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Abstract
In this paper we introduce a cavity reconstructing algorithm for 3D surface scans (CRASS)
developed for filling cavities in point clouds representing human body surfaces. The presented
method uses Bezier patches to reconstruct missing data. The source of input data for the
algorithm was an 8-directional structured light scanning system for the human body. Typical
3D scan representing human body consists of about 1 million points with average sampling
density of 1 mm. The paper describes the complete scan processing pipeline: data pre-
processing, boundary selection, cavity extraction and reconstruction, and a post-processing
step to smooth and resample resulting geometry. The developed algorithm was tested on
simulated and scanned 3D input data. Quality assessment was made based on simulated
cavities, reconstructed using presented method and compared to original 3D geometry.
Additionally, comparison to the state-of-the-art screened Poissonmethod is presented. Values’
ranges of parameters influencing result of described method were estimated for sample scans
and comprehensively discussed. The results of the quantitative assessment of the reconstruc-
tion were lower than 0,5 of average sampling density.
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1 Introduction

1.1 Motivation

3D scanning is becoming an increasingly important element of reality reconstruction, replacingmanual
modeling. Especially significant applications of this technology are systems that use models of the
human body, e.g., in medical, clothing and gaming industries. It is difficult to model such shapes
realistically, not to mention obtaining a metrologically correct representation.

Existing methods of capturing the surface of the human body include volumetric methods used
primarily in medicine [19, 36], such as magnetic resonance imaging (MRI) or computer tomography
(CT), which allow the extraction of the whole surface from a single measurement. These methods are
costly, invasive, and generate excessive data; hence, these methods are rarely used for surface capture.
Methods that provide direct information about the surface, such as structured light illumination (SLI)
[12, 23], laser triangulation [28], or Structure fromMotion (SfM) [9], are used much more frequently.
These methods use visible or near-to-visible light and are non-invasive, which has made them more
popular in medicine, especially for examining children and pregnant women [27], where exposure to
ionizing radiation should be strictly avoided. However, most of these techniques deliver data from a
single point of view and are prone to self-occlusion. This makes creating a complete model time
consuming, which in the case of in vivo measurements is undesirable and can lead to serious shape
deformations. In visualization systems, such as virtual fitting rooms [6, 31], human perception is easily
drawn to unnatural discontinuities in themodels, and the effect of presenting a realistic object is lost. In
such cases, the visual effect is a major factor in determining the usability of a particular technique.

Factors that cause discontinuity in scans of a continuous surface include self-occlusion of the
scanned object, object movement during frame capture, or a limited number of directions from which
the object is captured [23]. These can all result in cavities of various shapes appearing in the scanned
surfaces (Figs. 1, 2, and 3).

The aim of the work presented in this paper was to develop an algorithm for filling cavities in
surface 3D scans. The algorithm was developed as part of an 8-directional SLI scanning system

Fig. 1 Sample cavity in scan in area of head
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designed at the Institute of Micromechanics and Photonics in Warsaw, Poland [26]. The aim of this
system is to gather measurements of army officers for the manufacture of personalized uniforms.
Although the algorithm is generic, its primary application is filling cavities in point cloud-based
representations of the surface of the human body.

The number of measurement directions in the systemwas chosen to provide a good compromise
between the area covered by the measurement volumes and the time taken for measurement.
Because of the automated data-processing pipeline in the system, the algorithm for filling cavities
in the model has to work directly on point clouds, preferably without any user interaction.

Cavities in SLI scans typically feature noise on the boundaries of the cavities [23]. Displacements
on edges are caused by the method’s systematic error on surfaces that are parallel to the measurement
direction. Similar cavities can also appear due to changes in the local reflection factor [23]. Hence, it is
important to be able to reconstruct missing data based on boundary points as well as on points
surrounding the cavity boundary.

A cavity-filling algorithm for the introduced scanning system must satisfy the following require-
ments. It should:

& work on point clouds consisting of XYZ point coordinates and normal vectors,

Fig. 2 Sample cavities on arms

Fig. 3 Sample cavities in scan in area of an axilla
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& be robust to substantial errors on bounds of the measurement area,
& reconstruct the shape of the surface including factors of degree two or three,
& not require additional information about the scans except surface data (e.g., measurement

system characteristics and position in space),
& be automatic – any parameter can be estimated before running the algorithm, and user

interaction for every cavity is not required,
& provide optional smooth transition between the original and reconstructed data (for

presentation purposes),
& allow the parameters to be adjusted to the characteristics of the individual cavity,
& work on 2.5D surfaces (for possible future uses in the reconstruction of partial view scans).

2 State of technology review

Someprevious attempts have beenmade in the field of cavity filling in point clouds [14, 29]. Currently,
the developed algorithms can be divided into two groups: meshless and mesh-based methods,
depending on whether the raw point cloud is used as input or a triangle mesh is created to facilitate
analysis. Employing a trianglemesh provides a straightforward definition of a cavity boundary: a list of
connected edges that have only one half-edge.

For the mesh-based group, the method described in [32] should be mentioned. It consists of two
major steps, referred to as “make convex” and “add vertices”, performed iteratively. The first step
creates a triangle by adding an additional edge to any pair of edges from the boundary with angle
smaller than a defined parameterφ. This step eliminates sharp turns of the boundary. The second step
adds a vertex for every boundary edge in the direction perpendicular to the edge, on the plane
calculated using the Moving Least Squares (MSL) procedure. The user parameterizes the distance to
the edge. A new triangle is created from each newly created vertex and the edge from which it
originates. The two steps are repeated until the cavity is defined by only 3 edges, which form the final
triangle. Another interesting approach was described in [18] where a learning set is built based on
scanned human body surfaces and a templatemesh is aligned and deformed tomatch a new scan. This
is an extended SCAPE method proposed in [1] and performs well with solving the geometry folding
problem appearing after template mesh deformation to registered scan. However, in SCAPE instance
meshes are resampled to about 50,000 triangles before passing to the algorithm, what indicates
meaningful data degradation compared to scans from our system (1 million of points per scan). Mesh
deformation approach was also used in [30] for filling holes in scans of various engineering objects.

Meshlessmethodswere proposed byDavis et al. [7] and byChalmoviansky and Jüttler [3]. The first
method [7] is based on defining a signed distance function, which describes the surface of the point
cloud. An iterative algorithm is used to extend the function in hollow areas. After completing this step,
missing points are generated using the marching cubes (MC) algorithm. The described method works
well even for complicated shapes, but it requires information about the orientation of the detectors used
during scanning to estimate in which direction the function should extend the shape. Besides, research
presented in [14] shows that this method encounters problems filling bigger cavities e.g. in the Stanford
bunny model. Some other research [33, 34] proposes the Moving Least Squares technique to solve a
height function approximation and fill the cavity in a local coordinate system defined by a best-fit plane.
The approach described in [24] bases on the property of some scanning methods that cause the point
cloud to be stored as horizontal scan lines sorted according to height. This enabled the authors to
approximate discontinuities in scan lines using cubic spline curve approximation. Apart fromMLS and
spline fitting methods, Poisson reconstruction methods have received some attention [2, 21, 22]. The
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basic idea behind this group of methods consists in using an input set of oriented points (points with
normals) to construct a corresponding isosurface. The isosurface is extracted from an indicator function
formulated using Radial Basis Functions and an adaptive octree. Later on, the output mesh is obtained
using a triangulationmethod of choice. Poisson surface reconstruction implementations can be found in
open-source software, e.g. MeshLab [4]. Zhou et al. [37] propose a surface reconstruction method
incorporating a new visibility model for each line of sight along with introduction of likelihood term in
binary labeling problem of Delaunay tetrahedra. The methodworks well with multi-view stereo dataset
but requires information recording from which view every point in the point cloud was seen. Another
work [25] describes an iterative algorithm for construction of signed distance field with l0 gradient
minimization. The method uses half-quadratic splitting method and consists of alternating smoothing
and edge-preserving steps.Authors point out that their algorithmhas the advantage over Poissonmethod
described earlier in the fact that it does not require accurate directions of normal vectors to produce
correct results. Some recent works try to employ neural networks for the task of generating mesh
representation of a 3D scanned point cloud [5, 11, 15–17, 35]. Latest of those, Point2Mesh [17] uses
Convolutional Neural Network (CNN) to iteratively mold the initial mesh to input point cloud, shrink-
wrapping the mesh until it reaches final shape. During the iterations, initial mesh is upsampled to
reconstruct details from input point cloud. However, authors own that their method is more computa-
tionally expensive than state-of-the-art methods and is less robust to noise and outliers with irregular
geometry. Those disadvantages are less important for point cloud to mesh conversion, but become
blocking issue in hole filling, where relatively big cavities with irregular and noisy edge may appear.

