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Abstract
In this paper, we propose a new method for improving human activity recognition (HAR)
datasets in order to increase their classification accuracy when trained with a certain classi-
fier like a Neural Network. In this paper a novel training/testing process for building/testing
a classification model for human activity recognition (HAR) is proposed. Traditionally,
HAR is done by a classifier that learns what activities a person is doing by training with
skeletal data obtained from a motion sensor such as Microsoft Kinect or accelerometer sen-
sors. These skeletal data are the spatial coordinates (x, y, z) of different parts of the human
body. In addition to the spatial features that describe current positions in the skeletal data,
new features called Shadow Features are used to improve the supervised learning efficiency
and accuracy of Neural Network classifiers. Shadow Features are inferred from the dynam-
ics of body movements, thereby modelling the underlying momentum of the performed
activities. They provide extra dimensions of information for characterizing activities in the
classification process and thus significantly improving the accuracy. These Shadow Features
are generated based on the existing features obtained from sensor datasets. In this paper
we show that the accuracy of a neural network classifier can be significantly improved by
the addition of Shadow Features and we also show that the generation of Shadow Features
can be achieved with little time cost, on the fly, with the NVIDIA GPU technology and
the CUDA programming model, this way we can improve the Neural Network accuracy at
almost no time cost. GPUs are particularly suitable for generating Shadow Features, since
they possess multiple cores which can be taken advantage of, in order to generate Shadow
Features for multiple data columns in parallel, therefore reducing a lot of processing time,
especially when dealing with huge datasets.
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1 Introduction

Human activity recognition (HAR) [3, 15, 31, 32] is a branch of machine learning that
trains a classification model using historical activity records to recognize unseen activities.
HAR has wide application, ranging from abnormal behaviour detection in security surveil-
lance [21] and posture monitoring in tele-rehabilitation [7], to hand gesture recognition in
augmented-reality [30] and virtual-reality [18] systems, as well as intelligent home environ-
ments [14]. One type of HAR is based on motion sensor data from which the HAR system
tries to infer activity patterns for prediction and classification. The sensor data arrives in
the form of continuous sequential values, similar to a time series. Time series such as those
collected from an accelerometer are usually multivariate, comprising tri-axial information,
known in its simplest form as three features (x, y, z). These features plus the timestamp
information represent the temporal-spatial displacement of a body part in motion. More
complicated time series may contain extra information, such as velocity, acceleration, rota-
tional angle and relative distance to a reference point. In this paper, a new concept of feature
is presented, which is called Shadow Features, with the goal of improving existing HAR
datasets, and we show that these features can be computed and appended to an existing
dataset on the fly, with very small time cost by using NVIDIA GPUs and the CUDA pro-
gramming model to generate such features. Then we use a feed forward Neural Network to
perform the activity recognition task. Neural Networks have been used in numerous occa-
sions in literature [10] in many tasks other that HAR very good results, therefore in this
paper we decided to use a Neural Network as the final classifier for the HAR task. It is also
very common to use the GPU to accelerate data processing tasks due to its parallel com-
puting capabilities, as was shown in [4] in which the authors take advantage of the GPU to
reduce their model training time through the simultaneous analysis of multiple inputs. In
our proposed work we also take advantage of the parallel processing capabilities of the GPU
in order to accelerate the shadow features generation process as well as the Neural Network
training and prediction times.

