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Abstract
Visual arts are of inestimable importance for the cultural, historic and economic growth
of our society. One of the building blocks of most analysis in visual arts is to find sim-
ilarity relationships among paintings of different artists and painting schools. To help art
historians better understand visual arts, this paper presents a framework for visual link
retrieval and knowledge discovery in digital painting datasets. Visual link retrieval is accom-
plished by using a deep convolutional neural network to perform feature extraction and
a fully unsupervised nearest neighbor mechanism to retrieve links among digitized paint-
ings. Historical knowledge discovery is achieved by performing a graph analysis that makes
it possible to study influences among artists. An experimental evaluation on a database
collecting paintings by very popular artists shows the effectiveness of the method. The
unsupervised strategy makes the method interesting especially in cases where metadata are
scarce, unavailable or difficult to collect.

Keywords Cultural heritage · Visual arts · Visual link retrieval · Knowledge discovery ·
Deep learning · Computer vision

1 Introduction

Visual arts play a strategic role for the cultural, historic and economic growth of our society
[22]. They stimulate interest and can change the way we look at the world around us. They
tell stories that words cannot capture. Visual arts are also vital for children’s learning, as
they can help students form their creativity while developing their personality [39].

In the last years, due to technological improvements and the drastic decline in costs,
a large scale digitization effort has been made, leading to a growing availability of large
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Fig. 1 “The Disquieting Muses”
by Giorgio De Chirico (1917).
This metaphysical painting is
clearly inspired by classical
Greek culture and, albeit in a
provocative way, displays
influences from African
traditions that inspired several
painters, including Pablo Picasso,
in the same period

digitized fine art collections [42], for example WikiArt1 and the MET collection.2 This
availability, coupled with the recent advances in Computer Vision and Pattern Recognition,
has opened new opportunities for computer science researchers to assist the art community
with automatic tools that analyze and help further understand visual arts. A deeper under-
standing of visual arts has the potential to make them more accessible to a wider population,
both in terms of fruition and creation, and to enrich human-computer interaction, which is
often inspired by artistic paradigms.

Understanding high-level semantic attributes of a painting, such as content and meaning,
inherently falls within the domain of human perception. In fact, it originates from the abil-
ity to recognize meaningful low-level patterns, such as the composition of shapes, colour
and texture features, which are visually perceived by the human eye. Computer Vision tech-
niques, in particular Convolutional Neural Networks (CNNs) [23], are very effective to
tackle the problem of learning useful high-level representations from the low-level colour
and texture features. These representations can assist in various visual art related tasks,
ranging from object detection in paintings [12] to artistic style categorization [40].

One of the building blocks of most analysis in visual arts is to find similarity relation-
ships, i.e. link retrieval, among paintings of different artists and painting schools. These
relationships can help art historians discover and better understand influences and changes
from an artistic movement to another. Art experts, in fact, rarely analyze artworks as iso-
lated creations, but typically study paintings within broad contexts, involving influences and
connections among different schools (see Fig. 1). Traditionally, this kind of analysis is done
manually by inspecting large collections of human annotated photos. However, manually

1https://www.wikiart.org
2https://www.metmuseum.org/art/collection
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searching over thousands of pictures, spanned across different epochs and painting schools,
is a very time consuming and expensive process.

Along this direction, the contribution of this paper is two-fold:

1. A deep learning-based framework is proposed for visual link retrieval within large
digitized collections of paintings, based only on simple image queries. Although the
proposed approach is based on previous well-known methods, as far as we know it rep-
resents the first application of an unsupervised deep learning-oriented approach to this
kind of problem;

2. The proposed method not only provides those images that are more similarly linked
to the input query, but also allows the user to study historical patterns by means of
graph analysis. In fact, by applying graph measures on the network built upon the links
obtained, the proposed method performs a form of historical knowledge discovery.

The rest of this paper is structured as follows. Section 2 discusses related work. Section 3
presents the proposed method. Section 4 reports the results of an experimental evaluation
on a dataset of very popular painters. Section 5 concludes the paper and sketches future
developments of the present research.

2 Related work

Classification and retrieval of artistic images are very common tasks in the field of automatic
art analysis. In the past years, such tasks have typically been addressed using hand-crafted
features [8, 21, 32]. However, despite the promising results of feature engineering tech-
niques, early attempts were affected by the difficulty of capturing explicit knowledge about
the attributes to be associated with a particular artist or artwork. The difficulty arises because
this knowledge is associated with implicit and subjective expertise human experts may find
hard to verbalize.

Conversely, several successful applications in a number of Computer Vision tasks (e.g.,
[1, 9, 18]) have shown that representation learning is an effective alternative to feature engi-
neering, especially if combined with deep neural network architectures. One of the main
reasons of the recent success of deep CNNs in solving tasks too difficult for classic algo-
rithms is the availability of large human annotated datasets, such as ImageNet [28]. A model
built on a large dataset often provides sufficiently general visual features that can be prof-
itably used, through transfer learning, for more specific tasks. In particular, deep neural
networks have been successfully applied to solve various tasks related to visual arts.

Several works have focused on object recognition and detection in artworks [6, 7, 13,
16, 36, 41]. A first attempt to use deep neural networks for object recognition in visual arts
was presented in [12]. In the work, Crowley and Zisserman developed a CNN-based system
that can learn object classifiers from Google images and use them to find previously unseen
objects in a large database of paintings.

Another task frequently addressed by computer science researchers in the domain of
visual arts is learning to recognize artists by their style. One of the first works in this context
is the research presented in [40]: van Noord et al. proposed PigeoNET, a CNN trained on
a large collection of paintings to perform the task of automatic artist association based on
visual characteristics. These characteristics can also be used to reveal the artist of a precise
area of an artwork, in the case of multiple authorship of the same work. Encouraging results
from the application of deep CNNs to artistic style classification have been recently reported
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in [11, 24, 30]. Other works, such as [35], have also experimented with CNN models trained
with additional data, particularly time period, reporting better results.