The method described in [3] fills cavities using algebraic surface patches that are adapted using
distance, and normal and tension terms calculated for the cavity boundary and its neighborhood.
Firstly, normal vector estimation is performed. After that, boundary points are extracted using two
conditions based on distance and angle, which when combined result in fast processing and correct
output. The unorganized set of boundary points that is obtained is divided into cavities using an
iterative cavity-polyline growth algorithm. After that, each cavity is filled with an algebraic surface
according to an objective function that involves several terms. Calculations are performed in
barycentric coordinates, and therefore require the definition of a simplex containing all given points.
Depending on the weight factors for each part of the objective function, themethod reproduces planes,
spheres, or cylinders, which are sufficient for most engineering objects.

The algorithms described above do not ensure that our requirements are fulfilled but they do form a
good basis for development. For the method described in [7], some authors highlight problems with
artifacts caused by aliasing issues and by constructing unwanted geometry [32].Moreover, “the system
needs to know what portion of the space corresponds to the exterior of the surface and what portion
corresponds to its interior, which may not always be readily available” [33]. Spine curve fitting
proposed in [24] could be prone to noise in point translation that appears on cavity boundary in SLI
scans. The method proposed in [3] constitutes a good basis but the reasons for using barycentric
coordinates were not clarified in the paper. The only requirement was to create a simplex that contains
all the given points, although choice of the simplex affects the tension terms [3]. Moreover, the
algorithm is sensitive to sharp turns of the cavity boundary, which is acceptable in laser scans of
engineering objects but not in our case.We regardmethods based on Poisson reconstruction as current
state-of-the-art for solving the cavity-filling problem in models such as the human body. The methods
provide good quality of extrapolated data, and efficient implementations exist. However, because of
their global nature it is difficult to approach cavities separately using different strategies, best fitted to
the local character of each cavity. They also require the model to be 3D-complete – on 2.5D surfaces,
e.g. face scans, large artifacts will be created outside of the defined surface. These properties make it
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difficult to develop these methods in some of the directions we would like to follow in the future.
Nevertheless, our algorithm should achieve similar reconstruction accuracy.

Mesh-based methods are beyond our region of interest, as they require transforming the point
cloud into a topologically correct triangular mesh. This operation is time consuming and usually
requires human interaction to identify and correct possible artifacts.

In conclusion, some cavity filling methods for point clouds have already been developed but
they are either specialized for particular classes of objects or have considerable computational
cost and/or low noise resistance. To the best of our knowledge, there is no algorithm intended for
filling cavities directly in point clouds that could be used with human body scans (Table 1).
However, the algorithm described in [3] provides a good starting point because of its utilization of
parametric surfaces. In the CRASS algorithm presented here, we base our method on boundary-
point segmentation and cavity extraction methods from [3]. We decided to modify the approx-
imation step to make it work with SLI scans, especially in the case of the human body.

The paper is organized as follows: in Section 3 the reader can find basic definitions and detailed
description of CRASS algorithm, Section 4 contains reconstruction quality and performance tests
along with comparison to Screened Poisson method. Section 5 includes discussion of results
presented in Section 4, estimation of values for hyperparameters used in CRASS and limitations
of the method presented. The paper ends with conclusions and future work described in Section 6.

3 Materials and methods

3.1 Basic definitions

All the input data used in this paper is in the form of a point cloud. This is defined as a set of points
representing the surface of an object. Each point consists of position (XYZ) and a normal vector (Nx,

Table 1 Comparison of existing algorithms with respect to requirements

Method/feature Works
on
point
clouds

Robustness
to error on
measured
area bounds

Reconstructing
local shape

Automatable No need for
additional
information
except of
model point
cloud

Allows the
parameters to
be adjusted to
the cavity
characteristics

Works
on 2.5D
surfaces

Hole filling
algorithm
for triangular
meshes [32]

– – + + / - + + +

Hole filling
using
algebraic
surfaces [3]

+ + / - + – + + +

Reconstruction
using
Volumetric
Diffusion [7]

+ + / - + + – – +

Screened
Poisson
Reconstruc-
tion [21]

+ + + + + – –
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Ny, Nz). In the ideal case, a point cloud is complete, i.e., it does not contain any cavities. In most
cases, scans are not complete, and then such a point cloud can be divided into groups of two types:
the regular part and the hollow part. We define the regular part as a subset of points for which the
cloud is locally complete. Points in the regular part will be called regular points. The hollow part
contains one or more cavities, which are understood as areas of discontinuity in the scanned surface
that feature either zero or small sampling density. We define a cavity as an area limited by a cavity
boundary, namely a sequence of boundary points. Boundary points are those points fromwhich the
distance to a neighborhood’s geometric center is significantly larger than the similar quantity for
regular points (see Fig. 4). In order to approximate this value for the entire cloud, we introduce the
averageminimumdistance (AMD). The averageminimumdistance for a point cloud is calculated as
the average distance to the nearest point.

3.2 Prerequisites and case specific discussion

The aim of this section is to specify some geometrical dependencies in ideal input data affected
by measurement precision only, which will be a basis for estimation of parameters for
presented algorithm in further part of the article.

In SLI scans, the difference between point groups (regular and hollow) is fluid due to sampling
density. Space between points in the regular part of the cloud can be treated as a micro-cavity. The
factor enabling the distinction between the cavity and the space between points is sampling density
(Fig. 4). Closer to the edges, the cloud becomes sparser. We assume that sampling density in the
regular part is uniform, i.e., any change in sampling density does not exceed the measurement
uncertainty.

We assume that the measurement precision is equal to half the AMD (3.1) in our scanning
system.

Δd ¼ d

2
ð3:1Þ

where:

Fig. 4 Distance to center of neighborhood for boundary point (left blue) and regular point (right blue). A cross
symbolizes center of a neighborhood, green points are boundary points of a cavity. Blue circles mark neighbor-
hood search area
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Δd measurement precision,
d average minimum distance (AMD) between points.

Consider a regular point and its neighborhood. As assumed before, the sampling density in the
regular part of the scan is nearly uniform and in an ideal case distance between each two points would
be equal and the neighborhood points would form a hexagon around the considered point (Fig. 5).

In the ideal case, the coordinates (described as vector v with corresponding subscript) of
both the considered point p and the center of its neighborhood (of size 6) is described by the
following eq. (3.2):

vcenter ¼ vp0 þ vp1 þ …þ vp5
6

¼ vp ð3:2Þ

where:

vcenter position of center of neighborhood of point p,
vp position of point p in ideal case.

