU estimation instead of
FF, as shown in Tables 10 and 11, by confirming the robustenss of the proposed method
to the use of less precise estimations of source camera PRNU. In order to stress this fact,
Table 10 also contains the values of ρ(Rf lat , Kdk,1,f lat ), i.e. the normalized correlation
restricted to the flat regions of the candidate image. As it can be observed, in this case the
correction provided by the inner product allows to increase the discrimination power of the
metric, resulting more robust to the different error sources, especially for low false positive
rates.

The proposed procedure showed to be robust to the analysis of candidate images that have
been acquired by a social network, as shown in Table 12. In this case, the proposed index
allows to improve the basic one whenever used as corrective term for the basic measure.

With regard to the first scenario, i.e. the set of devices contains the one that took the
image, the benefit in using the weighted inner product is evident. In this case, for the
candidate image J the aim is to have

j = argmaxkf (R,Kdk
)

Table 12 Vision database

Method/Specificity 0.990 0.995 0.999

Basic ρ(R,Kdk,1) 0.9812 0.9812 0.9812

Inner product τJ,Kdk
0.9938 0.9875 0.9750

Weighted Inner product w(J,Kdk,1) 0.9875 0.9812 0.9812

Weighted Inner product - flat v(J,Kdk,1) 0.9938 0.9938 0.9875

Comparisons in terms of sensitivity for fixed specificity values: 0.990, 0.995, 0.999. Candidate images have
been downloaded from Facebook

Best results are in bold
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Table 13 Global source identification results (left) for the basic method, the inner product based method, the
weighted inner product with the basic method and the weighted inner product restricted to flat regions, in the
second working scenario and for the brands listed in the righmost columns

TP FN Sensitivity n Brand

ρ(R,Kdk
) 477 58 0.9086 i Olympus 1050SW

τJ,Kdk
472 53 0.8990 ii Panasonic DMC-FZ50

w(J,Kdk
) 478 47 0.9105 iii Ricoh Capilo GX100

v(J,Kdk
) 481 44 0.9162 iv Samsung NV15

v Sony DSC-T77

vi Sony DSC-W170

Best results are in bold

with dj the device that took the image, R the residual image associated to J and f

the adopted source identification metric, i.e. ρ(R,Kdk
), τJ,Kdk

, w(J,Kdk
) and v(J,Kdk

)

respectively for the basic method [24], the proposed inner product and its two weighted
versions. As Tables 13 and 14 show, the four metrics provide comparable results and reach
100% of acceptance rate for most of the candidate images in the database. However, it is
worth observing that basic and the inner product metrics benefit from the weighting oper-
ations in resolving some ambiguities and instabilities for some critical brands as Olympus
and Panasonic. In particular, the weigthing operation allows us to increase the number of
correct assignments.

Finally, with regard to the computational effort, the proposed method inherits the same
properties of the basic algorithm in [24]. As a result, the most expensive procedure is the

Table 14 Confusion matrix for brand classification in the second working scenario for the basic method,
the inner product based method, the weighted inner product with the basic method and the weighted inner
product restricted to flat regions

Inner product τJ,Kdk
Weighted inner product w(J,Kdk

)

n i ii iii iv v vi n i ii iii iv v vi

i 84 7 21 7 5 1 i 86 5 22 8 3 1

ii 4 69 0 0 2 0 ii 2 71 0 0 2 0

iii 0 0 100 0 0 0 iii 0 0 100 0 0 0

iv 0 3 1 71 0 0 iv 2 2 0 71 0 0

v 0 0 0 0 100 0 v 0 0 0 0 100 0

vi 0 2 0 0 0 48 vi 0 0 0 0 0 50

Weighted Inner product flat v(J,Kdk
) Basic ρ(R,Kdk

)

n i ii iii iv v vi n i ii iii iv v vi

i 88 2 21 5 8 1 i 87 6 17 10 5 0

ii 0 72 0 0 3 0 ii 1 69 0 0 5 0

iii 0 0 100 0 0 0 iii 0 0 100 0 0 0

iv 1 2 1 71 0 0 iv 3 0 1 71 0 0

v 0 0 0 0 100 0 v 0 0 0 0 100 0

vi 0 0 0 0 0 50 vi 0 0 0 0 0 50

Brands are the ones in Table 13(right)
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denosing process; the remaining operations, i.e. enhancement methods for reference PRNU
estimations and selective correlation values are somewhat inexpensive, real time and user’s
independent.

4 Conclusion

In this paper source camera identification problem has been addressed. Even though denois-
ing and enhancement procedures play a crucial role in the whole identification process, the
role of the metric used for source assessment is not negligible, especially in the classifica-
tion procedures. This paper focused on this task. Specifically, the coherence between metric
values computed in different but specific regions of the image has been considered and its
dependence on camera fingerprint estimation has been studied. The main result has been the
use of the inner product as measure of this coherence and the observation that this quantity
is better conditioned whenever the analysed candidate image has been acquired by the refer-
ence device. The proposed coherence measure has been used as both absolute metric for the
source identification process and corrective term for basic existing methods. Experimental
results show that, even though in its preliminary version, the use of the proposed coherence
contributes to improve the identification process, especially by decreasing the number of
false assignments. In addition, it shows some robustness to PRNU estimation from natu-
ral images and to candidate images coming from social networks. Future research will be
devoted to investigate further on this coherence with particular reference to the study of its
dependence on each single component of the whole identification process, such as denois-
ing method, PRNU estimation mode, similarity metric, image region extraction. Finally, a
more intensive study concerning its dependence on image manipulation will be also one of
the topics of future work.
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