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Abstract
We consider medical image transformation problems where a grayscale image is transformed
into a color image. The colorized medical image should have the same features as the input
image because extra synthesized features can increase the possibility of diagnostic errors. In
this paper, to secure colorizedmedical images and improve the quality of synthesized images,
as well as to leverage unpaired training image data, a colorization network is proposed based
on the cycle generative adversarial network (CycleGAN)model, combining a perceptual loss
function and a total variation (TV) loss function. Visual comparisons and experimental
indicators from the NRMSE, PSNR, and SSIMmetrics are used to evaluate the performance
of the proposedmethod. The experimental results show that GAN-based style conversion can
be applied to colorization of medical images. As well, the introduction of perceptual loss and
TV loss can improve the quality of images produced as a result of colorization better than the
result generated by only using the CycleGAN model.

Keywords Generative adversarial network . Medical image colorization . TV loss . Perceptual loss

1 Introduction

Compared to grayscale images, color images contain detail and clear information so that, in
many applications, when only grayscale images are generated, the grayscale image is often
transformed into a color image first. Over the last decade, many studies have been done in
various fields to automatically and effectively generate color images [1]. For example,
automatic colorization [36] is used for grayscale satellite images to help eliminate lighting
differences between multi-spectral captures, providing strong prior information for ground
type classification and object detection [33]. Synthetic Aperture Radar (SAR) colorization [33]
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takes advantage of the well-established radar polarimetry theories and polarimetry approaches
to interpret the vast majority of SAR images that are not full-pol. A semi-automatic coloriza-
tion system takes a monochrome manga and reference images as input and generates a
plausible color version of the manga [8].

Color medical imaging [29] is used in various fields, such as building virtual human models
for educational purposes. A color mapping of the distribution of shear stress images [7] has
been studied along the plaque surface over the last decade. However, most medical image
datasets are photographed as grayscale images, so it is difficult to obtain enough color images.
To solve this problem, a colorization operation for converting monochrome images into color
images should be considered.

Back in early 2000s, models for colorization began. At first, researchers colorized a
grayscale image by matching luminance and texture information between reference color
images and the target grayscale image. Thus, the colorized results were deterministic, and
relied heavily on the collection of reference images, which is referred to as a forward problem.
We call this kind of method transfer-based [2, 5, 14, 23, 27, 37]. In addition, researchers
proposed scribble-based colorization [8, 11, 22, 24, 31, 35, 38], which works by following
users’ guidance with manual intervention. For example, users first scribble regions of an image
using different colors; then, the system colorizes the image based on the scribbles. This kind of
method is useful in some scenarios, but not for medical image colorization. In this paper, we
aim at development of fully automatic colorization, which takes a grayscale image as input,
then outputs a colorized image directly, without any manual intervention.

A lot of work has proposed fully automatic colorization [3, 10, 15, 19, 28, 32, 34, 42]. Most
of it was based on the deep neural network (DNN) [40, 41] and achieved high-quality image
colorization. For example, Larsson et al. [19] proposed an end-to-end, fully automatic image
colorization scheme by using a deep convolutional architecture, exploiting both low-level and
semantic representations. Their system (at the time of writing) achieved a state-of-the-art
ability to automatically colorize grayscale images. Zhang et al. [42] reported similar work
on fully automatic colorization. In this paper, our proposed system falls into the category of
fully automatic colorization using a DNN. However, the problem is that those previous works
required each input and output pair of training examples to be both paired and aligned. But
obtaining paired training data can be expensive and difficult, especially for medical images. In
this paper, our proposed model can use unpaired image data for training.

With the development of generative adversarial networks (GANs) [21], Chia et al. [5]
utilized a GAN to propose style conversion networks that can transfer an image style from
another image, which also can be applied to transferring color to a grayscale image, or to
synthesize a color image from a grayscale image [10, 15, 28, 32]. The CycleGAN [44], in
particular, enables the learning of unpaired datasets by applying cycle-consistency. This
advantage offers significant benefits when it is difficult to obtain a large amount of paired
training data. Although the GAN has been applied to medical image processing for various
purposes [39], research on its application to the colorization of medical images has not been
conducted. In this paper, our work builds on the CycleGAN to colorize medical images, and
achieves better performance by introducing the perceptual loss function [20] and the total
variation (TV) loss function [35].