Due to measurement errors, points exhibit some variability around their theoretical position.
This variability is bounded by the measurement precision, which in the target system equates
to half of the AMD (3.1) In an extreme case, all points would be moved towards one and the
same axis (3.3), for example the y-axis (see Fig. 5). The resulting hexagon would be shifted
towards this axis by the value of the measurement precision (3.4).

y
0
pi ¼ ypi þΔd ð3:3Þ

v
0
center ¼

v
0
p0 þ v

0
p1 þ…þ v

0
p5

6
¼ vp þ 0;Δd½ �T ð3:4Þ

where:

y’pi y cooordinate of i-th neighbor of point p in extreme case scenario,

Fig. 5 Sample point (green) surrounded by its regular hexagonal neighborhood (grey). A grey cross corresponds to
geometric center of neighborhood. Blue points are neighborhood shifted by maximum flow value towards y-axis
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ypi y coordinate of i-th neighbor of point p in ideal case,
v’center position of center of neighborhood of point p in extreme case scenario,
v’pi position of i-th neighbor of point p in extreme case scenario.

This is due to the fact that the maximum distance between a point and the geometric center
of its neighborhood in the regular part will not exceed the measurement precision. Addition-
ally, gross errors must be considered. As a result, a boundary point can be characterized by a
shift of its neighborhood center of mass that is larger than the measurement precision.

Similarly, for a corresponding angular entity, two points from the neighborhood and the
middle point can span an angle that is greater than in the ideal case (Figs. 6 and 7). Assuming
that a regular point is surrounded by 6 neighbors, this angle in the ideal case is equal to (3.5):

αreg ¼ 2π
6

¼ π
3

ð3:5Þ

where:

αreg angle spanned by regular point and two neighbors in regular (ideal) case.

In the previously mentioned extreme case, we obtain (3.6):
With the measurement precision of our SLI scanner (3.1), this leads to (3.7),(3.8),(3.9):

tg
αregFlow

2

� �
¼

d
2

d
ffiffiffi
3

p

2
−Δd

ð3:6Þ

tg
αregFlow

2

� �
¼

d
2

d
ffiffiffi
3

p

2
−
d
2

ð3:7Þ

Fig. 6 Sample point (green) surrounded by its regular hexagonal neighborhood (grey). A grey arch corresponds to
angle in regular case. Blue arch is an angle spanned by neighborhood shifted bymaximum flow value towards y axis
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αregFlow

2
¼ atan

d

2
d

ffiffiffi
3

p

2
−
d

2

0
BB@

1
CCA≈0:3π ð3:8Þ

αregFlow≈0:6 π ð3:9Þ

where:

αregFlow angle spanned by point p and two neighbors in extreme case,
d average minimum distance (AMD) between points.

Another interesting aspect is the characteristic of the input data from SLI scanners.
In the target system, the measurement is multidirectional, which means that raw input
data from scanning consists of a set of layers – parts of the model captured from
single direction – which need to be matched to each other in order to receive the final
cloud. Merging of the component clouds should be performed with sufficient accuracy
to create a single surface.

Input data for the developed algorithm must meet following conditions. It must have:

& close to uniform sampling,
& sufficient merging accuracy,
& no artifacts.

Fig. 7 Sample point (green) surrounded by its regular hexagonal neighborhood (grey). Blue arch corresponds to
angle spanned by neighborhood shifted by maximum flow value towards y axis
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3.3 Overview

The method begins with pre-processing, which is an optional step introduced to unify
sampling and minimize noise. Next, boundary points are extracted. The resulting data form
an unordered set of boundary points. Afterwards, boundary points are grouped into contours of
particular holes. For each extracted cavity, a single Bezier patch is fitted. After sampling and
merging, the cloud may be optionally post-processed. The output of the process is a cloud with
filled holes (Fig. 8).

The CRASS algorithm was tested on both real scanned data and computer-
generated examples of basic shapes: a computer-generated sphere (0.5 million points,
generated based on parametric equations with radius equal to 100 and sampling
resolution equal to 500), a scan of a female mannequin (1 million points), and a
scan of a standing man (0.85 million points). Real scans were captured using an 8-
directional SLI scanner [26]. As mentioned in Section 3.2, the measurement precision
in the target system was estimated as 0.5 of the AMD.

3.4 Pre-processing

Data from SLI scanners is burdened with disturbances caused by thermal noise in the
detector matrices, and by the measurement method itself [23]. To achieve the prereq-
uisites specified in Section 3.2, additional processing steps have to be introduced.

In the first step, the data were smoothed using a plane-fitting algorithm. For each
point, a spherical neighborhood of size rPreSmooth was found and used to approximate a
local best-fitting plane. The processed point was projected onto the plane and its
position updated.

Next, the data was simplified using a custom simplification algorithm, which for
given minimum distance d iterates over cloud’s points and deletes points nearer then
d. This simplification was used with parameter dpreSimpl to unify density in areas
where sub-clouds from particular scanning directions overlap (Fig. 9).

This step requires setting the parameters rPreSmooth and dpreSimpl.

3.5 Boundary point extraction

Boundary points were extracted from the input cloud using a two-step algorithm [3].
The first step involves checking the condition that describes the minimum distance
between a point and the center of its spherical neighborhood of radius rdist. In the
standard case, when a point is located in the regular part of the surface, the distance

Fig. 8 Algorithm scheme
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to the center is relatively small. The more the point “moves” towards the edge, the
more the distance is increased (Fig. 10).

Point pi passes the distance test if the following condition is met:

pi−aij jj j≥ϵdist ð3:10Þ
where:

pi position of point p,
ai the center of the spherical neighborhood of radius r,
εdist is the distance threshold set by the user.

Fig. 9 Input cloud before (right) and after (left) pre-processing. Views a and b show scanned surface; c and d
present zoom on point sampling in surface. In view (a), noise on the scanned surface can be observed. In view c,
sampling density is irregular, many points either overlap or are slightly shifted from each other. After the pre-
processing algorithm, sampling density is unified and noise reduced (b, d)

Fig. 10 Distance between center of neighborhood (blue circle) and point (red rectangle) for points on the edge of
a cavity (A, B, C) and regular point (D). Dashed curve specifies cavity area
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As a result, probable boundary points are selected. In the second step, final boundary points
are chosen from the set of points found in the first step of the procedure.

Point pi is a boundary point if:

αmax≥ ϵbangle ð3:11Þ
where:

εbangle the angular threshold set by the user,
αmax maximum of wedge angles for point p.

αmax is calculated as follows (Figs. 11 and 12):

1 For the considered point pi, take the spherical neighborhood of radius rang (name it as set N
of point nj).

2 Calculate the best-fit plane Ppi + N for N and pi, and project all points onto Ppi +N (name the
projected points pi’ and nj’ in set N′).

3 Create a local coordinate system with origin in pi’ and x-axis vector determined by the first
point from N′.

4 Sort the points from N′ with respect to pi’ according to their polar coordinates (by angle to
the x-axis).

5 For each two consecutive points from the sorted N′, calculate the angle α spanned by those
points with apex in point pi’.

The quantity αmax is the maximum value of all angles α in the sorted set N′.
This step requires setting the parameters εdist, εbangle, rdist and rang.

Fig. 11 Wedge angle α calculation for sample point pi’ (dark blue) after projection on plane Ppi +N. Dashed circle
corresponds to spherical neighborhood of radius r, light blue points are neighbor points nj’ of sample point. Point
no. 1 is used to set x-axis vector, after which all neighbor points are sorted with respect to α (numbers on points
imply order after sorting). For each two consecutive points, angle α spanned by those points with apex in point
pi’ is calculated. Maximum value from α is named αmax

15105



Multimedia Tools and Applications (2021) 80:15093–15134

3.6 Cavity extraction

The aim of this step of the algorithm was to group boundary points into lists of points, each
representing a separate cavity. The algorithm builds polylines representing cavities based on
two initial points (any point from the set and its closest neighbor) serving as a seed, and adds
the next points iteratively if the condition for the allowed expansion direction is met (see
Figs. 13 and 14).