The notable contributions previously described confirm the applicability of a deep
learning-based strategy to another task related to the visual art domain, i.e. the problem of
visual link retrieval in painting datasets. Indeed, this task has not been extensively inves-
tigated before. Recently, deep learning-based approaches have been proposed to retrieve
common visual patterns shared among paintings. In [31], Seguin et al. compared a classic
bag-of-words method and a pre-trained CNN in predicting pairs of paintings that an expert
considered to be visually related to each other. The authors have shown that the CNN-based
method is able to surpass the more classic one. The authors used a supervised approach
in which the labels to be predicted were provided manually by human experts. This man-
ual annotation of images is a slow, error-prone and highly subjective process. Conversely, a
fully unsupervised learning approach would avoid this cumbersome process. In [33], Shen
et al. used a deep neural network model to identify near-duplicate patterns in a dataset of art-
works attributed to Jan Brueghel. The key technical insight of the method is to adapt a deep
standard feature to this task, perfecting it on the specific art collection using self-supervised
learning. Spatial consistency between adjacent feature matches is used as a supervisory fine-
tuning signal. The fitted function leads to a more accurate style invariant match and can be
used with a standard discovery approach, based on geometric verification, to identify dupli-
cate patterns in the dataset. The method is self-supervised, which means that the training
labels are derived from the input data. Conversely, in our method we rely on a completely
unsupervised approach, where there is no intrinsic class labeling and the method should find
the pattern on its own.

An unsupervised approach to finding similarities among paintings was proposed by Saleh
et al. [29], based on traditional hand-crafted features. They trained discriminative and gen-
erative models for the supervised task of classifying painting style to ascertain what kind
of features would be most useful in the artistic domain. Then, once they found the most
appropriate features, i.e. those that achieve the highest accuracy, they used these features to
judge the similarity between paintings using distance measures. This work suggested that
high-level semantic features, such as those that can be extracted with a deep neural network,
may pave the way for capturing the subjective perception with which a human being judges
complex visual concepts.

In line with these ideas, this paper proposes a method for visual link retrieval that works
in a completely unsupervised way, without the need for human annotations to painting
images. The method relies solely on visual attributes that are automatically learned by a deep
neural network from the painting collection itself. In this way, a computer-automated sug-
gestion of influences between artists is obtained. The ability to rely only on visual patterns,
without any human intervention, makes the proposed approach particularly desirable espe-
cially when it is difficult to collect textual metadata, which may be scarce or unavailable. A
preliminary sketch of this approach has been described in [10], where its effectiveness was
first investigated. The present work significantly extends that previous work, reporting the
results of an empirical evaluation carried out with art experts. Moreover, this work intro-
duces an additional graph-based analysis of the painters’ network obtained from the visual
links retrieved. The analysis of the network structure provides an interesting insight into the
influences among artists that can be considered the result of a novel knowledge discovery
process.

It is worth noting that, as done in this paper, some latest image retrieval methods [20,
25, 26], do not rely on human annotations. The main assumption of the present work is that
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identifying similarities in digital artworks and digital images using CNNs are similar tasks.
In other words, both digital artworks and digital images will be treated in the same way by a
CNN, when this is used for feature extraction. In fact, similarities or dissimilarities among
artworks are assumed to be transferred to the corresponding images when they are digitized.

3 Proposedmethod

The proposed method assumes the availability of a large collection of digitized paintings
of different artists and genres, such as those collected today in several online museum and
art gallery databases. The goal is to transform the raw pixel images into a new, numerical
feature space in which to look for similarities among paintings. These similarities can be
used to provide semantic links among paintings and to build a network of influences among
painters.

The algorithm involves the following steps:

1. Given a digital painting image dataset, a pre-processing step is performed to resize and
normalize the images;

2. A pre-trained CNN is used to automatically extract higher-level features from the pre-
processed digital painting images;

3. The resulting high dimensional representation is embedded into a more compact feature
space by applying Principal Component Analysis (PCA);

4. Similarities among paintings, i.e. visual links, are obtained through a distance compu-
tation in a completely unsupervised Nearest Neighbor (NN) fashion;

5. Given a query image, its k nearest neighbors are retrieved by the system in the
embedded feature space;

6. Once the nearest neighbors for all painters have been collected, an undirected graph is
constructed to express the connections between artists;

7. Finally, some graph measures are applied to this graph to describe its topological
properties (which can be reformulated as artistic influences).

These steps are described in more detail in the next subsections. A list of acronyms and
symbols used to describe the method is provided in Table 1.

3.1 Visual link retrieval

A general scheme of the proposed framework for visual link retrieval is shown in Fig. 2. In
order to obtain meaningful representations of visual attributes of paintings, transfer learning
is used based on a state-of-the-art deep CNN, i.e. VGG16 [34], pre-trained on the very large
ImageNet dataset [28]. The input to the system is represented by 224 × 224 three-channel
painting images, normalized in the range [0, 1]: this is the typical input expected by VGG16.
The main assumption is that if the original dataset is large and general enough, then the
weights learned by the network on this set of data can be used for new, even completely
different image datasets. Note that, although ImageNet does not share the same type of
(painting) images used in the present work domain, transfer learning has been preferred over
training the network from scratch, as the proposed method assumes no a priori knowledge
of the specific domain. Conversely, as stated earlier, the method assumes that digital images
and digital arts will be treated in the same way by the CNN.

