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Abstract

Recent advances in the field of object detection and face recognition have made it pos-
sible to develop practical video surveillance systems with embedded object detection and
face recognition functionalities that are accurate and fast enough for commercial uses. In
this paper, we compare some of the latest approaches to object detection and face recog-
nition and provide reasons why they may or may not be amongst the best to be used in
video surveillance applications in terms of both accuracy and speed. It is discovered that
Faster R-CNN with Inception ResNet V2 is able to achieve some of the best accuracies
while maintaining real-time rates. Single Shot Detector (SSD) with MobileNet, on the other
hand, is incredibly fast and still accurate enough for most applications. As for face recogni-
tion, FaceNet with Multi-task Cascaded Convolutional Networks (MTCNN) achieves higher
accuracy than advances such as DeepFace and DeepID2+ while being faster. An end-to-end
video surveillance system is also proposed which could be used as a starting point for more
complex systems. Various experiments have also been attempted on trained models with
observations explained in detail. We finish by discussing video object detection and video
salient object detection approaches which could potentially be used as future improvements
to the proposed system.

Keywords Deep learning - Video surveillance - Machine learning - Object detection -
Face recognition

1 Introduction

In the past few decades, surveillance cameras, also known as Closed-circuit television
(CCTV), have had a rapid growth in number around the world. Take Great Britain as an
example. In England and Wales, the number of surveillance cameras rose from 100 in 1990
to about 4.2 million in 2007, which means there are over 7 surveillance cameras for every
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100 people [8]. With such a huge number of surveillance cameras deployed, it would require
enormous effort for outputs from all these cameras to be monitored by human.

Therefore, in this paper, a deep learning approach to automatically process images cap-
tured by surveillance cameras is presented, which focuses on automated object detection
and face recognition. The aim is to explore a feasible way to integrate both object detection
and face recognition methods into commercial video surveillance systems by evaluating and
experimenting state-of-the-art algorithms.

We have chosen to use deep-learning methods for both object detection and face recog-
nition tasks for a number of reasons. First of all, deep-learning methods are easier to deploy
and possess better scalability than conventional machine-learning methods thanks to their
ability to process data in their raw form [21]. Without deep learning, we would have to first
transform the input data, in our case pixel values into a certain representation that our models
were able to process, which required significantly more effort than deep-learning methods.
Moreover, deep-learning methods are capable of learning more complex features by tak-
ing advantage of multiple levels of representation [21]. Again, these features are learned
systematically rather than designed manually by humans.

It is also important to show that automated object detection and face recognition are
indeed useful to modern surveillance camera systems. As an example, around 39% under-
graduates and 17% graduate students have admitted that they have cheated on tests [28].
Sometimes, it is nearly impossible for a small number of exam invigilators to catch every-
one who is trying to cheat in a large exam room, and it would be such a huge waste of
manpower to have many exam invigilators walking around for hours just in case someone
was planning to cheat. However, with surveillance cameras equipped with automated object
detection, things that are not allowed in a certain exam, such as smartphones or sometimes
calculators can be easily spotted.

On the other hand, despite the 4% annual decrease, there have been over 380,000 bur-
glaries committed in England and Wales in the year ending September 2019 [6]. Likewise,
face recognition can help us prevent burglaries by detecting and recognising faces in a given
area. If a face is both detected and recognised, then we can safely ignore it as it suggests that
it’s from someone we know. However, if a face is detected but not recognised, it is possible
that an unwelcome stranger has broken into the secured area, and this can be immediately
reported to someone in charge.

In this paper, we compare the performance of some of the latest object detection and
face recognition approaches in terms of both accuracy and speed. By evaluating the perfor-
mance of trained models, we conclude that Faster R-CNN [32] with Inception ResNet V2
[37] is suitable for achieving incredibly high accuracy on the assumption that the available
hardware is powerful enough to handle the amount of computation required so as to main-
tain a reasonable frame rate. Otherwise, if the hardware at one’s disposal is not advanced
enough to achieve real-time rates with the previous approach, SSD [24] with MobileNet
[14] could be considered which is much less computationally expensive and still provides
impressive accuracy that should suffice to meet requirements of most video surveillance
applications.