Let B be the set of boundary points extracted in the previous step. Firstly, a free (i.e., not
assigned to any cavity) (boundary) point from B is chosen and its nearest neighbor (from B) is
found. If the distance between them is smaller than the defined maximum extending distance
dmaxExtnd, the mentioned pair of points is used to form a new cavity polyline. Next, more points
are added to the list based on the allowed extension test. Such points, if found, are added to the
proper end of the list. This action is repeated iteratively until the polyline represented by list C
cannot be expanded anymore. After that, if B is not empty, lists for the next cavity are created
and expanded, until there are no points left in B. In result of this step, we obtain a set of lists of
points, each representing a separate cavity.

The allowed extension condition is determined by two tests. Firstly, the point to extend the
polyline cannot be further from the current end of the polyline by more than dmaxExtnd. This

Fig. 12 Values of αmax for sample points. Examples on the edge of a cavity (A, B, C) and within regular surface
(D). Dashed curve specifies cavity area

Fig. 13 Extraction algorithm diagram
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prevents the polyline from including points from other, nearby cavities. Secondly, the angle
spanned by the last two points of the current polyline and the considered extension point (see
Fig. 14) is calculated. The point is an allowed extension if the mentioned angle is larger than
the user-defined parameter ϕforbidDir. This prevents the polyline from curving too sharply. This
step requires setting parameters dmaxExtnd and ϕforbidDir.

3.7 Calculating Bezier patches

The approximation step fits a Bezier patch to a cavity defined by an ordered list of boundary
points. We propose the choice of additional points, called surrounding points, which along
with boundary points are considered in the patch approximation formula.

Our algorithm firstly estimates a local coordinate system (XcavLYcavLZcavL) for each
cavity by calculating the best-fitting plane for all its boundary points. The XY plane
is the best-fit plane, and the z-axis is the plane’s normal vector. The origin is chosen
as the center of mass of the boundary points projected onto the best-fit plane.
Boundary points are then transformed to the new coordinate system. A cavity-
bounding rectangle is determined in (XcavLYcavL) and its borders are sampled with a
density proportional to the fitted patch degree. Points extracted from the rectangle
form the set R. For each point from R, the nearest point in the cloud is found, in the
sense of (xcavLycavLzcavL) local coordinates (Fig. 15) with privilege for the zcavL
coordinate. Distances along the z-axis and in XY plane are calculated separately.

For two sorted points, if the Z distance is
ffiffiffi
5

p
times larger than the XY distance, comparison is

performed using only the Z distance. Otherwise, comparison is made in the XY plane. Each
nearest point that is found is added to the set S of surrounding points. Distinction between Z and
XYdistance causes that the choice of surrounding points is basedmore on distance to projection
onto plane than on distance between surrounding point and point from R. Secondly, it helps
avoiding misassignment of points from back side of the scan as surrounding point, because for
such a far-away points comparison is done only in Z axis and points from front side of the cloud
will be advantaged. Choice of value of the threshold in this case is experimental.

Fig. 14 Cavity extraction method. Solid line specifies current boundary polyline; blue point is current end point
of boundary polyline. Green and red points are considered extensions of the polyline. Arcs show angular criteria
for each considered point, based on which red point is rejected for extending polyline. From the remaining two
green points, the closer one will be chosen
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Next, both the boundary and surrounding points are used as input for the fitting process,
which is performed in the local coordinate system of the cavity. The formula consists in
distance term defined as follows.

Consider an approximating Bezier patch defined by control points p = [p00, p01,…, p10, p11,
…, pn*m]T (3.12):

f u; vð Þ ¼
x u; vð Þ
y u; vð Þ
z u; vð Þ

2
4

3
5 ¼ ∑

N

i¼0
∑
M

j¼0
Bn
i uð Þ � Bm

j vð Þ �
xpij
ypij
zpij

2
4

3
5

0
@

1
A ð3:12Þ

where:

f(u,v) Bezier patch function,
xpij , ypij , zpij x, y, z coordinates respectively of control point pij,
N, M degrees of the patch in the u and v directions.

For all boundary points (set Q) and surrounding points (set S), the building set T of
adapting points and objective function are given by (3.13):

Q ¼ fQ0;Q1;…;QLg; S ¼ fP0;P1;…;PN*Mg;

T ¼ QuS ¼ fT0;T1; ::;TLþM*Nþ1g

F pð Þ ¼
XLþM⋅Nþ1

k¼0

μk f uTk ; vTkð Þ−Tkð Þ2
ð3:13Þ

where:

F(p) objective function,
Q set of all boundary points,
S set of surrounding points,
μk the weights of the boundary and surrounding points. These are either μb for boundary

or μr for surrounding points. Manipulating them will modify the calculated surface to
better fit either the boundary or surrounding points.

As the function F is quadratic and positive, finding its minimum value reduces to solving
the Eq. (3.14):

Fig. 15 Projected bounding rectangle points in sphere cloud (white points). Green points correspond to hole
boundary points
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∇F pð Þ ¼ 0 ð3:14Þ
The above equation can be treated as a set of Eq. (3.15)

∂F pð Þ
∂pi j

¼ ∑r
k¼02μk f uTk ; vTkð Þ−Tkð Þ⋅Bn

i uTk ; vTkð Þ⋅Bm
j uTk ; vTkð Þ ð3:15Þ

with each equation expressing the derivative of a control point pij.
Using both the boundary and surrounding points (which are obtained using pro-

jection on the bounding rectangle on the cavity’s best-fit plane) is the key to making
the resulting patch approximate the local shape around the cavity using a simple set
of equations.

For each adapting point, (u,v) coordinates were calculated using planar mapping of
that point’s projection onto best-fit plane calculated previously fot the search of the
surrounding points. The bounding rectangle of boundary points, projected onto the
plane and scaled up by 10%, defined a [0,1]x[0,1] (u,v) area on the plane.

The presented set of Eq. (3.15) was solved using the Least-Squares Method provided by the
Eigen library [13]. The result of the calculation is a set of control points for the Bezier patch. The
obtained parametric surface is defined in the local (i.e., that of the cavity) coordinate system.

In order to sample the patch only in the area where it covers the cavity, sampling
inside the convex hull of the cavity [8] was introduced. The contour of the cavity was
projected onto the best-fit plane, and the convex hull was calculated for the result.
While sampling the Bezier surface, each point’s coordinates in (XcavLYcavLZcavL) were
tested against the Point-in-Polygon condition with respect to the hull. Only points
inside the convex hull were added to the final cloud. Sampling of the patch was
performed in parameter (i.e., UV) space. The densities in the u and v directions are
proportional to the AMD. This step requires setting the parameters μb, μr, N and M.

3.8 Post-processing

After the Bezier patches were added to the original cloud, a post-processing step
similar to the pre-processing operation was used in order to improve the result
visually. Because the Bezier patch was sampled inside the cavity’s convex hull,
simplification was needed to keep the point density semi-constant over the entire
area. Post-processing alters the original cloud, but the parameters were adjusted to
minimize losses in the data and to obtain an improved visual effect.

Figure 16 shows a discontinuity on the edges of the patch, where the original and
reconstructed surfaces are supposed to connect smoothly (Fig. 17). Therefore, smooth-
ing is needed to join both surfaces. Smoothing was accomplished using a plane-fitting
algorithm with a radius rpostSmooth as the spherical neighborhood size for the calculat-
ing planes. Sampling of the patch was performed in parameter space, which causes
some density differences compared to the input cloud. In order to keep the sampling
density similar, homogeneous simplification with parameter dpostSimpl was used. The
value of the simplification parameter should be less than the AMD in order to avoid
removing any original data. This step requires setting the parameters rpostSmooth and
dpostSimpl.
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4 Results

4.1 Algorithm assessment method

The CRASS algorithm was developed for two target uses: further calculations (e.g., for automatic
dimensioning for the clothing industry) and visualization purposes. Therefore, it should be assessed
not only in a visual way, but also as a numerical tool. In this paper, the testing method is based on
comparison between the original data and an artificially created cavity reconstructed using the
algorithm. To provide ground-truth information, original scan was hollowedmanually and the cavity
was reconstructed using algorithm under assessment. The difference between original part of scan
and reconstructed surface indicates how well the algorithm performs.