VGG16 is a well-known CNN architecture that adopts 3 × 3 convolution and 2 × 2 max
pooling throughout the network. It follows a classic scheme in which pairs of convolutional
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Table 1 List of acronyms and symbols

Abbreviation Description

B(v) Betweenness centrality of node v

C(v) Closeness centrality of node v

CNN Convolutional Neural Network

deg(V ) Degree of node v

G(V,E) Graph G of V nodes connected by E edges

k Number of nearest neighbors

�2 Standard distance between points in space

NN Nearest Neighbors algorithm

PCA Principal Component Analysis

p,q Painting images

s, t, u, v Graph nodes (i.e., artists)

VGG16 Well-known pre-trained CNN

layers are followed by a max pooling layer, and so on, for a total of 16 weight layers. All
hidden layers are equipped with the ReLU activation function. VGG16 was preferred to
other more sophisticated deep networks as it presents a classic scheme, common to more
modern CNNs, thus allowing to demonstrate the applicability of the method using a simple
and general scheme.

In the proposed method, the deep network is used to extract meaningful features from the
pixel values of low-level raw images. Transfer learning is achieved by using the common
practice of ignoring the fully-connected layers stacked on top of the convolutional base
and extracting the output features from the last max pooling layer. The network is able to
construct a hierarchy of visual features, starting with simple edges and shapes in the earlier
layers up to higher-level concepts such as objects and complex shapes in the following
layers. This approach is therefore suitable for obtaining high-level, semantic representations
for the problem at hand.

Fig. 2 Workflow of the proposed retrieval method. The pre-processed images are fed into VGG16, which is
used to perform feature extraction. The dimensionality of the resulting feature space is reduced by applying
PCA. Visual links are retrieved in the reduced feature space using the unsupervised Nearest Neighbor
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Once the features extracted by the deep network are flattened, they have a very high
dimensionality (i.e., 25,088) which prevents the use of distance measures. For this reason,
this high dimensional feature space is first transformed into a more compact low dimen-
sional representation by adopting PCA [19]. Several works (e.g., [2, 27]) make direct use
of the last feature map of a CNN; on the contrary, PCA adds an extra component to the
model, thus requiring extra time. However, it allows for a more accurate and efficient search
of visual links with the following Nearest Neighbor searching mechanism. One one hand,
NN is well-known for suffering from the “course of dimensionality” which makes distance
measures meaningless as the dimension of data increases. In fact, when dimensionality
increases, the volume of the space increases so much that the available data become sparser
and sparses, ending with most of the points lying at the boundary of the (hyper) cube. On
the other hand, the neighbor search of the algorithm grows linearly with the dimension (and
the number) of data points. When data are fixed, PCA only needs to be performed once;
instead, the NN prediction must be run for each query. In light of this, the computational
cost of PCA becomes marginal and unimportant. More precisely, the training time can be
technically ignored, as it is only conducted once offline. Regarding the prediction time, it
depends on the implementation of NN. The more naı̈ve implementation of the neighbor
search involves calculating the brute force of the distances between all pairs of points in the
dataset. For N samples in D dimensions, this approach scales as O(DN2). Assuming that
the number of neighbors that the algorithm has to retrieve, k, is fixed, the time complexity is
O(NDk). To address the computational inefficiencies of the brute force approach, a variety
of tree-based data structures have been proposed and can be used.

To achieve a good compromise between representation power and dimensionality, the
original feature space is projected onto a reduced space of 50 features (referred to as
principal components). The total variance within the new feature space is not uniformly
distributed among features, but redistributed in an unequal way: the first principal com-
ponents explain most of the variance of the new feature set. In this way, it is possible to
drastically reduce the dimensions of the original feature space, without sacrificing too much
information.

The final search for visual links among paintings is performed in the reduced feature
space in a fully unsupervised fashion using a Nearest Neighbor mechanism. In other words,
for each query point q the methods returns the k data points closest to q. “Closeness” implies
a metric which, as in PCA, corresponds to the usual �2 distance [17]:

�2(q,p) =
√
√
√
√

D
∑

i=1

(qi − pi)
2,

where q is the query point, p is any other data point, and D is their dimensionality. In this
way, for each query, the k most similar paintings are provided by the system. It is worth
noting that, when using a search query from a particular artist, other paintings from the same
artist are excluded from the search, otherwise obvious, self links are likely to be retrieved.
This is different from retrieving near-duplicate images (see, for example, [38] and [37]),
since if the same artist did a different painting, this will not be retrieved as similar or near-
similar work. The concept of near-duplicate image retrieval does not apply to the same artist
in this paper, as the secondary goal of the proposed method is to find similarities among
different artists, thus retrieving influences among them.

As stated earlier, relying on a completely unsupervised approach makes the proposed
method simple and practical, as it excludes the need to acquire visual link labels, which can
be very difficult to collect.
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3.2 Knowledge discovery

Once the nearest neighbors of all painters’ artworks are collected, for each painter v the
method identifies the most recurring linked painter u as the one whose works were found
most visually related to the works of v. Using this information, it is possible to build an undi-
rected graph G(V,E), whose nodes are the artists taken into account, while edges express
the similarity between their paintings. More precisely, for each v ∈ V , being V the set of
painters, the artworks made by V , q1,q2, . . ., are taken into consideration. Then, for each
artwork qi , the top one visually linked painting pi , belonging to another artist u ∈ V , u �= v,
is considered. Iterating over all qi allows the system to provide a ranked list of artists, the
works of which have been retrieved as being the most visually linked with the works of
v. This list is ranked since these artists may be present at different frequencies. Finally, an
edge e ∈ E is assumed to exist between v and u, provided that u is the most recurring artist
in the previously mentioned list of artists linked to v. The edge is undirected because if v is
similar to u, then u is similar to v (so, no time relationship is explicitly taken into account).
Note that the graph G does not reduce to a collection of disconnected node pairs. In fact, the
existence of an edge between v and u does not prevent u from being more visually linked
to another artist z, in the geometric painting feature space. The edge between artists is thus
considered an expression of similarity between their paintings. These similarities can be
studied to investigate the “influences” artists exerted over each other. In this way, a form of
historical knowledge discovery is accomplished, showing (possibly new) influences among
artists.