The contributions of this paper are as follows.

& We demonstrate that GAN-based style conversion can be applied to colorization of
medical images.
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& We demonstrate that the introduction of perceptual loss and TV loss can improve the
quality of images produced as a result of colorization, and the result is better than the result
generated by only using the CycleGAN model. Our model inherits the characteristics of
CycleGANs that does not require the input and output training image data to be paired and
aligned. This is a significant advantage when applying colorization to medical images.

This manuscript is organized as follows. In Section 2, we introduce related studies about
scribble-based, transfer-based, and fully automatic colorization methods. In Section 3, we
introduce our proposed unpaired GAN network and loss functions. Experimental results with a
small dataset and a large set of medical images are presented in Section 4. Finally, conclusions
are given in Section 5.

2 Related work

Colorization techniques [12] have been widely used in scientific illustrations, medical image
processing, and old-photo colorization to enhance features and increase visual appeal. The
large degree of freedom during the assignment of color information makes image colorization
very challenging. Over the last decade, many approaches have been proposed to address
colorization issues. Previous work falls into three broad categories, which are scribble-based
[8, 11, 22, 24, 31, 35, 38], transfer-based [2, 5, 14, 23, 27, 37], and fully automatic
colorization [19].

Scribble-based methods need users to scribble on the object grayscale image, and then put
it through a coloring optimization algorithm [22]. The algorithm propagates the scribbled
colors on the assumption that adjacent pixels with the same pixel values will have the same
colors. The user needs to have enough knowledge about scribbling to paint enough of the color
graffiti into the area. For ordinary users, it could be difficult to provide enough of the
appropriate colors to achieve good results. To make the scribbling process easy and to generate
better colorization results, Zhang et al. [43] proposed real-time, user-guided image colorization
using a DNN. Because the colorization is performed in a single feed-forward pass, it enables
real-time use.

Transfer-based methods rely on the availability of reference images in order to transfer
those colors to the target grayscale image. It works well if there are enough similar reference
images, and also requires less skill and effort from the user, compared to scribble-based
methods. But sometimes a unique grayscale input image cannot match any similar reference
images, which leads to a non-ideal result. Also, this requires building a large repository to store
reference images at test time. A transfer-based colorization system uses a strategy that
establishes mapping between source and target images by using correspondence between local
descriptors [2, 27, 37], or in combination with the user’s guidance [5, 14].

Fully automatic colorization is our goal, in contrast to the above methods. Grayscale images
are the input for the system, which outputs the corresponding color images directly, without
manual intervention. The fully automatic image colorization systems [3, 19, 34, 42] achieve high-
quality performance that generates high-quality colorized images owing to the emergence and
development of DNN technology. A lot of work has also tried to apply a Generative Adversarial
Network (GAN) [9] to colorization, focusing on improving training stability and making robust
color image synthesis in largemulti-class image datasets [10, 15, 28, 32]. Nazeri et al. [28] applied
a GAN to image colorization by redefining the generator cost function proposed in the first GAN
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model [9], and they also adopted the idea from the conditional generative adversarial network [26]
to allow grayscale images to be the input for the generator, rather than randomly generated noise
data. Sharma et al. [32] proposed robust image colorization using a self-attention–based progres-
sive GAN, which consists of a residual encoder–decoder network and a self-attention–based
progressive generative network in cascaded form to achieve robust image colorization. Górriz
et al. [10] used conditional GAN, and improved training stability to enable better generalization in
large multi-class image datasets. Isola et al. [15] proposed a framework, named pix2pix, which
uses a conditional generative adversarial network to learn mapping from input to output images.
Those works have a common drawback in that each input and output pair of training examples
needs to be paired and aligned. However, obtaining paired training data can be expensive and
difficult. Zhu et al. [44] proposed a CycleGAN built on pix2pix to learn the mapping without
having paired training examples. Mehir et al. [25] proposed an architecture to colorize near
infrared images. It learns the color channels on unpaired dataset, requires less computation times,
converges faster and generates high quality samples. The advantage that uses unpaired training
dataset offers significant benefits, given that it is difficult to obtain enough paired training
examples, especially in medical images. Our proposal in this paper builds on the CycleGAN,
but we achieve better performance by introducing the perceptual loss function and the TV loss
function (Table 1).