1.1 Related work

The concept of shadow features is inspired by Etienne-Jules Marey (1839-1904), who insti-
gated chronophotography or cinematographic movement recording [25] as a fundamental
technique of capturing motion pictures. His lifetime passion to see the invisible motivated
him towards a single goal: recording all existing movement produced by humans or any-
thing else, on a recordable surface. In alignment with Etienne-Jules motivation, Shadow
Features are derived from the dynamics of human body movements. The Shadow Features’
values are subtly approximated by the underlying motion resulting from performing activ-
ities. Unlike other feature transformation techniques that have been previously reported in
literature, the Shadow Features don’t totally replace or transform the existing dataset set
features, but it creates a new set of motion dynamic data that augments the original spatial
data. Hence the term shadow. These features basically offer extra dimensions of informa-
tion for characterizing activities in the HAR process. The extra information gives more
insight to the classifier during the supervised learning process as the classifier tries to map
the dataset to the classification targets. With these Shadow Features, the classifier can better
learn to recognize the activities since the classifier is provided with the motion information
as well as the spatial coordinate data. This can be seen as a complement to the existing fea-
tures in order to allow the classifier to better infer the relationship between the dataset and
the target class. In HAR, features that can be extracted from raw sensor data are loosely
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categorized into remote features and local features. Remote features are data from a sensor
at a fixed position (such as a video camera, Kinect motion sensor and ultrasound sensor)
that captures images of a moving subject from some distance away. Local features are data
collected from wearable sensors (for example), which ‘tag along’ with the subject on the go.
Traditionally, discrete Fourier transformation (DFT) [23] is applied to a sequence of images
to convert the image intensity variation spatially from the temporal domain to the frequency
domain. DFT extracts the information contained in the full picture into numeric representa-
tions known as wavelets. Therefore, it is prone to quality issues arising from noise, occlusion
and variation to viewpoint. To rectify these shortcomings, researchers turned from the full-
picture information to cuboids of spatial-temporal shapes in the foreground. Some [5] have
even attempted to extract spatial-temporal features, shape structures, shape orientation and
salient outlines of the shape by stacking up silhouettes frame by frame, but this was found
to be quite inefficient. Researchers improved the shaped-based matching mechanism by
using region matching and extracting certain regions [17]. Keeping the appearance of the 3D
objects or the region consistent is difficult. Other researchers suggested a flow based feature
model [27] and spatial-temporal interest point detector model [9], which only process the
flow and point of interest in the local region, respectively. Local features are obtained rel-
atively directly from tracking the pose and coordinates of the body. Different from remote
features, local features are more focused on the movements of the interest points without
regard to the background or the full picture. To represent local features, spatial information
is often refined from the raw tracking data, like GPS coordinates, using spatial techniques
such as Boolean features [24], polar coordinate features [6] and geometric relative features
[12, 13], to effectively preserve the spatial information that discriminates different body
activities. Although these local features are obtained almost directly from the sensing data,
many variants derived from different transformation techniques have been proposed by
researchers in the hope of better capturing the essence of the spatial information in relation
to activity recognition. Refining and abstracting these techniques with the aim of generat-
ing better local descriptors include but are not limited to wire-frame or shape-based features
[1, 8, 33].

Recent work in HAR consists of extracting images from videos [2, 16], which would
then be pre-processed such that the background frame would be detected and then removed
(background subtraction), then the human in the video would be detected, features would
be extracted and finally a Neural Network would perform the activity recognition. However
this method has a few drawbacks: First, this method is intrusive, there is no privacy for the
user due to the usage of video images, as has been already shown in [26] privacy is of major
importance when dealing with applications of the Internet of Things (IOT), second this
method has a lot of pre-processing steps which make it slow. Other works have proposed the
usage of more complex Neural Network Architectures such as Recurrent Neutral Networks
[28, 29] and Convolutional Neural Networks [19, 20, 22] with the goal of recognising three
activities using accelerometer data [20]. However, Convolutional Neural Networks require
a lot of data to train and their best result was only 92.71% accuracy. This is due to the
limited number of features provided by the smartphone accelerometer (only three features
x, y and z). The dataset from most sensors used in HAR is not 2D or 3D, therefore the
usage of such complex architectures is overkill for the HAR task. In this paper we argue that
image extraction from surveillance videos is not the most efficient way of performing HAR,
and it also brings a lot of privacy concerns to the user, therefore we propose an approach
using Kinect sensors which do not capture images, but instead capture coordinates which
are used as features in the HAR task. In order to further enhance the prediction quality of
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the HAR system, the features provided by Kinect Sensors are further augmented with the
Shadow Features proposed in this paper. The idea of using Kinect sensor for gesture and
activity recognition has also been proposed in [11], but in this paper we take another step
forward in the HAR field by proposing a novel algorithm for HAR dataset enhancement,
Shadow Features which improve the quality of the HAR dataset and therefore provide more
information to the classifier, which in this case is a simple three-layered feed forward Neural
Network, much lighter and simpler to train than the Convolutional and Recurrent Neural
Networks presented in previous works. The contributions of this paper are the following:

1. A novel algorithm for HAR dataset improvement is proposed, which augments a
HAR dataset with extra dimensions of information which contribute greatly to the
improvement of the classifier’s performance.

2. We demonstrate how the Shadow Features can be generated on the GPU such that HAR
datasets can be augmented on the fly, with almost no time delay, making our proposed
Shadow Features practical for usage in real life.