As for face recognition, FaceNet [34] with Multi-task Cascaded Convolutional Networks
(MTCNN) [44] produces incredibly high accuracy without being too hardware consuming.
Our evaluation results in Section 4 show that there is no significant difference between
training the model using only static images or image sequences. Although the best accuracy
is still achieved by training on a mixture of as many images of both types as possible, we
can still reach promising accuracy with only a single type of training images. It is, however,

@ Springer



Multimedia Tools and Applications (2021) 80:5495-5515 5497

crucial to train the model on high-quality images if the model is going to be applied on
high-quality image sequences for performing face recognition.

With regard to the rest of the paper, in Section 3 we present an end-to-end video surveil-
lance system which is capable of performing both object detection and face recognition
tasks. The structure of the proposed system is also illustrated and explained in detail. Finally
in Section 5 we describe a few video object detection approaches which could be considered
as future improvements to the proposed system.

2 Related work
2.1 Algorithms

In this section, we compare the accuracy and speed of some state-of-the-art object detection
and face recognition approaches. This is especially crucial to video surveillance applications
since the tolerance to false positives and negatives is extremely low for safety reasons. Fur-
thermore, a reasonably high frame rate has to be maintained consistently in order to avoid
missing important frames. It is therefore of vital importance for us to achieve an optimal
balance between accuracy and speed without sacrificing one for the other to such an extent
that the overall error rate becomes intolerable. Here we strive to make our comparisons as
fair as possible by collecting evaluation results tested on the same set of datasets. In the case
of object detection, most meta-architectures are also tested with the same feature extractor.
Note that this was partially done in [23] with some information missing, which we are going
to present later in this section.

2.1.1 Object detection

Obviously, there are quite a few existing object detection algorithms with promising accu-
racies. Spatial pyramid pooling networks (SPPnets) [12], for example, are able to achieve
up to 59.2% mAP on PASCAL VOC 2007 [11] for detection tasks, which is slightly better
than the 58.5% mAP produced by region-based convolutional neural networks (R-CNNs)
[10, 12]. More importantly, SPPnet was invented to achieve better efficiency over R-CNN
by sharing computation. As a result, SPPnet can outperform R-CNN by 10 to 100 x in terms
of speed while still producing accuracy of similar level [12].

However, when using the same pre-trained VGG-16 [35] network as a starting point and
bounding-box regression, Fast R-CNN achieves 68.1% mAP, which is a fine improvement
over the 63.1% mAP obtained by SPPnet, both trained using PASCAL VOC 2007 without
“difficult” examples [9, 12]. Not only does Fast R-CNN produces higher accuracy, it is also
notably faster. When performing detection using VGG-16, Fast R-CNN can be 3x faster
than SPPnet and 9 x faster than R-CNN [9]. It is also worth mentioning that Fast R-CNN is
faster to train when compared to R-CNN and SPPnet. When training VGG-16, training time
is reduced by 2.7x and 9x when compared to SPPnet and R-CNN, respectively [9]. Inter-
estingly, as stated in [9], R-CNN yields 66.0% mAP under nearly identical test conditions,
which differs from what’s reported in [12].

An improvement over Fast R-CNN [9] known as Faster R-CNN [32] is later proposed
with the addition of Region Proposal Networks (RPNs). Instead of utilising an external
proposal generator as in the case of R-CNN and Fast R-CNN, Faster R-CNN generates pro-
posals using convolutional neural networks and was amongst the first papers to introduce the
so called anchors methodology. The RPN introduced in Faster R-CNN replaces the region
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proposal method known as Selective Search (SS) [40] used by Fast R-CNN, which is gen-
erally considered as a computational bottleneck. In comparison with Selective Search, RPN
costs much less time to generate region proposals by sharing most computation with the
object detection network. The result of which is that Faster R-CNN with RPN can perform
detection 10x faster than Fast R-CNN with SS [32]. When tested on PASCAL VOC 2007,
Faster R-CNN is able to achieve 73.2% mAP, which makes it comparatively more accurate
than Fast R-CNN which produces 68.1% mAP [32]. This makes Faster R-CNN both faster
and more accurate than Fast R-CNN and SPPnet, which is why we decide to train our first
object detection model using Faster R-CNN as its meta-architecture. A comparison of mAP
and speed for the methods mentioned above is shown in Table 1.