3 Method

We introduced perceptual loss and TV loss into CycleGAN to colorize medical images. On
one hand, our method inherits a main advantage from CycleGAN in that it can learn to
translate an image from a source domain, Igray, to a target domain, Icolor, in the absence of
paired examples while training the model. This characteristic is very practical if there is a lack
of paired training data, especially in medical images. On the other hand, the experiment results
show that our method outperforms the CycleGAN and Perceptual-based models. In this
section, we first present the overall structure of our proposal. Then, we present in detail the
objective functions of adversarial loss, cycle-consistency loss, perceptual loss, and TV loss.
Finally, we present the final objective function of our proposal.

3.1 Network structure

We present the overall structure of the proposed technique in Fig. 1 (a). The technique is based
on the structure of CycleGAN that enables learning of unpaired datasets, i.e., the domains of

Table 1 Overview of existing work in three broad categories. Our proposal belongs to unpaired fully automatic
colorization

Scribble-based Transfer-based Fully automatic colorization

Existing works [8, 11, 22, 24, 31,
35, 38]

[2, 5, 14, 23, 27, 37] [3, 10, 15, 19, 28,
32, 34, 42]

[25, 44], Ours

Training Data Paired Paired Paired Unpaired (or paired)
Testing Testing image Testing + reference images Testing image Testing image
Automation Semi-automatic Automatic Automatic Automatic
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Igray and Icolor are unpaired. The loss function of CycleGAN consists of the sum of the
adversarial loss, which determines whether the input image is composite or not, and the
cycle-consistency loss between the reconstruction image, which is created by restoring the
composite image to the original image. The parameters of the perceptual loss network in Fig.
1(a) are pre-trained and untrainable. The functionality of the perceptual loss network is to
generate features for three kinds of data. The first is Igray, denoting the source domain or gray
medical image to be colorized. The second is Gcolor(Igray), and the third is Ggray(Gcolor(Igray)),
where Ggray is a generator network to generate gray images, and Gcolor is another generator
network to generate color images (Fig. 2).

3.2 Objective functions

In this section, we present the details of the loss functions used in our proposed scheme. Those
functions are essential, and they significantly affect the performance of the colorization system.
There are four kinds of loss functions: adversarial loss, cycle-consistency loss, perceptual loss,
and total variation loss, as described below. Finally, we combine these functions to get our full
objective function.

Adversarial loss We adopted the adversarial loss from [9] and applied it to both mapping
functions. For the mapping functions Gcolor : Igray→ Icolor and its discriminator, Dcolor, we
present the loss function as

LGAN Gcolor;Dcolor; Igray; Icolor
� � ¼ E log Dcolor I colorð Þð Þ½ �

þE log 1−Dcolor Gcolor Igray
� �� �� �� � ð1Þ

Fig. 1 a The overall structure of the proposed technique contains two map functions, Gcolor : Igray→ Icolor and
Ggray : Icolor→ Igray, associated with adversarial discriminators,Dgray(Igray) andDcolor(Icolor), and a Perceptual Loss
Network. With∅i, we indicate the feature map obtained by the i-th convolution (after activation) before the max-
pooling layer within the VGG16 network. b Forward cycle-consistency loss: Igray → Gcolor(Igray)→
Ggray(Gcolor(Igray)) ≈ Igray. c Backward cycle-consistency loss: Icolor→Ggray(Icolor)→Gcolor(Ggray(Icolor)) ≈ Icolor.
We adopted (b) and (c) from [44]
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where Gcolor tries to generate images bIcolor ¼ Gcolor Igray
� �

that look similar to images from

domain Icolor, while Dcolor aims to minimize this objective against an adversary, D, that tries to
maximize it, i.e., minGcolor maxDcolor LGAN Gcolorð ;Dcolor ; Igray ; IcolorÞ. We introduce a similar
adversarial loss for mapping function Ggray: Icolor→ Igray and its discriminator, Dgray, as well;

i.e., minGgray maxDgray LGAN Ggray
�

;Dgray ; I color ; IgrayÞ.

Cycle-consistency loss We apply cycle-consistency loss [44] to transfer images from the Igray
domain to the Icolor domain, and vice versa. The advantage from cycle-consistency loss is that
Igray and Icolor can be unpaired, which is a very practical and useful characteristic when it is
costly to label or mark the training data.