In order to compare the original cloud with the reconstructed one, a separate algorithm was
developed (see Fig. 18). As post-processing was used only to provide a good visual effect, it
was omitted for the purpose of assessment.

In both clouds (i.e., original and processed), similar areas of points were selected (we name these
sets Po for the original and Pr for the reconstructed cloud). At each point pr of the reconstructed cloud
for these defined ranges, the corresponding point in Po is searched for. A new (local) coordinate

Fig. 16 Fitted Bezier patches before post-processing

Fig. 17 Fitted Bezier patches after post-processing
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systemwas formedwith point pr as the origin, the tangent (to pr) plane spanning the X-Y space, and
the normal vector of pr serving as the unit vector in the z-direction. The corresponding point was
found in the local coordinate system as the nearest with privilege in the local XY coordinates,
similar to the method of finding the surrounding points of the cavity (see 3.7 and Fig. 15), with the
difference being that the plane was calculated separately for each point pr as the plane constructed
with its origin in pr and its normal vector equal to that of pr. In this way, the corresponding point pon
is found from the original set. The distance between pr and pon is taken as the absolute fitting error
for the point pr. The relative fitting error was defined as the absolute fitting error divided by the
AMD. The resulting valuewas used for histograms and charts for error analysis. All the values were
assigned the xy-coordinates of pr in the local (XcavLYcavLZcavL) coordinate system of the cavity.

The search for corresponding points was made in the local coordinate system in order to compare
points correctly from surfaces of different levels of variability. If the original surface was more
complicated than the applied Bezier patch, a standard nearest-point search would select not the
corresponding, but the closest point (see Fig. 19). In order to avoid this, a search in local coordinates
with privilege for local XY coordinates was introduced. As the XYZ-UVmapping was made using
the bounding rectangle on the best-fit plane, it was necessary to use a similar strategy in the
corresponding point search.

4.2 Experiment environment setting

The algorithm’s efficiency was tested using a PC with an Intel Xeon CPU dual core
(2.93 GHz), 16 GB RAM and an HDD drive.

Fig. 18 Assessment method scheme
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The developed algorithm was implemented using the FRAMES library (a new generation software
based on 3DMADMAC [20]), which provides an estimated averageminimumdistance between points.
For the sake of efficiency, this quantity is calculated on a randomly chosen subgroup of 5000 points.

4.3 Summary

Tests of the algorithm were performed on a parametrically generated sphere, and on scans from
the target system (Fig. 20). Table 2 summarizes errors for each of tested point clouds. Figures 21, 22,
23 and 24 depict results on the sphere. Figures 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38
and 39 show results on artificially created cavities in scans from the target system. Visual examples
of entire method (incl. post-processing) on real cavities from scans were presented on Figs. 17, 40
and 41.

Fig. 19 Nearest point search for comparison algorithm. Blue curve symbolizes reconstructing Bezier patch,
wavy one original data. Dotted line shows distance to globally nearest point, dashed line shows distance to
appropriate point in searched in local coordinates. Tangent line symbolized point’s tangent plane

Fig. 20 Relative fitting-error box plot for the models that were used
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4.4 Algorithm assessment using synthetic data

Tests performed on the generated sphere (Figs. 21, 22, 23, and 24) gave relatively good results for the
following parameter values: εdist = 0.5 x AMD, εbangle = 1.5 rad, ϕforbidDir = 0.7 rad, and dmaxExtend =
20 mm. The cavity was prepared manually. A homogenous sampling density in the tested point cloud
allowed the use of a wide range of values of the angle parameters.

4.5 Algorithm assessment using real data

Tests were then performed on a measurement of a mannequin of a standing woman (Figs. 25, 26, 27,
and 28). A single cavity was cut manually in the abdomen area, and was filled computationally using
the developed method. The relative-error histogram shows that values of the error were mostly
concentrated in the range [0, 0.8]. Beyond this range, the frequency of an error’s occurrence decreases
exponentially.

Formodel no. 2, similar processingwas carried out using individually adapted parameters (Figs. 29,
30, 31, 32, 33, and 34). For a cavity of about 6500 points in abdominal area, the following results were
obtained:

Histograms and relative-error charts depending on XY coordinates were generated for the same
cavity filled with a patch of degree (3,3). A largemaximum value was considered to be that connected
with outliers (9 samples). A further analysis was made for points with error in the range [0, 32]
(amounting to over 6000 samples). The distribution of errors shows an increase for values of x in the
range (525, 550). Outside this range, the error decreases to form a semi-regular distribution. In addition,
Fig. 33 shows that 6118 probes (88.5%) are in the range (0, 3.2). The data form awide range of values
(9.6–32) with a small frequency, therefore a separate histogram for values near to the first peak is
provided (see Fig. 34).

In forearm area on the same model another cavity was prepared (Figs. 35, 36, 37, 38 and
39). Forearm case served as high curvature example, which analyzed together with abdominal
case allows making deductions about algorithm’s robustness to surrounding shape curvature.

4.6 Performance

In addition to the artificially created sphere, the performance of the algorithm was measured
for the original full models, i.e., all cavities that were originally found in the measurement data
were analyzed. The performance was measured for the algorithm without pre- and post-
processing (Table 3).

4.7 Comparison to poisson method

Proposed algorithm was compared to screened Poisson method. With this end in view two kinds of
artificial cavities in model of human body were reconstructed using Screened Poisson method
implemented in MeshLab software [4]. The reason for choosing Poisson as comparison method is
first its high popularity in another comparison studies, what enables the researchers to compare
independent works against the same basis technic. Secondly, Screened Poisson has freely available
implementation in Meshlab, making it available to a larger group of scientists.

First, different values for input parameters were tested to achieve best result possible. The
most promising input parameters setups were used to generate reconstructions for comparison
with proposed method.
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Two examples were used for the comparison: an artificial cavity in the abdominal area (Fig. 29)
and an artificial cavity on the forearm (Fig. 35), both on the human bodymodel. First example serves
as a relatively planar case whereas the second one serves as a higher curvature case.

The Poisson reconstruction was run with a number of parameter values to ensure reliable
results. Details of used parameters can be found in the Appendix.

Numerical accuracy results fromPoisson reconstruction are presented in Tables 4 and 5, Figs. 42,
and 43.

5 Discussion

5.1 Estimation of parameters for automated processing

In the CRASS algorithm, the parameters determine the correctness of the results. For this reason,
some attempt to estimate the correct value ranges has beenmade. In order to automate the algorithm,
we also define values of the required parameters according to cloud characteristics so that additional
knowledge is not required about the model. Cloud characteristics like Average Minimum Distance
and measurement precision are known for every scan, no matter if is a laser scan or structured light
scan, what makes this selection application independent. The presented values may be treated as a
general reference for setting parameters in a real-world scenario. Generally, the estimated values of
the parameters will be called reference values.