Once the meta-architecture is settled, we then need to decide on the feature extractor.
According to the evaluation results presented in [16], Faster R-CNN achieves the best accu-
racy when using Inception ResNet V2 [37] as the feature extractor. In fact, Faster R-CNN
together with Inception ResNet V2 forms the most accurate model tested in [16]. Therefore,
we decide to use Faster R-CNN and Inception ResNet V2 to train the first object detec-
tion model which aims at achieving highest accuracy possible without sacrificing too much
efficiency. However, [16] also suggests that both Faster R-CNN and Inception ResNet V2
can be computationally expensive. This leads to the decision of training a second object
detection model whose goal is to make it possible to perform detection on a wider range of
machines.

Unlike Faster R-CNN [32], You Only Look Once (YOLO) [31] utilises a single neural
network that performs bounding box regression and classification at the same time from
full images. This makes YOLO 90x faster than Faster R-CNN with VGG-16 when trained
on PASCAL VOC 2007 [11] with a promising 63.4% mAP [31]. However, YOLO also has
certain limitations such as grid cells with fixed aspect ratios.

Single Shot Detector (SSD) [24] overcomes some of those limitations by allowing dif-
ferent aspect ratios and scales. SSD also uses default boxes similar to anchors used in the
RPN of Faster R-CNN. The result of which is that SSD generates boxes that better match
the scales and shapes of objects detected. Furthermore, SSD with VGG-16 achieves 74.3%
mAP with 59 FPS on PASCAL VOC 2007, both of which are more superior than results
published in [32] for Faster R-CNN. However, according to [16], when using other feature
extractors with better average accuracies such as ResNet-101 [13] and Inception ResNet V2
[37], Faster R-CNN still makes the most accurate model.

Region-based Fully Convolutional Networks (R-FCN) [5], with the addition of position-
sensitive score maps and position-sensitive Region-of-Interest (Rol) pooling layer, yields
even better results using ResNet-101 [13], reaching 83.6% mAP with only 0.17 second
spent on each image. In contrast, Faster R-CNN with ResNet-101 achieves slightly better
85.6% mAP at the cost of being nearly 20x slower [5]. Again, it is stated in [16] that Faster
R-CNN is able to achieve slightly better accuracy when using Inception ResNet V2 [37]

Table 1 Object detection results on Pascal VOC 2007 test set collected from [9, 10, 12, 32]. All methods use
VGG-16. Test speedups are calculated in terms of runtime FPS

Method mAP (%) Test speedup
R-CNN 58.5 — 66.0 1x

SPPnet 63.1 20x

Fast R-CNN 63.1 — 66.9 98 x —146x%
Faster R-CNN 73.2 90x
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instead of ResNet-101 as the feature extractor. R-FCN, however, gives the best performance
with ResNet-101 and does not perform as well with all other feature extractors tested.

Based on the test data reported in [16], although it is possible for us to train an R-FCN
model that’s more accurate than an SSD one without sacrificing too much speed, the fastest
models are still SSD models with MobileNet [14] and Inception V2 [17] feature extrac-
tors. It is also worth mentioning that MobileNet is approximately twice as fast as Inception
V2 when ignoring post-processing time [16]. This makes it obvious for us to choose SSD
with MobileNet for training our second object detection model since its purpose is to be as
computationally cheap as possible while maintaining sensible accuracy. Table 2 provides a
detailed comparison for some of the methods we have considered for training our second
object detection model.

As mentioned above, both Faster R-CNN and SSD follow the so-called anchors method-
ology, which means they share similar training processes. A fixed number of anchors, also
known as default boxes, of different shapes and aspect ratios are first placed on each image
at different locations. A model is then trained to predict the class of the anchor and an offset
by which the anchor has to be shifted to match the groundtruth bounding box.

With regard to training parameters for our object detection models, we use a minimum
dimension of 600 pixels and maximum dimension of 1024 pixels for the Faster R-CNN
model and a fixed size of 300 x 300 for the SSD model. This means when training a
Faster R-CNN model, the shorter edge of an image is always scaled to 600 pixels and the
longer edge is scaled down to 1024 pixels if it’s original length is longer than the maximum
dimension specified.

Since TensorFlow [1] supports the meta-architectures and feature extractors chosen, we
decide to use TensorFlow to train and evaluate our object detection models. In order to save
time from training brand new models from scratch, we obtain both models by performing
transfer learning on models provided on TensorFlow detection model zoo [1].