Lcyc Gcolor;Ggray
� � ¼ E ∥Ggray Gcolor Igray

� �� �
−Igray∥1

� �
þE ∥Gcolor Ggray I colorð Þ� �

−Icolor∥1

� � ð2Þ

Perceptual loss Ledig et al. [20] used perceptual loss to improve the quality of the resulting
image. Perceptual loss [17] introduces a pre-learned VGG16 model to an additional feature
extraction network to extract the features of the composite image and the original image, and it
then calculates the difference between them. In this experiment, calculation of the perceptual
loss between the reconstructed image and the original image was added to the learning process.

Lperceptual invert ¼ E ∥∅ Gcolor Igray
� �� �

−Igray∥1

� � ð3Þ

Fig. 2 Image samples of the Messidor dataset. a Colorful samples. b Gray samples
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Lperceptual cycle ¼ E ∥∅ Ggray Gcolor Igray
� �� �� �

−Igray∥1

� � ð4Þ
where ∅i indicates the feature map obtained by the i-th convolution (after activation) before
the max-pooling layer within the VGG16 network.

The final perceptual loss function is

Lperceptual Gcolor;Ggray
� � ¼ Lperceptual invert þ Lperceptual cycle ð5Þ

Total variation loss TV loss [35], which has a smoothing effect, was added to prevent
excessive contrast in the resultant image:

LTV Zð Þ ¼ ∑w; h Zw;hþ1−Zw;h
� �2 Zwþ1;h−Zw;h

� �2h iB
2 ð6Þ

where Z =Gcolor(Igray), B = 1.

Full objective function Hence, we add all loss functions mentioned above and get our final
loss function of the proposed technique, as follows:

L Gcolor;Dcolor;Ggray;Dgray
� � ¼ LGAN Gcolor;Dcolor; Igray; Icolor

� �
þLGAN Ggray;Dgray; Icolor; Igray

� �þ Lcyc Gcolor;Ggray
� �

þLperceptual Gcolor;Ggray
� �þ LTV Zð Þ

ð7Þ

where Z =Gcolor(Igray).

4 Experiment

4.1 Dataset description and preprocessing

Drive DRIVE [6] only contains 40 digital color retinal images. We divided them into two
average sets, named ColorA and ColorB. Then, we converted all images in ColorA to
grayscale and stored them in another set, named GrayA. We use GrayA and ColorB to train
our model. When validating the trained model, we input GrayA to the model to get the
predicted resulting images, which were used to compare with the images in ColorA to calculate
performance metrics. Because of the small data size, we used GrayA to both train and validate
the model. Ideally, the training set has no intersection with the test or validation sets.
Therefore, to overcome this disadvantage, we also used another bigger dataset as follows.

Messidor The Messidor Database [15] contains 1200 digital color retinal images. We first
cropped all images to make them square (1488 × 1488) and resized them to 256 × 256. Then,
we shuffled them before dividing them into three sets (400 images each) named TrainA,
TrainB, and ValColor. We converted the images in TrainA to grayscale, and copied all
ValColor images, converting the copies into a grayscale dataset named ValGray. We use
TrainA and TrainB to train our model, and used ValColor and ValGray to calculate perfor-
mance metrics after training. Note that, while training the model, inputs Igray and Icolor are
unpaired, which means not only is the color different, but the image texture is not aligned.
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Also, training sets TrainA and TrainB had no intersection with validation sets ValGray or
ValColor.

4.1.1 Training details

With the DRIVE dataset, we chose training parameter epoch num= 200 and decided that the
learning rate scheduler would be torch.optim.lr_scheduler.CosineAnnealingLR from PyTorch,
which reduced the learning rate over the training epochs and finally reached zero. These
decisions were made based on experiments explained as follows. The DRIVE dataset only
contains 40 images, which is very few. Thus, we needed to take care of the overfitting problem
while training the model. First, we set up the parameters so that batch size = 1, epoch num =
2000, and constant learning rate = 0.002, and we got Fig. 3(c) and (d), which show that the
values of the loss functions were very unstable over the training time, and while epoch num >
400, the values of the loss functions almost reached the lowest point. Secondly, we set the
parameters batch size = 1 and epoch num = 200, and used a cosine-annealing kind of learning
rate to get Fig. 3(a) and (b), which show that the values of the loss functions became much
more stable when the training epoch was around 200. We also manually checked the predicted
(generated) images after finishing the model training, finding that a model trained for 200
epochs generates color images with some additional, strange components, which means the
model overfits. Therefore, we set the parameters as mentioned in the first sentence above, and
applied them to all experiments with the DRIVE dataset.