Graph theory, in fact, provides a powerful framework for investigating the components
of such a network and their interactions [14]. Its use spans across a number of disciplines
including physics, biology, electrical engineering, and so on. Some traditional metrics suit-
able for describing topological properties of a network are node degree, and closeness and
betweenness centrality.

The degree of a node v, denoted as deg(v), is simply the number of edges that are inci-
dent to v. A node with high degree is a highly connected node. In the specific domain, the
degree of each (painter) node v represents the number of painters who are directly linked to
v. The higher deg(v), the more connected to other painters v is. In other words, degree can
represent direct influences.

The closeness centrality of a node v in a graph with n nodes is defined as [15]:

C(v) = n − 1
∑n−1

u=1 d(u, v)
,

where d(u, v) is the shortest path distance between u and v. Hence centrality is the recip-
rocal of the sum of the shortest path distances from v to all other n − 1 nodes. Since the
sum of distances depends on the number of nodes in the graph, this quantity is normalized
by the sum of minimum possible distances n − 1. Closeness centrality indicates whether a
node is within a short average distance from every other reachable node in the network, pro-
viding information on the ease with which a component of the network can connect to all
other components. Thus, the more central a node is, the closer it is to all other nodes. Mea-
sures of centrality are used to identify the most important vertexes in a graph. In the visual
art domain, centrality provides an indication of the most influential painter in the artists’
network regardless of direct links.
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Another measure of centrality is betweenness. For a node v, it is the sum of the fraction
of all shortest paths passing through v, so it is defined as [5]:

B(v) =
∑

s,t∈V

σ(s, t | v)

σ (s, t)
,

where V is the set of nodes, σ(s, t) is the number of shortest paths between s and t , and
σ(s, t | v) is the number of shortest paths through v other than s and t . Betweenness central-
ity of a node v measures the importance of v for the information flow through the network.
A large betweenness centrality of a node indicates that many shortest paths between other
node pairs pass through that node. Nodes with high betweenness generally connect modules
of the network that may become disconnected if these nodes are removed. In the specific
context, a node with high betweenness can represent a “bridge”, i.e. a painter who is in
the historical influence path between painting schools that could not have been influenced
without the existence of that node.

4 Experimental evaluation

The effectiveness of the proposed method was investigated on a database collecting paint-
ings of 50 very popular painters. More precisely, data provided by the Kaggle platform,3

scraped from an art challenge website,4 were used. Artists belong to very different epochs
and painting schools, ranging from Giotto di Bondone and Renaissance painters such as
Leonardo da Vinci and Michelangelo, to Modern Art exponents, including Pablo Picasso,
Salvador Dalı́, and so on. In particular, nine periods can be recognized: Gothic, Renaissance,
Baroque, Romanticism, Impressionism, Post-impressionism, Expressionism, Surrealism,
Art Nouveau/Modern Art. Figure 3 provides sample images of the dataset employed; while,
Table 2 lists the 50 painters it includes. Painting images are non-uniformly distributed
among painters for a total of 8,446 images of different sizes.

Experiments were run on an Intel Core i5 equipped with the NVIDIA GeForce MX110,
with dedicated memory of 2GB. As deep learning framework, TensorFlow 2.0 and the Keras
API were used. As a tool to perform the graph analysis, Cytoscape was used. It is worth
noting that an execution time analysis was not performed. In fact, a key advantage of the
proposed method is that its most expensive part, i.e. the VGG-based feature extraction, can
be done completely offline, thus making the visual link retrieval, i.e. the search over the
reduced feature space, dependent only on the collection size.

4.1 Visual link retrieval

Once the reduced features representing paintings were obtained, the Nearest Neighbour
matching mechanism was applied to derive, for each query image, the top k matching
images (k = 3 in this case). To give an illustrative example of the system’s behavior, Fig. 4
provides four sample image queries, along with the corresponding top visually linked art-
works retrieved by the system. For each query, a brief description of the results is provided
below:

3https://www.kaggle.com/ikarus777/best-artworks-of-all-time
4http://artchallenge.ru

6607

https://www.kaggle.com/ikarus777/best-artworks-of-all-time
http://artchallenge.ru


Multimedia Tools and Applications (2021) 80:6599–6616

Fig. 3 Samples images from the dataset used

Q1 The first query was the classic “Virgin and Child with Six Angels and the Baptist”
by the Renaissance artist Sandro Botticelli. As expected, the visual features provided
by the deep network were useful in retrieving paintings similar in composition (holy
family) and shape (tondo);

Q2 The second image query was the Romanticist “Fort Vimieux” by William Turner,
depicting a classic red sunset of the author. It can be seen that the system was able to
retrieve paintings similar in both content and color distribution;

Q3 The third query was the Impressionist “Confluence of the Seine and the Loing” by
Alfred Sisley. It can be noted that the three neighbors, i.e. two artworks by Camille
Pissarro and a work by Claude Monet, share the same painting style, characterized by
the typical color vibration;

Q4 Finally, a version of the “Sunflowers” series by Vincent van Gogh was considered as
a query. As expected, the top three images retrieved by the system represent still lifes,
two by Renoir, the other by Édouard Manet.

Overall, based on a qualitative evaluation of the retrieval results, it can be concluded that
the proposed system is capable of finding visual links that are not in contrast with the human
perception. The visual links discovered by the system are sufficiently justifiable by a human
observer and in most cases resemble the intrinsic criteria humans adopt to link visual arts.
These criteria combine visual elements, such as colors and shapes, and conceptual elements,
such as subject matter and meaning of the painted scene.