2.1.2 Face recognition

For our face recognition model, our goal is to discover the optimal algorithm from recent
advances such as DeepFace [38], DeepID2+ [36] and FaceNet [34]. As demonstrated in
Table 3, FaceNet achieves 95.12% accuracy on YouTube Faces DB [43] and an impressive
99.63% accuracy on Labeled Faces in the Wild (LFW) [15] dataset. In contrast, DeepFace
and DeepID2+ are reported to achieve 91.4% and 93.2% accuracies on YouTube Faces
DB, respectively [36, 38]. This results in FaceNet reducing the error rate of DeepFace by

Table 2 Object detection results on Pascal VOC 2007 and COCO for resolution=300 collected from [5, 24,
31]. Test speedups are calculated in terms of runtime FPS

Method mAP (%) Test speedup
YOLO 63.4 (PASCAL VOC 2007) 2.1x

YOLO (VGG-16) 66.4 (PASCAL VOC 2007) 1%

SSD (VGG-16) 74.3 (PASCAL VOC 2007) 2.2x

SSD (MobileNet) 20.0 (COCO) 6.8x

SSD (Inception V2) 22.0 (COCO) 6.1x

R-FCN (ResNet-101) 83.6 (PASCAL VOC 2007) 5.3x
R-FCN (MobileNet) 83.6 (COCO) 5.1x%

@ Springer



5500 Multimedia Tools and Applications (2021) 80:5495-5515

Table 3 Face recognition results on YouTube faces DB and LFW collected from [34, 36, 38]

Method Accuracy on YouTube faces DB (%) Accuracy on labeled faces in the wild (%)
DeepFace 91.4 97.5

DeeplD2+ 93.2 98.70

FaceNet 95.12 99.63

nearly 50% and of DeepID2+ by 30% when tested on YouTube Faces DB. Similarly, when
evaluated on LFW, FaceNet reduces the error rate of DeepID2+ by 30% and accomplishes
error rate more than 7x lower than that of DeepFace [34].

In addition to its incredible accuracy, as later illustrated in Section 4, face recognition
with FaceNet is in our case a much less computationally intensive task when compared to
object detection with Faster R-CNN [32]. This is mainly due to the fact that with FaceNet,
face recognition can be solved by simply applying k-NN classification once a Euclidean
embedding is learnt using a deep convolutional network [34]. Therefore, FaceNet provides
us with satisfying accuracy while being fast enough for real-time applications, which is why
we decide to only train a single face recognition model using FaceNet instead of two as for
object detection.

In terms of training parameters, we use an embedding dimension of 128 to train our
FaceNet models. This embedding size was also chosen in the original FaceNet paper for
nearly all experiments as it could take more time to achieve the same accuracy with larger
embeddings [34].

Similar to object detection, we mainly use the Tensorflow implementation of FaceNet
[34] and pre-trained models published on [33] for training our face recognition models. The
pre-trained model we use for our experiments is an Inception ResNet V1 [37] model trained
using softmax loss on VGGFace2 [4] with Multi-task Cascaded Convolutional Networks
(MTCNN) [44] used for face detection and alignment. Note that triplet loss was used instead
of softmax loss in [34].

2.2 Datasets

Choosing the right datasets on which the models are trained is another important decision
we have to make. For practical applications, this probably depends significantly on the
purposes of the trained models. Since the goal of this paper is to evaluate model performance
in general video surveillance cases, we try to find datasets that are suitable for as many
potential applications as possible.

2.2.1 Object detection

For training object detection models, PASCAL VOC [11], Microsoft COCO [22], and
Open Images Dataset (OID) [20] are some of the most popular options. Although PAS-
CAL VOC 2007 and PASCAL VOC 2012 are perhaps the most commonly used datasets
for evaluating the performance of object detection models, they only contain images of 20
object classes [11]. The lack of object categories makes PASCAL VOC datasets unsuitable
for many commercial applications, which in turn makes it inappropriate for our evalua-
tion. This is improved by COCO which comes with 80 object categories and 1.5 million
object instances, and even further by OID with 600 object classes and 16 million bounding
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boxes [20, 22]. The primary benefit of training on a dataset which covers more object cat-
egories is that it is less likely that we miss any object classes important to many potential
video surveillance applications. In other words, the evaluation results obtained from models
trained on datasets with more object categories are going to be more informative and rep-
resentative in our case even though the models are not trained on all available categories.
For this reason, we decide to train our object detection models on OID with 32 selected
object classes so as to allow the evaluation results to be fine-tuned for video surveillance
applications.