On the Messidor dataset, we used Adam [18] with a learning rate of 2 × 10−3, along with a
cosine-annealing kind of scheduler to reduce the learning rate over the training epochs and

Fig. 3 With the DRIVE dataset, the training loss over time with respect to each loss function inside the relative
model. a Epochs training the proposed model, b 200 epochs training the proposed model, c 1000 epochs training
the proposed model, d 1000 epochs training the proposed model
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finally reached zero. We resized all images to 256 × 256 and trained the networks with batch
size = 2 for 200 iterations, giving 50 epochs over the training data. We did not use weight
decay or a dropout technique. Our implementation used PyTorch [30] and cuDNN [4], taking
roughly 1.5 h on a single GTX 1080 Ti GPU.

4.2 Results

4.2.1 Performance results on the DRIVE dataset

Experiment results in Table 2 compare performance among the CycleGAN and Perceptual
models against our proposal. For each model, we performed the experiment three times, and
each time, we used 20 ground truth images, and generated images to calculate metrics from
NRMSE, PSNR, and SSIM. Lower NRMSE scores but higher PSNR and SSIM scores
indicate better performance. Table 2 shows the mean values and the standard deviations of
these metrics. CycleGAN applied GAN loss, cycle loss, and identity loss. The source code of
its implementation in the PyTorch framework can be found in [13]. We added perceptual loss
to CycleGAN, and kept other conditions unchanged, to be the second method in Table 2. The
experiment results show that the Perceptual method has better performance than CycleGAN.
Furthermore, we added perceptual loss plus TV loss to CycleGAN to be our proposal. The
results show that the performance from our proposal is better than the other two.

4.2.2 Performance results with the Messidor dataset

Table 3 shows the NRMSE, PSNR, and SSIM performance metrics of the CycleGAN and
Perceptual methods against our proposed model with the Messidor dataset, which indicates that
the performance of our method is better than the other two.We chose batch size = 2, epoch num =
50, and initial learning rate = 0.002, using torch.optim.lr_scheduler.CosineAnnealingLR from
PyTorch, which reduced the learning rate over the training epochs, and finally reached zero.
Figure 4 shows the values of the loss functions over the training time, which indicate that the
values of loss functions are not so stable, and around epoch 50, these loss values hardly improved
at all. While training the models, we saved them at the end of each epoch. Thus, after finishing the
training, we chose the best epoch that can colorize the best images but that does not overfit.

Table 2 A DRIVE dataset comparison of mean and standard deviations from NRMSE, PSNR, and SSIM

Method NRMSE PSNR SSIM

CycleGAN 1 0.2535 (±0.1278) 24.6306 (±1.1259) 0.6966 (±0.0368)
2 0.1820 (±0.0860) 24.6463 (±1.4262) 0.7056 (±0.0397)
3 0.1781 (±0.0957) 25.8381 (±1.7402) 0.7164 (±0.0272)
Avg 0.2045 (±0.1032) 25.0383 (±1.4308) 0.7062 (±0.0346)

Perceptual 1 0.1866 (±0.1007) 25.7041 (±1.5534) 0.7221 (±0.0263)
2 0.2115 (±0.1077) 25.3563 (±1.1254) 0.6942 (±0.0309)
3 0.2065 (±0.1228) 26.8807 (±1.3953) 0.7148 (±0.0529)
Avg 0.2015 (±0.1104) 25.9804 (±1.3580) 0.7104 (±0.0367)

Our proposal 1 0.2043 (±0.1137) 26.5571 (±1.2251) 0.7452 (±0.0387)
2 0.1990 (±0.1247) 27.6569 (±1.2279) 0.7636 (±0.0350)
3 0.1700 (±0.0943) 26.7060 (±1.2459) 0.7464 (±0.0436)
Avg 0.1911 (±0.1109) 26.9733 (±1.2330) 0.7517 (±0.0391)