This paper is organised as follows: In Section 2, we provide an overview of the proposed
classification model, in Section 3 we explain all the details of the proposed Shadow Features
generation algorithm, as well as its implementation on the CPU and GPU. In Section 4 we
show results which showcase the advantage of using shadow features in HAR, and we also
show a speed comparison between the CPU and the GPU. Finally, in Section 5 We conclude
this work.

2 Proposed classificationmodel overview

A new classification model is described in this section. It extends the traditional HAR sys-
tem model in which the raw activity data is pre-processed prior to either training or testing
the classifier. Figure 1 presents an overview of the HAR system embracing our new Shadow
Feature generation method.

The new HAR model comprises an activity recording module, the Shadow Feature
generation module and a classification module. The activity recording model and the clas-
sification module are generic. They can be implemented by any suitable software/hardware
and algorithms. The recorder can be a kinect sensor or multiple kinect sensors of any kind of
sensor, as long as they can capture activities and produce the corresponding activity dataset
as time-stamped ordered sequences. The general format of the activity dataset is a matrix
with rows of ordered instances (e.g., each row contains information about the video frame
per sampling interval) and the columns of attributes or features that describe the informa-
tion. The training dataset has a labelled column that already contains the type of activity
corresponding to each particular row of instance. The training dataset that we use to train or

Activity Recording HAR dataset

Shadow Features 
Algorithm

HAR dataset with
Shadow Features

HAR Classifier

Fig. 1 HAR system with Shadow Features generation method
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build a classifier after passing through the Shadow Feature generation process extends the
original feature set of the training data with Shadow Features. In the testing phase, an unla-
belled dataset us subject to a Shadow Feature generation process configured by the same
parameters that controlled the Shadow Feature generation process for the training dataset
is generated. Then the extended testing dataset with the corresponding Shadow Features is
tested against the built classifier, for activity recognition and the predicted result is outputted
from the classifier.

In incremental learning, which is also known as data stream mining, the training dataset
streams continuously into the classifier construction process. The dataset passes through the
Shadow Feature generation process as through a pipeline, with new features continuously
being generated using a sliding window over the input data stream. Likewise the testing
dataset streams into the classifier at any time, the corresponding Shadow Features are added
on the fly, and the results are predicted continuously at the end of the pipeline as streaming
progresses. What allows the Shadow Features to be added on the fly with no delay is the
usage of the GPU in the generation process. More details are given in the next section.

3 Shadow Features generation

Given a HAR dataset with R rows and C columns, for each column, the Shadow Features
are generated in the following way:

1. Choose a sliding window of size Q. This sliding window will slide through each
column’s Q elements with a stride value of 1, and it will slide though every column R times
(R is the number of rows, which represents the length of the columns).

2. Every time the window slides through a certain column, it takes the average of Q + 1
elements (actually it can be any statistical operation, as it will be shown later in the exper-
iments section) in its current location and places the result in the entry of the new features
column (shadow features column), but for the first Q positions in the Shadow Features col-
umn, the values are all zeroes. This can be seen in Fig. 2, where we have a column with data
and we choose a sliding window of size Q = 3.

This process is repeated until the number of generated Shadow Features matches the
length of the column. So for each column of size R, R Shadow Features are generated.
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Fig. 2 Shadow Features Generation Process
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3. The same process is repeated for every column until all the Shadow Features have been
calculated for the entire dataset. This means that the Number of columns C, will double
with the addition of the shadow features, thus becoming 2×C.

4. Now, as a last step we combine the Shadow Features with the original data set in
an alternate fashion, such that for each column in the original dataset, its corresponding
Shadow Features column is right next to it, as demonstrated in the Fig. 3, in which the high-
lighted columns represent the Shadow Features calculated from their respective preceding
columns.

3.1 Shadow Features generation (CPU versus GPU)

In this section we will compare the Shadow Feature generation process on the CPU and the
GPU as well as explain how we get a real time gain by generating the Shadow Features on
the GPU.

3.1.1 Shadow Features CPU generation

The Shadow Feature generation on the CPU is a serial process, where for each column we
take the average of the elements on every Q window as we slide through the column and
for each column we slide Q times, doing Q average operations. So assuming that there are
R rows and C columns in total, then since this is a serial process we would have a running
time of O(C * R * (Q+1)). The pseudo code for the shadow features generation are shown
in Algorithm 1.