As for a quantitative evaluation, it is worth noting that the proposed method is com-
pletely unsupervised, so there is no ground truth about the visual links available. For this
reason, it is difficult to obtain a quantitative assessment of the effectiveness of the pro-
posed method. In particular, evaluating the recall of the method is unfeasible, due to the
difficulty of establishing the set of all meaningful links. On the contrary, an evaluation of
its precision is practical. To this end, five art experts were involved to obtain a subjec-
tive evaluation of the links provided by the system. 100 images were randomly selected as
queries, thus creating a pool of 100 pairs of the form (qi ,pi ), where qi was the ith query
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Table 2 Painters in the considered dataset

Albrecht Duerer (1471–1528) Alfred Sisley (1839–1899)

Amedeo Modigliani (1884–1920) Andrey Rublyov (1360–1430)

Andy Warhol (1928–1987) Camille Pissarro (1830–1903)

Caravaggio (1571–1610) Claude Monet (1840–1926)

Diego Rivera (1886–1957) Diego Velázquez (1599–1660)

Edgar Degas (1834–1917) Édouard Manet (1832–1883)

Edvard Munch (1863–1944) El Greco (1541–1614)

Eugène Delacroix (1798–1863) Francisco Goya (1746–1828)

Frida Kahlo (1907–1954) Georges Seurat (1859–1891)

Giotto di Bondone (1267–1337) Gustav Klimt (1862–1918)

Gustave Courbet (1819–1877) Henri de Toulouse-Lautrec (1864–1901)

Henri Matisse (1869–1954) Henri Rousseau (1844–1910)

Hieronymus Bosch (1453–1516) Jackson Pollock (1912–1956)

Jan van Eyck (1390–1441) Joan Miró (1893–1983)

Kazimir Malevich (1879–1935) Leonardo Da Vinci (1452–1519)

Marc Chagall (1887–1985) Michelangelo (1475–1564)

Mikhail Vrubel (1856–1910) Pablo Picasso (1881–1973)

Paul Cézanne (1839–1906) Paul Gauguin (1848–1903)

Paul Klee (1879–1940) Pieter Paul Rubens (1577–1640)

Pierre-Auguste Renoir (1841–1919) Piet Mondrian (1872–1944)

Pieter Bruegel (1525–1569) Raffaello (1483–1520)

Rembrandt (1606–1669) René Magritte (1898–1967)

Salvador Dalı́ (1904–1989) Sandro Botticelli (1445–1510)

Tiziano (1490–1576) Vasilij Kandinskij (1866–1944)

Vincent van Gogh (1853–1890) William Turner (1775–1851)

and pi was a painting chosen at random from the top three matching paintings retrieved by
the system for query qi . Each expert was asked to examine each pair (q,p) and establish
whether the semantic link between the query q and the artwork p was meaningful or not.
It should be noted that experts were not constrained to adopt a specific meaning of “link”.
They were only asked to tell if the retrieved visual links made sense according to their
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Fig. 4 Sample artwork queries and corresponding visually linked paintings provided by the system

experience/background/perception. To avoid the effects of influence among experts, they
had to perform the task blindly with each other. An uneven number of experts was involved
so that, for each single link, the mode of the evaluations provided by the experts was consid-
ered. This test yielded 72 meaningful visual links out of the 100 randomly proposed links,
resulting in a precision of 72%. Although this value appears to be not as high as the preci-
sion values usually reported in the literature on information retrieval, it is quite encouraging
considering that, given a query, the system is forced to retrieve similar images even when
similar artworks are actually missing in the painting collection.

Overall, the results obtained show that the proposed method was able to find a suit-
able model so that, once visual features are automatically extracted from painting images,
it can help to acquire new knowledge about relationships among paintings, useful for
several applications. In particular, the proposed method benefits from the capability of
Convolutional Neural Network models to exploit complex nonlinear relationships within
data.
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4.2 Knowledge discovery

Figure 5 represents the graph of painters built on the retrieved links. It is easy to see that the
graph is made up of three connected components isolated one from each other. The largest
connected component is characterized by Modern Art exponents, including Impressionist
and Post-Impressionist painters, such as Edgar Degas, Paul Gauguin and Vincent van Gogh.
The second largest sub-graph, on the other hand, is characterized by more classic painters,
mostly belonging to the Renaissance period, such as Tiziano and Albrecht Duerer. Finally,
the smallest connected component includes three painters who pioneered the Abstract Arts
of the first half of the 20th century, namely Piet Mondrian, Kazimir Malevich and Paul Klee.
In other words, the network analysis was able to reveal, within the painting collection, three
clusters, each characterized by homogeneous features.

A more refined analysis can be done at the node level. By looking at Table 3, which
shows the most important nodes in descending order of node degree, it can be seen that the
most “influential” artists correspond to the hubs of the network. Not surprisingly, the most
important node appears to be Vincent van Gogh, with a degree of 9, a closeness centrality of
0.52 and a betweenness centrality of 0.80. It can be seen that van Gogh has only two degrees
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Table 3 Graph-based analysis of the top painters

Painter Degree Closeness Betweenness

Vincent van Gogh 9 0.52 0.80

Edgar Degas 8 0.39 0.49

Tiziano 7 0.38 0.64

Albrecht Duerer 5 0.35 0.56

Alfred Sisley 5 0.39 0.30

Rembrandt 4 0.40 0.62

Henri Matisse 3 0.36 0.15

Paul Gauguin 3 0.46 0.50

of separation with several artists, mostly belonging to the Impressionist period. Moreover,
through Paul Gauguin, who has the top second closeness centrality, van Gogh is connected
to another cluster composed mainly by Post-Impressionist and Expressionist painters. This
was expected as van Gogh was one of the most famous and influential figures in all of West-
ern Art. He was one of the most prolific painters with around 860 oil paintings, including
still lifes, landscapes, portraits and self-portraits. Unfortunately, he was not successfully in
life, committing suicide at a young age after years of poverty.