2.2.2 Face recognition

We will see later in Section 4 that in order for us to produce comprehensive evaluation
results on the performance of our face recognition models, datasets consisting of both static
images and image sequences are needed. Therefore, we decide to train our face recognition
models on two separate datasets, one with static images and the other with image sequences.
Obviously, these two datasets will have face images of two different groups of people, and
for our evaluation, it has to be the case that a subset of people is shared by both datasets.

With that in mind, we discover that VGGFace2 [4] together with YouTube Faces DB [43]
makes a promising combination. VGGFace?2 contains over 3.3 million face images of over
9000 people with an average of 362 images per subject [4]. Meanwhile, YouTube Faces DB
provides 3,425 videos of 1,595 different subjects with an average of 2.15 videos for each
subject [43]. Although only a small subset of subjects is shared by VGGFace2 and YouTube
Faces DB, it is enough for carrying out our evaluation.

In addition to YouTube Faces DB, we also collect a few extra videos from YouTube
for each of the subjects used for our evaluation. This is mainly because most of the frame
images provided by YouTube Faces DB are of fairly low resolution. On the other hand, the
static images from VGGFace? are, in most cases, of much higher quality. Furthermore, the
number of videos per person ranges from 1 to 6 for YouTube Faces DB, which means that
it only has a single video for some subjects. If we test our classifiers on image sequences
from YouTube Faces DB only, we then have to use images from the same video for both
training and evaluation for subjects with one video only. It is later shown in Section 4 that,
the evaluation results are much less meaningful even when completely different subsets of
frame images from the same video are used for both training and evaluation.

3 Proposed approach

This section aims to describe our proposed structure of an end-to-end video surveillance
system with built-in object detection and face recognition capabilities. The proposed sys-
tem can be divided into two separate stages, with the first stage focusing on model
implementation and the second on the workflow of the front-end application.

3.1 Model implementation

Since our system is designed to be able to perform both object detection and face recogni-
tion, and the two object detection models of our system have different structures as well,
three different sets of approaches are presented in Fig. 1.

As far as object detection is concerned, we have mostly adopted original implementations
of Faster R-CNN [32] and SSD [24] with a few changes made to adapt our system design
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Fig. 1 Implementations of object detection and face recognition models of the proposed system

to fit video surveillance purposes. For instance, we use Inception ResNet [37] as the feature
extractor for training our Faster R-CNN model instead of VGG-16 [35] as in the original
paper. Likewise, we replace the VGG-16 network in the original implementation of SSD
with a MobileNet [14] network as the base network. The reason for both of these structural
modifications is so that we can achieve higher accuracies with the trained models, which is
particularly important for security systems. Moreover, Region of Interest (ROI) pooling is
replaced by TensorFlow’s ‘crop_and_resize’ operation for training Faster R-CNN models.

With regard to our implementation of Faster R-CNN [32], we first take an image and
pass it to a convolutional neural network (CNN) which extracts features from and produces
a feature map for that image. We then apply a Regional Proposal Network (RPN) [32] on
that feature map and obtain a set of object proposals along with their respective objectness
scores. Proposals from the previous step are then resized to a fixed dimension, and after
that, passed to a region-based convolutional neural network (R-CNN) [10] which classifies
the resized proposals and refines bounding boxes.

As for SSD [24], we start with the base network which extracts feature maps of a given
image. Detection predictions are then made by the added convolutional feature layers using
a set of convolutional filters. Default bounding boxes are also used to speed up the training
process. At last, final detection results are generated by removing duplicate predictions from
the previous step using non-maximum suppression.

The implementation of face recognition is mostly borrowed from the project [33] devel-
oped by David Sandberg, which implements the face recogntion system described in [34].
It also utilises ideas from the paper [30] and is hugely inspired by the project [2].
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In order to perform face recognition, we first apply face detection and alignment on an
image using MTCNN [44]. Faces detected and aligned are then fed to a trained FaceNet
model which creates embeddings for the faces. Once the embeddings are created, face
recognition can be achieved using k-NN technique. This is possible because FaceNet trans-
forms face images to an Euclidean space in such a way that distances directly correspond
to similarity. Hence, the similarity between two face images can be evaluated simply by
finding the distance between the two points representing the faces, which is defined as:

d(p.q) = d(q.p)
= \/(91 =P+ (@2 = p2)* + o+ (@n — po)?

> (g — pi)? e

i=1

3.2 Application

Upon completion of model training, we are then ready to apply the trained models onto a
real video surveillance system. Here, we describe the structure of our application, which
could be used as the base model from which more advanced systems could be built. The
workflow of the proposed application is illustrated in Fig. 2. Note that this application is
designed to process images from a single remote camera and has a linear structure with a
loop to process images one at a time.