As we can see from the pseudo code above, for the Shadow Features generation process
on the CPU we have 3 loops. One loop to go column wise, one to go row wise and another
one for the average which is omitted from the pseudo code for simplicity, thus we have the
running time of O(C * R * (Q+1)) as stated above.

3.1.2 Shadow Features GPU generation

The Shadow Features generation on the GPU is a complete parallel process, and it requires
some understanding on how the GPU works in order to get a clear view of it. The GPU
contains an array of streaming multiprocessors that allows thousands and even millions of

12298 Multimedia Tools and Applications (2021) 80:12293–12308



0.5

0.7

0.3

0.8

0.12

0.3

0.1

0.6

0.2

0.5

0.18

0.9

0.0

0.0

0.0

0.575

0.48

0.38

0.5

0.7

0.3

0.8

0.12

0.3

0.1

0.6

0.2

0.5

0.18

0.9

0.0

0.0

0.0

0.35

0.37

0.445

Original Data

Shadow Features
Algorithm

Dataset with
Shadow Features

Fig. 3 Resulting dataset with shadow features

threads to be executed in parallel. The GPU organizes threads in blocks, where threads
inside the same block can communicate and share resources such as registers, shared mem-
ory and others. Blocks of threads are scheduled for executing in the GPU’s streaming
multiprocessors and these blocks are executed in parallel. Generating the shadow features on
the GPU makes intensive use of the thread/block model, allowing all the Shadow Features
to be generated in parallel, at the same time, drastically reducing the time cost.

The process to generate the Shadow Features on the GPU is shown in Fig. 4. Suppose
that once again the Q value is 3.
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Each block will calculate exactly one feature, so the number of blocks launched must
be equal to the number of columns times the number of rows and inside each block there
will be exactly Q + 1 threads such that each thread can contribute to calculating the sum of
the Q + 1 elements in the sliding window in parallel and then divide this sum by Q + 1 in
order to get the average. The average is calculated by a technique called parallel reduction
where in each iteration, the threads inside a block work in parallel in order to sum the Q + 1
elements in the sliding window. This process is illustrated in Fig. 5 below, which illustrates
a case where we use parallel reduction to sum an array of 16 elements. The threads work
together to calculate the sum in parallel and store the result inside the array itself in the first
entry. After the sum is calculated, it will be divided by Q + 1 in order to get the average.
This same process happens at the same time inside every block which is calculating every
Shadow Feature in parallel. So since all the columns are calculated in parallel by the blocks
of threads and inside each block we have to do a parallel reduction, then the running time
of this algorithm is equal to the running time of the parallel reduction algorithm which is
O(log(Q+1)) due to the fact that the length of the array to be summed together is cut by half
in each iteration.

In the experiments section we show a comparison between the running times of the
Shadow Feature generation process in the CPU and the GPU. The source code for the GPU
Shadow Features generation process in the listing below

The LENGTH OF COLUMNS refers to the number of instances in the dataset, it is used
in order to caluclate the Shadow Features column-wise. The blockIdx.x/y is used to index
GPU blocks of threads and the threadIdx.x is used to index GPU threads inside blocks of
threads. Line 21 - 32 show the parallel reduction sum that is illustrated in Fig. 5. For the
Shadow Feature generation process we launch a grid of 2D blocks of threads in which each
block of threads calculates the Shadow Features for a number of rows (specified by q size)
in a column, this way we can have each block of threads calculating all Shadow Features in
parallel.

4 Experiments

Two sets of experiments were designed and conducted to verify the efficacy of the proposed
Shadow Features algorithm and HAR classification model. In the first set of experiments
we compare the performance of the HAR process with and without shadow features, and
also compare the performance of different statistical methods to generate Shadow Features.
In the second set of experiments we show the efficiency of using the GPU to generate the
Shadow Features and compare the running time with the CPU, with the goal of proving that
by using the GPU our proposed algorithm can be used on the fly in real world applications.
The classifier used in these experiments is a light and simple Feed Forward Neural Network
composed of three layers: input, hidden and output. The experiments were run on a Linux
Computer running UBUNTU with 2 NVIDIA GEFORCE RTX 2080 Ti GPUs, 8 CPUs, 32
GB of RAM memory and 4 TB of disk space.