5.1.1 Boundary-point segmentation

Two radial parameters, rdist and rang, must be defined for neighborhood analysis in the step
described in Section 3.5. Both radiuses should be large enough to include neighboring points

Table 2 Fitting error statistics for test point clouds. The relative fitting error was defined as the absolute fitting
error divided by the AMD. Fitting error was defined as distance between corresponding points in original cloud
and our reconstruction of manually created cavity in original cloud

Relative Error Min Max Average Median

Sphere 0.000 0.764 0.339 0.307
Model of mannequin 0.000 2.662 0.588 0.523
Model of human body patch (2,2) 0.000 4.527 0.681 0.610
Model of human body patch (3,3) 0.000 51.738 1.423 0.535

Fig. 21 Testing hollow sphere
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in the strip around the processed point. Therefore, this quantity should be (5.1):

rdist≥dþ Δd

2
ð5:1Þ

where:

d average minimum distance (AMD) between points in input point cloud.
Δd measurement precision.

Increasing rdist will decrease the difference between the distances to neighborhood centers
for the regular and boundary points. The bigger the size of neighborhood, the less the absence

Fig. 22 Results of particular processing steps of developed method (upper left- boundary select, upper right-
cavity poly, bottom left – filling with Bezier patch, bottom right- post processing

Fig. 23 Relative fitting-error depending on xy coordinates for sphere and patch of degree (2,2). Width of blob
corresponds to value of error, scaled to range [0,10]
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of a few points affects the position of a neighborhood’s center; what decreases is the precision
of boundary-point selection. The optimal case occurs when only a single strip of nearest points
is analyzed. In order to exclude points from the second strip, which are shifted from the
corresponding points from the first strip by AMD, rdist should not exceed:

rdist≤2 � d−Δd

2
ð5:2Þ

The next parameter is the boundary threshold εdist described in Section 3.5. The difference in
neighborhood center for various points was shown in Fig. 10.

Fig. 24 Relative fitting-error histogram for sphere reconstructed using patch of degree (2,2)

Fig. 25 Input data of woman posture
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After testing various values of this parameter, it was concluded that increasing εdist causes
the selection of thinner strips of points around the cavity for the next threshold. As shown in
Fig. 10, setting too strict a higher bound for this parameter would discard boundary points
similar to point C. On the other hand, too lax a lower bound would cause the boundary to be
wider than necessary (e.g., to include point D).

In order to estimate a proper value, tests were made on the generated sphere. The boundary-
point segmentation step was calculated for values of εdist in the range [0.1 x AMD, 1.0 x
AMD] (see Fig. 44). For values greater than 0.6 x AMD, some points on the boundary fail the
test. For values less than 0.2 x AMD, points in the regular part of the surface were selected. A
reasonable reference for the distance threshold parameter was estimated to be the range (0.2,
0.6) of AMD.

Fig. 26 Effects of developed algorithm for women posture case

Fig. 27 Relative fitting-error for model of mannequin and patch of degree (2,2). Axes denote local xy
coordinates. Size of blobs was scaled to range [0,10]
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The second threshold parameter is the wedge angle (εbangle), which determines the threshold
based on angular criteria, as described in Section 3.5 This condition is meant to select points on
the edge of the strip, excluding points that are further away. Too high a value of the parameter
results in skipping points on sharp edges. On the other hand, too low a value leaves wide strips
on the edge. The lower bound can be defined by calculating the average angle between a regular
point and its neighborhood points. This was done in Section 3.1, where the angle for a regular
hexagonal formation of points on the surface was estimated to be in the range (0.33π, 0.6π).

In order to give a more reliable approximation, a test similar to the one used to estimate εdist
was carried out. For the sample object, the wedge angle was calculated as described in 3.5.
Points with a wedge angle greater than the given value were selected. Figures for several
values of εbangle were generated to visualize the result. Calculations were made for values in the
range (0.2π, 1.1 π) (see Fig. 45). The reference range for εbangle was estimated as (0.4 π, 0.9 π).
For smaller values, regular points pass the test, which is undesirable. For values larger than the
upper bound of this range, many points on sharp edges are skipped, which would cause
problems in cavity extraction. The optimal value of this parameter was estimated to be about

Fig. 28 Relative fitting-error histogram for model of mannequin and patch of degree (2,2)

Fig. 29 Input data for tests. Rectangle shows area, where cavity was cut out manually
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0.5π. This value allows the rejection of points from the regular part of the surface, but the
acceptance of points on the boundary, including those located in the corners.

In the case of significant variability in sampling density, the distance parameter (εdist)
should be increased. The angular parameter (εbangle) also partly depends on sampling density
because the AMD between points affects the number of nearest surrounding points selected
after a spherical-neighborhood search, which is parameterized with the AMD.

5.1.2 Cavity extraction parameters

The cavity-extraction step requires setting values of two parameters, dmaxExtnd and ϕforbidDir. The
forbidden direction angle (ϕforbidDir) is partly determined by the maximum wedge angle for a cavity
in the cloud (εbangle). The wedge angle for a boundary point, when summed with the angle spanned
by two subsequent points with an apex at this boundary point, forms a round angle. Therefore, the
upper bound of ϕforbidDir is approximately 2π-αmax. Secondly, the forbidden direction angle should
not block polyline creation between neighboring points in the case of ideal point distribution. This

Fig. 30 Relative fitting-error for abdominal in human model and patch of degree (2,2). Axes denote xy
coordinates. Area of blob corresponds to value of error, clamped to [0,10]

Fig. 31 Relative fitting-error histogram for abdominal in human model and patch of degree (2,2)
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Fig. 32 Relative fitting-error for abdominal in human model and patch of degree (3,3). Axes denote xy
coordinates. Area of blob corresponds to value of error, scaled to [0,20]

Fig. 33 Relative fitting-error histogram for abdominal in human model and patch of degree (3,3)

Fig. 34 Relative fitting-error histogram for abdominal in human model and patch of degree (3,3). Bin values
were limited to the range [0,8] (remaining bins were skipped)
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implies that if the sampling density is unchanged on the bounds of the cavity, ϕforbidDir should be
small enough to allow a connection between neighboring points. Based on the discussion in
Section 3.1, we assume that the value of this angle would be π/6.

Values of thewedge angle obtained frommeasurement for points in a sample cloud are shown in
Fig. 46. The value of εbangle was mapped onto the color channel. The color of the scanned surface in
the regular part is relatively constant, with some high frequency noise. This feature corresponds to
the thermal noise mentioned previously. However, value pitch can be observed on the edges of
holes. The maximum value of the wedge for Fig. 46 C was approximately 4.8 rad (about 1.53 π
radians), which implies that the forbidden-direction angle is less than 0.47 π radians. Despite the
noise in the regular parts of the surface, the difference on the edges allows extraction of boundary

Fig. 35 Input cavity for forearm case of model of human body
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points. Based on the presented results, the reference value for ϕforbidDir was estimated to be in the
range (0, 0.47π)∩(0, π/6) = (0, 0.47π) radians.

Setting the value of the second parameter dmaxExtnd allows a reduction in the influence ofϕforbidDir

on the correctness of cavity extraction. The lower bound for this parameter depends firstly on the
AMD between points, secondly on the sampling density on the edges of the cavity, and thirdly on
the parameters controlling boundary point segmentation (see Section 3.5). The two latter factors
depend on the former one, so approximating them is away to obtain the reference range for dmaxExtnd.
Consider the ideal situation presented in Section 3.1. In the case of maximum position flow caused
by measurement errors (Fig. 47), the distance between the considered point and the furthest point in
the neighborhood equates to (5.3):

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

ffiffiffi
3

p

2
þΔd

� �2

þ d
2

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ d

ffiffiffi
3

p
Δd þΔd2

q
ð5:3Þ

where:

d average minimum distance (AMD) between points.
Δd measurement precision.