Before any image processing could be done, we have to first set up the working environ-
ment which involves importing necessary packages and declaring variables that will be used
in later stages. We are then ready to start processing input images after loading our trained
object detection and face recognition models into the program. Once an image from the
remote camera is received by our program, we may wish to preform some pre-processing
before applying our models on it. A variety of different image processing techniques may

Application
Object Detection
. Input Object Detection Detection
Environment .
) Image Detection on —— Results — Results
Preparation . . . R
Preprocessing Input Image Visualisation Archive
! Face Recognition
Input
MDdF' Image Face Recognition
Loading Receipt Recognition on Results
Input Image Thresholding
Output Recognition Recognition
Image Results Results
Display Archive Visualisation

Fig.2 Workflow of the proposed video surveillance application
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be used depending on the specific user case. For example, if images captured by the remote
camera are of a resolution that is too high to be processed real-time by the computer that is
used to run this application, then image downsampling could be applied in order to achieve
real-time rates. Note that once an image is downsampled in this stage, visualisation results
from later stages, such as coordinates for detection boxes have to be scaled back before
drawing them onto the image to be displayed.

Object detection and face recognition in our case have similar workflows with the excep-
tion of an extra stage for face recognition, namely, the thresholding stage. The first stage,
which is shared by both tasks aims to apply the specific model on the input image and collect
various data as the result. For object detection, this includes category, confidence score and
box coordinates for each detected object. Similarly, applying a face recognition model on an
input image could yield information such as class, confidence score and box coordinates for
each detected face. It is worth mentioning that we are interested in the recognition results for
every face detected, not just the ones that are accurately recognised. This is because faces
detected may be considered as being from someone suspicious if their recognition scores
are lower than a predefined threshold value, which is the job of the next stage.

The goal of the second stage for face recognition is to define the identity of each detected
face. This stage is exclusive to face recognition because it requires us to perform recognition
on detection results, which is not part of the workflow for the object detection task. Here,
we use thresholding techniques to classify each detected face based on its corresponding
recognition score. If the recognition confidence score of a face falls below the threshold
value defined by the user, then this face will be classified as not being recognised. The
implication of such a result could be an alert from the system indicating the discovery of an
unknown person in the area under surveillance. On the other hand, a face will be classified as
a known person if the recognition score is not lower than the threshold value, and therefore
no further action is needed.

Naturally, a higher threshold value means more false negatives and a lower one yields
more false positives. It is completely up to the user to decide whether a particular system is
more tolerable to false positives or negatives. If safety is of utmost importance, then it will
be sensible to have a reasonably high threshold value so that the chance of missing anyone
suspicious is minimised. Otherwise, decreasing the threshold value is going to be a better
choice as it reduces the number of wrongly classified cases to be filtered out manually,
which requires more ‘human effort’.

The next stage, which is again shared by both tasks, is to visualise the results so that
it is easier for direct visual inspections to be carried out. This may involve drawing boxes
around detected objects and faces, showing their categories/classes and displaying their
corresponding confidence scores. Depending on the user story, more data could be displayed
to accommodate the user with extra information if necessary.

According to the design of our application, the last stage for both object detection and
face recognition is where we archive results from previous stages. This is beneficial to the
user in many ways. For example, the user no longer has to worry about missing something
important from the visual feedback which is a vital improvement to the system as far as
safety is concerned. In terms of the information to be archived, this may include timestamp,
category and confidence score for each detected object. In the case of face recognition, since
we are only interested in faces from unknown people, only the timestamp and recognition
score need to be archived for each unrecognised face as they all belong to the same class,
namely, the ‘unknown’ class.

@ Springer



Multimedia Tools and Applications (2021) 80:5495-5515 5505

Once we have completed all processing for both object detection and face recognition
tasks, the last stage before the iteration of the next image begins is the one where we display
the image we have been processing in the current iteration. The image we display, of course,
contains various visual effects added from previous stages to help the user identify objects
and faces that are worth more attention. After displaying the image, we then proceed to the
next iteration starting from the receipt of the next image from the remote camera.

4 Experiments

In our experiments, we evaluate all of our trained models comprehensively for both object
detection and face recognition. Both object detection models are evaluated on the validation
subset of Open Images Dataset (OID) [20]. As we use the training subset of OID for training
our object detection models, the validation subset contains all the object categories that our
models are trained on, and thus is sufficient for carrying out evaluation.