4.1 Data set and experiments set up

The dataset used in these experiments was collected using a Microsoft Kinect sensor. The
dataset contains a target class called “Activity” with information labels which describe what
the human activities are with respect to the instances of multi-dimensional data. The col-
lected kinect data has a total of 63 features and 16200 instances that describe 6 different
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54
55 }
56
57 __syncthreads();
58
59 }
60
61 if(threadIdx.x == 0){
62 target[blockIdx.y * LENGTH_OF_COLUMNS + blockIdx.x] = temp[0] /

(q_size+1);
63
64 }
65 }
66
67 }

1 __global__ void shadow_features(float *source, float *target, int q_size
){

2
3 extern __shared__ float temp[];
4 int source_index2 = (blockIdx.y*LENGTH_OF_COLUMNS)+(blockIdx.x -

q_size);
5
6 if(blockIdx.x < q_size){
7
8 target[blockIdx.y * LENGTH_OF_COLUMNS + blockIdx.x] = 0.0;
9

10 }
11
12 else if(blockIdx.x >= q_size && q_size > 1000){
13
14 temp[threadIdx.x] = 0;
15 int factor = q_size / 1000;
16 for(int i = 0; i < factor; i++)
17 temp[threadIdx.x] += source[source_index2 + (i*1000) + threadIdx.x

];
18
19 __syncthreads();
20
21 for(int stride = 1; stride < blockDim.x; stride *=2){
22
23 int index = 2 * stride * threadIdx.x;
24
25 if(index < blockDim.x && index + stride < blockDim.x){
26
27 temp[index] += temp[index + stride];
28
29 }
30
31 __syncthreads();
32 }
33
34 if(threadIdx.x == 0){
35 target[blockIdx.y * LENGTH_OF_COLUMNS + blockIdx.x] = temp[0] / (

q_size+1);
36 }
37
38 }
39
40 else if (q_size <= 1000 && blockIdx.x >= q_size){
41
42 int source_index = (blockIdx.y*LENGTH_OF_COLUMNS)+(blockIdx.x -

q_size) + threadIdx.x;
43 temp[threadIdx.x] = source[source_index];
44
45 __syncthreads();
46
47 for(int stride = 1; stride < blockDim.x; stride *=2){
48
49 int index = 2 * stride * threadIdx.x;
50
51 if(index < blockDim.x && index + stride < blockDim.x){
52
53 temp[index] += temp[index + stride];

Listing 1 Shadow Features generation on the GPU (source code)
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Participant

Fig. 6 Placement of Kinect sensors in our experiment

human activities. The features in the dataset are x-y-z spatial information about various parts
of the human body such as the head, shoulder, elbow, wrist, hand, hip, knee, and foot. The
data collection process consisted of a volunteer performing in front of five kinect sensors
placed in different positions doing the 6 different postures. The Kinect sensor was placed
at five different positions facing the subject at 0, 45, 90, 135, and 180 degrees. The five
positions of the Kinect sensors are shown in Fig. 6. After the application of the Shadow Fea-
tures algorithm to the dataset obtained from the kinect sensors, the features doubled from 63
to 126. The Shadow Features were applied using different statistical methods (chi-square,
mean, root mean, standard deviation, variance and Hurst exponent) with the goal of figuring
out which method is the most suitable in the Shadow Features generation process.

The classifier used in our experiments consists of a simple Feed Forward Neural Network
with the configuration as shown in Table 1. In our experiments we also show the result
of the HAR process without the application of Shadow Features so that we can show the
advantages of using Shadow Features in HAR datasets.

The experiments were conducted with different Q sizes. For each Q size, we provide
a comparison on the maximum accuracy attained by a neural network training/testing the
Kinect dataset with Shadow Features generated by different statistical operations which are

Table 1 Neural network
parameters Number of input Neurons 63 without Shadow Features,

126 with shadow features

Hidden layer size 256

Output Layer size 6

Number of Epochs 128

Learning Rate 0.05

Batch Size 100
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Fig. 7 A comparison between statistical operations with and without Shadow Features

chi-square, mean, root mean, standard deviation, variance and Hurst exponent. The X axis
in the bar charts below represent the Q size, where we used values in the following ranges
[1,10] with a step of 1, [10,100] with a step of 10, [100,1000] with a step of 100 and [1000,
10000] with a step of 1000. The Y axis represents the accuracy attained by different Q
values. The accuracy is in the interval [0.0, 1.0].

As we can see from Fig. 7, by using Shadow Features with different statistical operations
we get different results in the improvement of the Neural Network performance. With the
chi-square operation obtaining 99% accuracy, outperforming the other operations. Another
interesting comparison would be to compare the best result obtained by each statistical
operation with the result obtained without applying Shadow Features to the dataset. This
comparison in shown in Table 2.