The maximum average value of each metrics (i.e., column) is presented in bold font
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We present samples of the colorized results in Fig. 5. The first column is the gray input
images to be colorized by the models. Columns 2 to 4 are the colorized results from the
CycleGAN and Perceptual models, and our proposal, respectively. The final column is ground
truth images. We trained these three models under the same conditions, including the same
hyperparameters. We used the trained models from epoch number 50 to generate color images,
and show some of them in Fig. 5. Two obvious disadvantages can be found in the second
column, generated by CycleGAN. One is that there are rings, indicated with arrows. This is
because the size of the retina varies in proportion to different training images. The second
disadvantage is that the retina texture is blurred, and the color of the whole image is quite
different from ground truth. The images in the third column in Fig. 5 show the results of the
Perceptual model. The retinal texture is clear, and the color of the whole image looks like the
ground truth image. However, the model generates slight and imperceptible rings, which is still
much better than CycleGAN. Besides, it generated some strange components that do not
belong in the training images. Except for that, when zooming in the bottom image in the third

Table 3 With the Messidor dataset, a comparison of mean and standard deviations from NRMSE, PSNR, and
SSIM. We added perceptual loss to CycleGAN to get the Perceptual (Third row). Furthermore, we added TV loss
to Perceptual to get our proposal

Method NRMSE PSNR SSIM

CycleGAN 0.2302 (±0.0804) 22.1244 (±3.4041) 0.7382 (±0.0645)
Perceptual 0.2204 (±0.0732) 22.4707 (±3.4396) 0.7994(±0.0497)
Our proposal 0.1895 (±0.0932) 24.1719 (±3.7804) 0.8209 (±0.0547)

The maximum average value of each metrics (i.e., column) is presented in bold font

Fig. 4 With the Messidor dataset, values of loss functions of each model over the training time. a CycleGAN
loss over time, b Perceptual loss over time, c Our proposal’s loss over time
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column, we find that the area indicated by the arrow is not smooth enough, compared with
ground truth and our proposal. We can see that the results generated by our proposed method
are much better with regard to image color, retina texture, and smoothness.

4.2.3 Effect of identity loss

The implementation of CycleGAN applies identity loss [16] even though the paper on CycleGAN
does not mention it, which specifically are Lidt _ gray = ∥Ggray(Igray) − Igray∥1 and Lidt _ color = ∥
Gcolor(Icolor) − Icolor∥1. The identity loss indicates that if the input ofGcolor is a color image, its output
should also be a color image that is identical to the input. (Generally, the job ofGcolor is to transform
gray images into color images.) A similar job is true for Ggray with color images. We performed
experiments to verify the performance contribution of identity loss. Without using the identity loss
function in our proposed method, we performed the experiment three times to measure the
NRMSE, PSNR, and SSIM metrics shown in Table 4. The results illustrate that the metric No
Identity Loss is not better than With Identity Loss, but they are close. We furthermore manually
checked their generated images, and show samples in Fig. 6. We found that the images for No
Identity Loss are fragile, which tends to introduce some strange areas that do not exist in the ground
truth images. Examples are in the second column and are indicated by the arrows. Intuitively, this is
because identity loss can force the generated images to look like the input images.

a b c d e
Fig. 5 From the Messidor dataset, colorization results of the CycleGAN, Perceptual methods, and the proposed
method. a Gray input, b CycleGAN, c Perceptual, d Proposal, e Ground truth
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4.2.4 Symmetric and asymmetric structures of perceptual loss

The structure of CycleGAN is symmetric, and our proposal was built upon it by introducing
perceptual loss and TV loss. Thus, a natural thought is about the performance if the structure of
perceptual loss is also symmetric. Specifically, we determine perceptual loss with Eq. (8), as
seen below. Furthermore, we add the asymmetric part, Lperceptual _ invert, from Eqs. (3) to (8) to
obtain Eq. (9).