The second most influential artist in accordance with the proposed analysis turns out
to be Tiziano, who shows the top second betweenness centrality, that is 0.64, among the
other nodes. He was an Italian painter and one of the most prominent members of the so-
called Venetian School during the 16th century. Tiziano focused mainly on mythological and
religious subjects. It is generally believed that his painting style had a strong influence not
only on other painters of the Italian Renaissance, but also on future generations of Western
Art.

Another important node appears to be Edgar Degas. This result was also not surprising,
as Degas is generally considered one of the founders of Impressionism (although, during
his life, he preferred to be considered a Realist). He particularly mastered the depiction of
movement, as can be seen in several of his works which portray dancers.

It is worth noting that incredibly famous artists such as Leonardo Da Vinci and Michelan-
gelo have very low degree (i.e., 1) and they are at the boundaries of their respective
sub-graphs, although they are unanimously considered to be two universal genius. Their
interests and curiosity, in fact, spanned across a wide range of disciplines, including not
only art, but also literature, architecture and science. The result obtained can be explained
considering that, although their works certainly influenced the Western culture in general,
Leonardo Da Vinci and Michelangelo were not as prolific in painting as other popular
artists. Indeed, as far as arts are concerned, they mainly focused on drawings and sculptures,
respectively, rather than paintings.

As a further remark, it can be observed in Fig. 4 that a landscape of Rembrandt was
found similar to a work by Salvador Dalı́, even though the two artists are not directly linked
in the graph. This is because the painters’ graph is obtained by linking painters based on the
frequency of the top one visual links retrieved among their paintings. In other words, a link
in the graph reflects a global similarity between their artistic production, without depending
on very specific visual links.
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Finally, the artistic influences found by the proposed method have been qualitatively
compared with the findings reported in the work by Saleh et al. [29], which is based on tra-
ditional features extracted from paintings of very popular artists. It can be seen that many
of the influences suggested by their method are consistent with the results reported in this
paper. For example, strong links were suggested between Delacroix, Rubens, Tiziano, Raf-
faello and El Greco: in fact, in the proposed graph, these artists form a recognizable cluster
with direct links between them. Another relationship was found by the authors between
Leonardo and Duerer: this is also a finding of the present work. Indeed, it is known that the
two artists were in contact at the time. Another pattern that is in common between this work
and the results of Saleh et al. is the strong connection found between Monet, Sisley and Pis-
sarro. Similarly, a clear path emerges in the graph linking Goya, Rembrandt and Velazquez:
influences between these painters were also suggested in the work cited. Analogous consid-
erations also apply to the relationships found between Kahlo and Renoir, and Manet, Picasso
and Degas. Interestingly, also in [29] the authors found a relationship between Malevich
and Mondrian. In the graph presented, they form a small connected component together
with a third artist, namely Paul Klee. However, in [29] Klee does not appear to be directly
connected to the other two artists, as found in this work.

Discussion

The proposed method can be advantageous not only for art historians but also for other fig-
ures. For example, enthusiasts can benefit from the automatic link retrieval when visiting
digital collections of museums and art galleries online. This can favor a sort of interactive
navigation able to promote the fruition of art. The same logic can be applied to physical
museums: curators, in fact, could use applications of the proposed tool to enrich the visiting
experience. For example, once the particular interest of a visitor to an artwork is confirmed,
the system may recommend similar works the visitor may be interested in. This strategy
can also be used in conjunction with Internet-of-Things sensors [3, 4] to improve the visit-
ing experience of cultural sites. The proposed method can also be useful to assist art experts
in detecting plagiarism. In fact, when the similarity among two paintings exceeds a given
threshold, the method can indicate a suspected plagiarism. Finally, we observe that the pro-
posed knowledge discovery methodology may be extended to domains other than the artistic
one, if a recognizable semantics can be attributed to the visual links between images.

A limitation of the present study is the small size of the dataset adopted, which hampers
the possibility of generalizing the results obtained. The choice of the dataset was made in the
expectation that easy to interpret results could have been obtained by exploring the visual
links among very famous painters. In fact, despite these constraints, the reported evaluation
is very promising and the results of this study are expected to make way for a working
system in the cultural heritage settings. Extending the proposed evaluation to other, larger
datasets is currently the topic of future research.

5 Conclusion

Determining visual similarities among paintings, as well as influences among artists, is an
intrinsically subjective task for human experts and depends on several factors, most notably
their aesthetic perception. To help experts with an automatic method, this paper has tackled
the problem of making a machine capable of mimicking this complex perception. Since
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the proposed method only works in an unsupervised fashion, one of its key advantages
is that it relies solely on the visual attributes extracted by a deep CNN, without the need
for additional metadata, which are typically very difficult to collect. For the same reason,
another key aspect of the proposed approach is its efficiency, since the most expensive stage,
i.e. the CNN-based feature extraction, can be done completely offline. The results obtained
are encouraging for the purposes of the present research, whose long-term goal concerns the
automatic discovery of patterns in painting images without the need of prior knowledge.
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CARE Agreement.