Fig. 36 Relative fitting-error for forearm in human model and patch of degree (2,2). Axes denote local xy
coordinates of the cavity

Table 3 Performance summary for sphere, model of mannequin, model of human body

Model Number of points Number of cavities Total processing
time [sec]

Processing
time [sec/cavity]

Sphere 500,000 1 9 9
Model of mannequin 1,050,000 253 410 1.62
Model of human body 850,000 271 320 1.18
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In the case of our measurement system with Δd ¼ d
2, this implies (5.4):

x ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

4
þ

ffiffiffi
3

p

2

s
≈1:45 d ð5:4Þ

Now consider the processing of a scanwith uniform sampling density, even on the boundaries of the
cavities. As a result of boundary-point segmentation, a single extraordinarily shifted boundary point
may not qualify as a boundary point. This way, the distance between subsequent neighboring
boundary pointswould be up to twice as large as normal. It should be assumed that in order to ensure
proper polyline extraction, dmaxExtnd should be larger than the distance between points that are
neighbors of the skipped point. As the maximum distance between points in a uniformly sampled
scan is equal to 1.45 of AMD, dmaxExtnd should be larger than 1.45 × 2 = 2.95 AMD.

Fig. 37 Relative fitting-error histogram for forearm in human model and patch of degree (2,2)

Fig. 38 Relative fitting-error for forearm in human model and patch of degree (3,3). Axes denote local xy
coordinates of the cavity
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5.1.3 Parameter estimation summary

Table 6 shows the parameters that were used for processingmodels during algorithm assessment. The
presented values may be treated as reference values for setting the parameters for a custom case.

Parameters used for generating patches strongly depend on the characteristics of the scanned
object. Because of this, the reference range was not estimated and only the sample values used for
the model of a human body are given.

In order to even more facilitate reproducibility of results by other researchers, we listed
parameters values used to evaluate our method in Table 6. We used reference ranges as staring
point and fine-tuned the hyperparameters to achieve the best result.

Fig. 39 Relative error histogram for forearm in human model and patch of degree (3,3)

Fig. 40 Result of presented method (surface degree 5 × 5 with post-processing) on scanned data in region of
knee, a- front view, b- side view
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5.2 Fitting quality

The quality of the generated patches was assessed using the algorithm presented in Section 4.

5.2.1 Sphere

The results presented in Fig. 24 showed that the average fitting error for a patch of degree (2,2) is
approximately equal to 0.34 AMD. The spatial distribution of the error (see Fig. 23) shows that the
highest relative error was found in the middle part of the patch. Further away from the center, the
error decreases and fluctuates around smaller values. Some regularity of the error distributionmay be
caused by the Bezier curves themselves, which do not reproduce conic sections ideally, but instead
approximate them [10]. A sphere cannot be perfectly reconstructed with Bezier patches.

5.2.2 Model of mannequin

The fitting error presented in Figs. 27 and 28 is non-uniform due to a disturbance in the area at about
(x ϵ [670, 690], y ϵ [500, 520]). This area corresponds to the navel, which introduces local
complication of shape. However, the error histogram shows that the value of the error stays mostly
in the range [0, 0.932], with a peak in the range [0, 0.399]. For 20% of the samples, the error
exceeded the value of AMD, which probably corresponds to the area of the navel. A median value

Fig. 41 Result of presented method (surface of degree 3 × 3 with post-processing) on scanned data in region of
axilla, a- side view, b- top view from inside the surface

Table 4 Comparison of reconstruction accuracy between our method and Poisson method for abdominal case of
model of human body. Poisson #n denotes different parameter setup for the Screened Poisson method. Details of
parameters used are listed in the Appendix

Relative Error
(Model of human body, abdominal)

Min Max Average Median

CRASS patch (2,2) 0.000 4.527 0.681 0.610
CRASS patch (3,3) 0.000 51.738 1.423 0.535
Poisson #00 0.047 2.815 0.432 0.476
Poisson #01 0.036 2.825 0.420 0.472
Poisson #02 0.048 2.851 0.428 0.479
Poisson #03 0.036 1.818 0.417 0.458
Poisson #04 0.052 1.901 0.459 0.493
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of 0.58AMD, compared to ameasurement precision equal to 0.5AMD, indicates that almost half of
all the reconstructed points were reproduced with the desired quality.

5.2.3 Model of human body

The chosen part of the abdominal area forms a shape that is approximately parabolic, but with
some higher-frequency features due to visible abdominal muscles. The error distribution for
the model of a human body is semi-uniform, with higher values for x in the ranges [500, 520],
[530, 540], [550, 570]. The middle strip corresponds to the shape of the abdominal muscles.
The average relative error of 0.68 AMD is larger than desired. In this case, the visible
abdominal muscles were not properly reproduced by our method, which was caused by the
degree of the patch used. As shown in Fig. 31, most of the error was in the range [0, 1.352].
Bins with larger values of error correspond to the strip at x ϵ (530,540). Apart from errors in
the middle part of the patch, the obtained result could be assessed as being acceptable, as the
average error for this dataset is less than 0.5 AMD.

Changing the degree of the patch to (3,3) did not eliminate the problem that occurred in the
middle area of the sample. The reason for this could be the method of choosing points for
approximation. Firstly, boundary points are chosen, and then points from the extended
bounding rectangle are added. Boundary points reproduce the change of shape in the middle
strip, but boundary rectangle points do not, as the rectangle’s edges are sampled with small

Table 5 Comparison of reconstruction accuracy between our method and Poisson method for forearm case of
model of human body. Poisson #n denotes different parameter setup for the Screened Poisson method. Details of
parameters used are listed in the Appendix

Relative Error (Model of human body, forearm) Min Max Average Median

CRASS patch 2 × 2 0.000 2.077 0.849 0.718
CRASS patch 3 × 3 0.000 1.959 0.821 0.737
Poisson #00 0.090 8.788 0.950 0.589
Poisson #01 0.055 8.789 0.752 0.494
Poisson #02 0.054 7.832 0.742 0.492
Poisson #03 0.054 7.442 0.681 0.480
Poisson #04 0.117 14.610 1.200 0.653

Fig. 42 Relative error for Poisson on abdominal case (reconstruction depth = 10) depending on xy coordinates.
Area of blob corresponding to error scaled to [0, 20]
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Fig. 43 Relative error for Poisson on forearm case depending on xy coordinates. Area of blobs corresponding to
error was scaled to [0,20]

Fig. 44 Results of boundary-point segmentation depending on boundary threshold εdist. Corresponding values of
parameter (relative to average minimum distance between points) are shown below each view
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density (see Fig. 15). As the weighting factors for the rectangle and boundary points are equal
1.0 and 1.5 respectively, the influence proportions between those points are 0.4 against 0.6 for
boundary points. This makes the patch reproduce the shape. However, due to low sampling on
the edges of the rectangle, the method is less sensitive to high-frequency shape distortions.
Nevertheless, the general shape was reconstructed correctly.

5.2.4 Comparison to poisson method

In the example of abdominal area cavity, fitting a (2,2) patch with the CRASS method resulted in
average reconstruction error varying from 150 to 165% of average error of best Poisson method
configuration. In case of a (3,3) patch the reconstruction error ratio raised to 310–339%. In the
forearm case the results differed less, some of Poisson reconstruction setups performed better than
the proposed algorithm but someworse, the average error of a (2,2) CRASS patch varied from 71%
to 115%of average error of Poissonmethod and for a (3,3) CRASS patch the error varied from 68%
to 111% of the Poisson algorithm error. However, Poisson reconstruction featured non-uniform

Fig. 45 Boundary-point
thresholding depending on angle
test. Values under particular cases
imply εbangle value in radians
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Fig. 46 Maximum spanned angle for points in sample cloud. The color map black-red-white was used, where
black corresponds to minimum value, white to maximal one. Values are scaled from minimum to maximum
value into lightness channel. Contrast and lightness were decreased by 35% and 60%

Fig. 47 Distance between points in the case of maximum sampling density flow. Green point is the central point,
grey points are neighbor points in the ideal case, blue points are points in the worst case. “d” is the distance
between points in the ideal case, Δd is the measurement precision
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sampling density, what can be observed in Fig. 42. Sampling density on the strict boundary areawas
similar to the source cloud, but the further away the more it decreased, regardless of different input
parameter values. This causes problems in numerical comparison of both algorithms. One could
apply decimation to ensure uniform sampling, but this could influence reconstruction error. Number
of generated points differed significantly, in the forearm case about 400 samples for the first Poisson
setup against over 2500 samples for the CRASS method. This property influences the visual aspect
of reconstruction, where possibly seamless integration of the patch with the original model is
required. In such an application, higher numerical error can be accepted when paired with proper
sampling density.