Lperceptual sym Gcolor;Ggray
� � ¼ Lperceptual cycle þ E ∥∅ Gcolor Ggray Icolorð Þ� �� �

−Icolor∥1

� �
¼ E ∥∅ Ggray Gcolor Igray

� �� �� �
−Igray∥1

� �þ E ∥∅ Gcolor Ggray Icolorð Þ� �� �
−Icolor∥1

� � ð8Þ

Table 4 With the Messidor dataset, a comparison of mean and standard deviations from NRMSE, PSNR, and
SSIM

Method NRMSE PSNR SSIM

No Identity Loss 1 0.2102 (±0.1007) 23.2432 (±3.4917) 0.8140 (±0.0552)
2 0.2105 (±0.1113) 23.3458 (±3.2989) 0.8010 (±0.0556)
3 0.2115 (±0.0828) 23.0316 (±3.7527) 0.7871 (±0.0686)
Avg 0.2107 (±0.0983) 23.2069 (±3.5144) 0.8007 (±0.0598)

Our Proposal (With Identity Loss) 1 0.1950 (±0.1061) 24.0395 (±3.7498) 0.8193 (±0.0577)
2 0.1875 (±0.0785) 24.0956 (±3.7618) 0.8117 (±0.0503)
3 0.1860 (±0.0951) 24.3806 (±3.8297) 0.8318 (±0.0561)
Avg 0.1895 (±0.0932) 24.1719 (±3.7804) 0.8209 (±0.0547)

The maximum average value of each metrics (i.e., column) is presented in bold font

a b c d
Fig. 6 The colorized results: with and without identity loss
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Lperceptual sym 2 Gcolor;Ggray
� � ¼ Lperceptual sym Gcolor;Ggray

� �þ Lperceptual invert ð9Þ
Currently, three options can be the perceptual loss in our models: Eqs. (5), (8), and (9). We
performed experiments to verify the performance for each of them. Table 5 shows the results
from the NRMSE, PSNR, and SSIM performance metrics. The performance is close, but our
proposal is the best. Additionally, we generated color images with a trained model by using
Lperceptual _ sym, and we manually checked the quality of the colorized images, from which we
find that most of them have redundant spots that do not exist in the corresponding ground truth
images. Figure 7 shows samples of these images, with the abnormal areas indicated by the
arrows. Although the performance of Lperceptual _ sym _ 2 and Lperceptual are close, based on
Table 5, Occam’s razor suggests it is better to not use more than is necessary. Therefore,
Lperceptual is better because it is simpler.

5 Conclusion

A DNN model for colorization is data-driven, and training millions of parameters of the model
needs a large amount of labeled or paired image training data. In this paper, we focused on
solving the problems that 1) The colorized medical image should have the same features as the
input image; 2) It is difficult and expensive to obtain many paired training data of medical
images. We demonstrated that our model could use unpaired medical images to train a
colorization system to synthesize high-quality color medical images. Our model is built on
CycleGAN, introducing perceptual loss and TV loss. Our model has almost the same training

Table 5 With the Messidor dataset, a comparison of mean and standard deviations from NRMSE, PSNR, and
SSIM

Method NRMSE PSNR SSIM

Lperceptual_sym
(Eq. 8)

1 0.2049 (±0.0935) 23.3483 (±3.4961) 0.8089 (±0.0556)
2 0.2214 (±0.0741) 22.4469 (±3.5212) 0.8036 (±0.0518)
3 0.1923 (±0.0738) 23.7612 (±3.9130) 0.8292 (±0.0478)
Avg 0.2062 (±0.0804) 23.1855 (±3.6434) 0.8139 (±0.0518)

Lperceptual_sym_2

(Eq. 9)
1 0.1921 (±0.0809) 23.9011 (±3.8722) 0.8328 (±0.0526)
2 0.1968 (±0.1094) 24.0546 (±4.0310) 0.8278 (±0.0527)
3 0.2052 (±0.0770) 23.2302 (±3.7651) 0.7942 (±0.0466)
Avg 0.1980 (±0.0891) 23.7287 (±3.8894) 0.8183 (±0.0506)

Our proposal (Lperceptual) (Eq. 5) Avg 0.1895 (±0.0932) 24.1719 (±3.7804) 0.8209 (±0.0547)

The maximum average value of each metrics (i.e., column) is presented in bold font

Fig. 7 Colorized results of Symmetric Perceptual Loss. The gray images are the input, while the color images are
the results of the model using Symmetric Perceptual Loss
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and testing process complexity, but the experiment results show our model has better
performance than CycleGAN in colorizing medical images.
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