All the statistical operations outperformed the case where no Shadow Features were used,
which shows that the shadow features can improve the quality of HAR datasets which leads
to the improvement of the performance of the classifier. Table 3 shows a comparison for the
measurements of precision, f-measure, recall and specificity between the different statistical
operations.

4.2 CPU VS GPU comparison

We also set up experiments to compare the running time of the Shadow Features generation
process on the CPU VS the GPU. A graph showing the running time comparison for the

Table 2 Comparison of Shadow
Features generated using
different statistical operations
and not using shadow features

Chi-Square 0.999876543

Husrt Exponent 0.949691358

Mean 0.977530864

Mean Square 0.959259259

Standard Deviation 0.908148148

Variance 0.911049383

Without Shadow Features 0.849814814
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Table 3 f-measure, precision, recall and specificity for the activity labels shown for the different statistical
operations

Chi-square Hurst Mean Mean sqaure Standard Variance

deviation

Class 0

f-measure 1 1 1 0.999814781 0.942396313 0.933953128

Precision 1 1 1 1 0.981595092 0.982011447

Recall 1 1 1 1 0.908888889 0.892962963

Specificity 1 1 1 1 0.996666667 0.996740741

Class 1

f-measure 0.999814849 0.944055944 0.943167647 0.950686862 0.821582486 0.831794872

Precision 1 1 1 1 0.781740371 0.781364637

Recall 1 1 1 0.99962963 0.884074074 0.901111111

Specificity 1 1 1 1 0.955185185 0.955851852

Class 2

f-measure 1 0.888027896 0.946345257 0.897206916 0.794248255 0.798543689

Precision 1 1 1 1 0.925579103 0.91886608

Recall 1 0.848888889 0.901481481 0.874444444 0.731111111 0.731111111

Specificity 1 1 1 1 0.988814815 0.987703704

Class 3

f-measure 0.999814849 0.98973607 0.996297668 0.994803267 0.952655266 0.962545455

Precision 1 1 1 1 0.926795096 0.945357143

Recall 1 1 1 1 0.99037037 0.985185185

Specificity 1 1 1 1 0.984518519 0.988666667

Class 4

f-measure 0.999814849 1 1 1 0.95779163 0.951977401

Precision 1 1 1 1 0.922469983 0.909581646

Recall 1 1 1 1 0.998518519 0.998518519

Specificity 1 1 1 1 0.983259259 0.980148148

Class 5

f-measure 1 1 1 1 1 1

Precision 1 1 1 1 1 1

Recall 1 1 1 1 1 1

Specificity 1 1 1 1 1 1

case of a Kinect sensor dataset with 63 features (columns) and 16200 instances (rows) is
shown in Fig. 8. On the x-axis we have the Q size as described in the previous experiment
and on the y-axis we have the time in seconds that it takes to generate the Shadow Features
with the respective Q size.

As we can see from Fig. 8 the running time for the GPU is below zero seconds, due
to the fact that the operations run in parallel. The maximum running time for the GPU is
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Fig. 8 GPU-CPU running time comparison

0.244879 seconds, whereas the maximum running time for the CPU is 22.74865603, which
gives us a gain of 92.90 of the GPU over the CPU. These results show that using the GPU
to generate shadow features in real life applications is a paramount in order for the features
to be generated on the fly with minimum delay.

5 Conclusion

In this paper we presented a new pre-processing algorithm for Human Activity Recogni-
tion (HAR), Shadow Features generation, which adds extra dimensions of information to
HAR datasets, with the goal of improving the quality of these datasets which would then
result into better classification accuracy of the Neural Network classifier used in a HAR
setting. We proposed a new HAR model in which Shadow Features are generated on the fly
as soon as data is available from kinect sensors by taking advantage of the parallel process-
ing capabilities of the GPU. We provided experimental analysis that show the importance
of using the GPU instead of the CPU, and we also showed experimental results of using dif-
ferent statistical operations in the Shadow Feature Generation process and proved that using
Shadow Features with any of the discussed statistical operations has a better performance
than not using Shadow Features at all, therefore the inclusion of Shadow Features in HAR
is definitely a step forward in the HAR field. In future research We plan on evaluating the
performance of the proposed Shadow Features with different Machine Learning classifiers
other than Neural Networks.
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