5.3 Summary

The CRASS algorithm was implemented and tested on computer-generated data and on
models provided by the target measurement system. Usage of pre- and post-processing
included in the description of the algorithm is optional, depending on the input-data quality
and the user’s goals (visual effect or further analysis). Pre-processing is useful to ensure the
meeting of the input data requirements, but it modifies the original data. Post-processing was
introduced to improve the visual effect by unifying sampling density and ensuring a smooth
blending between the generated patch and the original surface. Therefore, it causes some
modifications to the original data close to the cavities.

In the case of running the method without pre- and post-processing, the average fitting error
for computer-generated data was approximately 0.35 AMD. In the case of real data, the error
was higher, at approximately 0.6 AMD. Factors causing this higher error value were discussed.
Pre- and post-processing did not introduce significant reconstruction error, however the final
visual result was much better. The final fitting quality was considered to be satisfactory.

Obtained performance was also satisfactory; it did not exceed 7 min for scan sizes of 1
million points on a regular PC-class computer.

5.3.1 Limitations

The developed algorithm produces good results only on point clouds with relatively smooth
cavity bounds and homogenous point density. A possible solution was introduced in the pre-
processing step, where the sampling density is made more uniform and the surface is
smoothed. Another problem emerges when the cavity is located in an area with shape

Table 6 Reference values for parameters and values used in model of human body

Module Parameter Reference range Values used for the model of human body

Boundary points extraction εdist (0.2, 0.6) x AMD 0.5 x AMD
εbangle (0.4 π, 0.9 π) radians 0.48 π
rdist (1.25, 1.75) x AMD 1.5 x AMD
rang (1.25, 1.75) x AMD 1.5 x AMD

Cavity bound extraction dmaxExtnd >2.95 x AMD 10 x AMD
ϕforbidDir (0, 0.17π) 0.048 π

Patch fitting μb – 1.5
μr – 1.0
N – 2 or 3
M – 2 or 3
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variability of degree higher than 3 but with a low amplitude. Such a small disturbance cannot
be reconstructed with Bezier patches of small degree. Increasing the dimension of the patch
only causes waviness of the fitted patch as it tries to approximate the fitting points (boundary
and surrounding points). The cause of this problem is the property of the Bezier surface itself.

The proposed method cannot perfectly reproduce shapes based on conical curves (e.g.,
circles), due to the nature of Bezier patches. This problem might be solved by using rational
Bezier patches or splines [10].

6 Conclusions and future work

A method for filling cavities in point clouds has been developed. The CRASS algorithm was
tested on both computer-generated data and on real scanned data. The real data represented a
human body, and consisted of 8-directional measurements obtained using SLI scanners. The
results were satisfactory for the presented models; the relative fitting error did not exceed 0.5
AMD except in one unusual case (as discussed in Section 5.2.3).

One of the major issues to solve in the future is to reduce the fitting error for the
reconstruction of surfaces with shapes featuring a variability of degree higher than 3 but with
a low amplitude. This case partly appeared in the model of a human body (i.e., the abdominal
muscle shape). One way to solve this would be to divide the cavity into two separate parts that
may be filled with B-spline surfaces, keeping continuity on the single shared edge.

Another area for further development may be altering the approximation principle so that it
respects the character of the local surface by using normal vectors from the original surface to
find the Bezier patch. This task requires solving nonlinear equations, and is considered an
interesting direction for future work.

Some improvement could be also achieved by alternation of UV mapping to make the UV
distribution in nearby points on highly curved surface more distinct what should let the solver
adapt the patch more accurately in such an area.

Using another type of approximating surface to increase the reconstruction quality could
also be considered. Rational Bezier patches or B-splines could enable finer filling of cavities
located on spherical surfaces. In the case of the human body, many parts of the surface
represent deformed conical sections, so usage of different surfaces could provide better results.

Last but not least, we plan to test our algorithm on a bigger amount of scans from publicly
available scanning datasets.
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Appendix

Following script was used to generate Poisson reconstruction results in MeshLab.
<!DOCTYPE FilterScript>

<FilterScript>

<xmlfilter name="Screened Poisson Surface Reconstruction">

<xmlparam value="0" name="cgDepth"/>

<xmlparam value="false" name="confidence"/>

<xmlparam value="10" name="depth"/>

<xmlparam value="5" name="fullDepth"/>

<xmlparam value="8" name="iters"/>

<xmlparam value="4" name="pointWeight"/>

<xmlparam value="false" name="preClean"/>

<xmlparam value="1.5" name="samplesPerNode"/>

<xmlparam value="1.1" name="scale"/>

<xmlparam value="false" name="visibleLayer"/>

</xmlfilter>

<xmlfilter name="Screened Poisson Surface Reconstruction">

<xmlparam value="0" name="cgDepth"/>

<xmlparam value="false" name="confidence"/>

<xmlparam value="10" name="depth"/>

<xmlparam value="5" name="fullDepth"/>

<xmlparam value="8" name="iters"/>

<xmlparam value="3" name="pointWeight"/>

<xmlparam value="false" name="preClean"/>

<xmlparam value="1.5" name="samplesPerNode"/>

<xmlparam value="1.1" name="scale"/>

<xmlparam value="false" name="visibleLayer"/>

</xmlfilter>

<xmlfilter name="Screened Poisson Surface Reconstruction">

<xmlparam value="0" name="cgDepth"/>

<xmlparam value="false" name="confidence"/>

<xmlparam value="10" name="depth"/>

<xmlparam value="5" name="fullDepth"/>

<xmlparam value="8" name="iters"/>

<xmlparam value="2" name="pointWeight"/>

<xmlparam value="false" name="preClean"/>

<xmlparam value="1.5" name="samplesPerNode"/>

<xmlparam value="1.1" name="scale"/>

<xmlparam value="false" name="visibleLayer"/>

</xmlfilter>

<xmlfilter name="Screened Poisson Surface Reconstruction">

<xmlparam value="0" name="cgDepth"/>

<xmlparam value="false" name="confidence"/>

<xmlparam value="10" name="depth"/>

<xmlparam value="5" name="fullDepth"/>

<xmlparam value="8" name="iters"/>

<xmlparam value="1" name="pointWeight"/>

<xmlparam value="false" name="preClean"/>

<xmlparam value="1.5" name="samplesPerNode"/>

<xmlparam value="1.1" name="scale"/>

<xmlparam value="false" name="visibleLayer"/>

</xmlfilter>

<xmlfilter name="Screened Poisson Surface Reconstruction">

<xmlparam value="0" name="cgDepth"/>

<xmlparam value="false" name="confidence"/>

<xmlparam value="10" name="depth"/>

<xmlparam value="5" name="fullDepth"/>

<xmlparam value="8" name="iters"/>

<xmlparam value="0" name="pointWeight"/>

<xmlparam value="false" name="preClean"/>

<xmlparam value="1.5" name="samplesPerNode"/>

<xmlparam value="1.1" name="scale"/>

<xmlparam value="false" name="visibleLayer"/>

</xmlfilter>

</FilterScript>
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