Compliance with Ethical Standards

Conflict of interests The authors declare they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

1. Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Adam M, SanTan R (2019) Deep convolutional
neural network for the automated diagnosis of congestive heart failure using ECG signals. Appl Intell
49(1):16–27. https://doi.org/10.1007/s10489-018-1179-1

2. Athiwaratkun B, Kang K (2015) Feature representation in convolutional neural networks.
arXiv:1507.02313

3. Bharti M, Jindal H (2020) Optimized clustering-based discovery framework on internet of things. J
Supercomput. https://doi.org/10.1007/978-3-319-54247-8 4

4. Bharti M, Kumar R, Saxena S, Jindal H (2020) Optimal resource selection framework for Internet-of-
Things. Computers & Electrical Engineering 86:106693. https://doi.org/10.1016/j.compeleceng.2020.
106693

5. Brandes U (2008) On variants of shortest-path betweenness centrality and their generic computation.
Soc Networks 30(2):136–145. https://doi.org/10.1016/j.socnet.2007.11.001

6. Cai H, Wu Q, Corradi T, Hall P (2015) The cross-depiction problem: Computer vision algorithms for
recognising objects in artwork and in photographs. arXiv:1505.00110

7. Cai H, Wu Q, Hall P (2015) Beyond photo-domain object recognition: Benchmarks for the cross-
depiction problem. In: Proceedings of the IEEE international conference on computer vision workshops,
pp 1–6. https://doi.org/10.1109/ICCVW.2015.19

8. Carneiro G, daSilva NP, DelBue A, Costeira JP (2012) Artistic image classification: An analysis
on the PRINTART database. In: European conference on computer vision, Springer, pp 143–157.
https://doi.org/10.1007/978-3-642-33765-9 11

9. Castellano G, Castiello C, Mencar C, Vessio G (2020) Crowd detection for drone safe landing through
fully-convolutional neural networks. In: International conference on current trends in theory and practice
of informatics, pp 301–312. Springer. https://doi.org/10.1007/978-3-030-38919-2 25

10. Castellano G, Vessio G (2020) Towards a tool for visual link retrieval and knowledge discov-
ery in painting datasets. In: Italian research conference on digital libraries, pp 105–110. Springer.
https://doi.org/10.1007/978-3-319-56300-8 14

6614

http://creativecommonshorg/licenses/by/4.0/
https://doi.org/10.1007/s10489-018-1179-1
http://arxiv.org/abs/1507.02313
https://doi.org/10.1007/978-3-319-54247-8_4
https://doi.org/10.1016/j.compeleceng.2020.106693
https://doi.org/10.1016/j.compeleceng.2020.106693
https://doi.org/10.1016/j.socnet.2007.11.001
http://arxiv.org/abs/1505.00110
https://doi.org/10.1109/ICCVW.2015.19
https://doi.org/10.1007/978-3-642-33765-9_11
https://doi.org/10.1007/978-3-030-38919-2_25
https://doi.org/10.1007/978-3-319-56300-8_14


Multimedia Tools and Applications (2021) 80:6599–6616

11. Cetinic E, Lipic T, Grgic S (2018) Fine-tuning convolutional neural networks for fine art classification.
Expert Syst Appl 114:107–118. https://doi.org/10.1016/j.eswa.2018.07.026

12. Crowley EJ, Zisserman A (2014) In search of art. In: European conference on computer vision, pp 54–
70. Springer. https://doi.org/10.1007/978-3-319-16178-5 4

13. Crowley EJ, Zisserman A (2016) The art of detection. In: European conference on computer vision,
pp 721–737. Springer. https://doi.org/10.1007/978-3-319-46604-0 50

14. Deo N (2017) Graph theory with applications to engineering and computer science. Courier Dover
Publications, New York. https://doi.org/10.1002/net.1975.5.3.299

15. Freeman LC (1979) Centrality in communication networks: Conceptual clarification. Soc Networks
2(2):119–141. https://doi.org/10.1016/0378-8733(78)90021-7

16. Gonthier N, Gousseau Y, Ladjal S, Bonfait O (2018) Weakly supervised object detection in art-
works. In: Proceedings of the european conference on computer vision (ECCV), pp 692–709.
https://doi.org/10.1007/978-3-030-11012-3 53

17. Grobe EM, Anton H, Rorres C, Grobe CA (1994) Student solutions manual [to accompany] ele-
mentary linear algebra, applications version, [by] howard anton, chris rorres. Wiley, New Jersey.
https://doi.org/10.1016/j.socnet.2007.11.001

18. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017)
Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861

19. Jolliffe IT, Cadima J (2016) Principal component analysis: A review and recent developments. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
374(2065):20150202. https://doi.org/10.1098/rsta.2015.0202

20. Kalaiarasi G, Thyagharajan KK (2013) Visual content based clustering of near duplicate web search
images. In: 2013 International conference on green computing, communication and conservation of
energy (ICGCE), pp 767–771. IEEE. https://doi.org/10.1109/ICGCE.2013.6823537

21. Khan FS, Beigpour S, Vande Weijer J, Felsberg M (2014) Painting-91: a large scale database for compu-
tational painting categorization. Mach Vis Appl 25(6):1385–1397. https://doi.org/10.1007/s00138-014-
0621-6

22. Leavy P (2017) Handbook of arts-based research. Guilford Publications, New York. https://doi.org/10.
1080/08322473.2018.1520030

23. Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE (2017) A survey of deep neural network architectures
and their applications. Neurocomputing 234:11–26. https://doi.org/10.1016/j.neucom.2016.12.038

24. Mao H, Cheung M, She J (2017) Deepart: Learning joint representations of visual arts. In:
Proceedings of the 25th ACM international conference on multimedia, pp 1183–1191. ACM.
https://doi.org/10.1145/3123266.3123405

25. Minu RI, Thyagharajan KK (2014) Semantic rule based image visual feature ontology creation. Int J
Autom Comput 11(5):489–499. https://doi.org/10.1007/s11633-014-0832-3

26. Nagarajan G, Thyagharajan KK (2012) A machine learning technique for semantic search engine.
Procedia Engineering 38:2164–2171. https://doi.org/10.1016/j.proeng.2012.06.260

27. Ren JimmySJ, Wang W, Wang J, Liao S (2012) An unsupervised feature learning approach to improve
automatic incident detection. In: 2012 15th International IEEE conference on intelligent transportation
systems, pp 172–177. IEEE. https://doi.org/10.1109/ITSC.2012.6338621

28. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein
M, et al. (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252.
https://doi.org/10.1007/s11263-015-0816-y

29. Saleh B, Abe K, Arora RS, Elgammal A (2016) Toward automated discovery of artistic influence.
Multimedia Tools and Applications 75(7):3565–3591. https://doi.org/10.1007/s11042-014-2193-x

30. Sandoval C, Pirogova E, Lech M (2019) Two-stage deep learning approach to the classification of fine-art
paintings. IEEE Access 7:41770–41781. https://doi.org/10.1109/ACCESS.2019.2907986

31. Seguin B, Striolo C, Kaplan F et al (2016) Visual link retrieval in a database of paintings. In: European
conference on computer vision, pp 753–767. Springer. https://doi.org/10.1007/978-3-319-46604-0 52

32. Shamir L, Macura T, Orlov N, Eckley DM, Goldberg IG (2010) Impressionism, expressionism, surre-
alism: Automated recognition of painters and schools of art. ACM Transactions on Applied Perception
(TAP) 7(2):8. https://doi.org/10.1145/1670671.1670672

33. Shen X, Efros AA, Mathieu A (2019) Discovering visual patterns in art collections with spatially-
consistent feature learning. arXiv:1903.02678

34. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition.
arXiv:1409.1556

35. Strezoski G, Worring M (2017) OmniArt: Multi-task deep learning for artistic data analysis.
arXiv:1708.00684

6615

https://doi.org/10.1016/j.eswa.2018.07.026
https://doi.org/10.1007/978-3-319-16178-5_4
https://doi.org/10.1007/978-3-319-46604-0_50
https://doi.org/10.1002/net.1975.5.3.299
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1007/978-3-030-11012-3_53
https://doi.org/10.1016/j.socnet.2007.11.001
http://arxiv.org/abs/1704.04861
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1109/ICGCE.2013.6823537
https://doi.org/10.1007/s00138-014-0621-6
https://doi.org/10.1007/s00138-014-0621-6
https://doi.org/10.1080/08322473.2018.1520030
https://doi.org/10.1080/08322473.2018.1520030
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1145/3123266.3123405
https://doi.org/10.1007/s11633-014-0832-3
https://doi.org/10.1016/j.proeng.2012.06.260
https://doi.org/10.1109/ITSC.2012.6338621
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11042-014-2193-x
https://doi.org/10.1109/ACCESS.2019.2907986
https://doi.org/10.1007/978-3-319-46604-0_52
https://doi.org/10.1145/1670671.1670672
http://arxiv.org/abs/1903.02678
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1708.00684


Multimedia Tools and Applications (2021) 80:6599–6616

36. Tan WR, Chan CS, Aguirre HE, Tanaka K (2016) Ceci n’est pas une pipe: A deep convolutional network
for fine-art paintings classification. In: 2016 IEEE international conference on image processing (ICIP),
pp 3703–3707. IEEE. https://doi.org/10.1109/ICIP.2016.7533051

37. Thyagharajan KK, Kalaiarasi G (2018) Pulse coupled neural network based near-duplicate detec-
tion of images (PCNN–NDD). Advances in Electrical and Computer Engineering 18(3):87–97.
https://doi.org/10.4316/AECE.2018.03012

38. Thyagharajan KK, Kalaiarasi G (2020) A review on near-duplicate detection of images using
computer vision techniques. Archives of Computational Methods in Engineering, pp 1–20.
https://doi.org/10.1007/s11831-020-09400-w

39. vande Kamp M-T, Admiraal W, van Drie J, Rijlaarsdam G (2015) Enhancing divergent thinking in
visual arts education: Effects of explicit instruction of meta-cognition. Br J Educ Psychol 85(1):47–58.
https://doi.org/10.1111/bjep.12061

40. VanNoord N, Hendriks E, Postma E (2015) Toward discovery of the artist’s style: Learning to recognize
artists by their artworks. IEEE Signal Proc Mag 32(4):46–54. https://doi.org/10.1109/MSP.2015.2406
955

41. Wilber MJ, Fang C, Jin H, Hertzmann A, Collomosse J, Belongie S (2017) Bam! The Behance artistic
media dataset for recognition beyond photography. In: Proceedings of the IEEE International Conference
on Computer Vision, pp 1202–1211. https://doi.org/10.1109/ICCV.2017.136

42. Windhager F, Federico P, Schreder G, Glinka K, Dörk M, Miksch S, Mayr E (2018) Visualization of
cultural heritage collection data: State of the art and future challenges. IEEE Trans Vis Comput Graph
25(6):2311–2330. https://doi.org/10.1109/TVCG.2018.2830759

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

6616

https://doi.org/10.1109/ICIP.2016.7533051
https://doi.org/10.4316/AECE.2018.03012
https://doi.org/10.1007/s11831-020-09400-w
https://doi.org/10.1111/bjep.12061
https://doi.org/10.1109/MSP.2015.2406955
https://doi.org/10.1109/MSP.2015.2406955
https://doi.org/10.1109/ICCV.2017.136
https://doi.org/10.1109/TVCG.2018.2830759

	Visual link retrieval and knowledge discovery in painting datasets
	Abstract
	Introduction
	Related work
	Proposed method
	Visual link retrieval
	Knowledge discovery

	Experimental evaluation
	Visual link retrieval
	Knowledge discovery

	Discussion
	Conclusion
	References