Choosing the right dataset for evaluating our face recognition classifiers is trickier, espe-
cially as we are trying to evaluate the performance of our classifiers on image sequences.
It is later shown that the evaluation results are much less reliable even when completely
different subsets of image sequences from the same video are used for both training and
evaluation.

4.1 Speed

Figure 3 shows the average FPS of the proposed application when running different models.
We first approximate the average FPS of the application without running any object detec-
tion or face recognition models. This is needed because we have to first be aware of the
number of frames we receive from the input camera and the amount of time taken to process
and render the raw images to make it clearer how much slower the system becomes after
extra processing being taken into account. Here, the system itself can process 11.3 images
per second without running object detection or face recognition on its inputs. The number

12 113
10
v g 7.4
[N
]
Péa 6 53
9}
Z 4
1.7
2
. ]
None Object detection with Object detection with ~ Facial detection and
Faster R-CNN SSD recognition
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Fig. 3 Average FPS on a GTX 1060 GPU with none or each of the trained models running. Tested on a
remotely connected camera
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of frames per second that the system can achieve ranges from 1.7 to 7.4 when either object
detection or face recognition is enabled. We observe that the Faster R-CNN [32] model is
indeed much slower than the SSD [24] model, which justifies our decision of training an
SSD model for better efficiency.

Since the results shown in Fig. 3 are obtained by testing on a GTX 1060 GPU, it can
be concluded that SSD models are more suitable than Faster R-CNN ones when the avail-
able hardware for running the application offers similar amount of mid-range computational
power. With only 1.7 frames per second, it is very likely that we will miss the few frames
containing valuable information that we are looking for, hence making Faster R-CNN
models nearly useless in such situations.

Furthermore, we can see from Fig. 3 that face recognition in our case is also less com-
putationally expensive than object detection with Faster R-CNN [32]. However, it is still
slightly slower than running object detection with SSD [24] since two separate tasks, namely
face detection and face recognition have to be performed instead of just one as in the case
of object detection.

4.2 Accuracy
4.2.1 Object detection

Figure 4 shows the overall mAP of the original pre-trained models with 600 object classes
as well as the ones we re-train for 32 object classes using transfer learning. Unsurprisingly,
Faster R-CNN [32] models yield substantially higher mAP than SSD [24] models, with the
re-trained Faster R-CNN model producing an mAP of 53% as opposed to the 40% mAP
achieved by the re-trained SSD model. Of course, the higher overall mAP comes at the cost
of speed as illustrated in Fig. 3 . Both re-trained models also possess similar accuracies
compared with their pre-trained counterparts, which is to be expected.

Additionally, detailed information regarding the performance of our re-trained Faster R-
CNN model is shown in Figs. 5 and 6. The performance details for the re-trained SSD model

H mAP@0.5loU
0.60 0.54 053
0.50
0.40
% 040 0.36
S
= 030
o
& 020
0.10
0.00
Original Faster R- Re-trained Faster Original SSD Re-trained SSD
CNN model  R-CNN model with model model with 32
32 classes classes
Model

Fig.4 Overall mAP of object detection models, including both the original ones with 600 object classes from
which we perform transfer learning, and the ones that we re-train for 32 object classes
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Fig. 5 Accuracy of the re-trained Faster R-CNN model with 200k iterations, using a momentum optimizer
with manual step learning rate
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are presented in Figs. 7 and 8 instead. The Faster R-CNN model was re-trained with more
iterations mainly because each iteration took a few more times to complete when re-training
the SSD model.

It can be seen from Figs. 3 and 4 that despite being slower, Faster R-CNN models are
indeed more accurate than SSD models. Although the extra accuracy may not be worth
the additional computation required when it comes to applications with greater tolerance to
false positives and negatives, some systems may require extremely high accuracy. We then
have to rely on Faster R-CNN if the accuracy achievable by an SSD model does not meet
the minimum requirement of a particular system. Of course, in such cases, hardware that is
more powerful than the GPU used in our experiments has to be deployed in order to be able
to achieve real-time rates with Faster R-CNN so as to minimise the error rate.

Since the proposed system is designed for video surveillance purposes, it is also impor-
tant to evaluate the performance of the chosen object detection approaches on video-based
datasets. The evaluation results presented on [25] show that it is possible to achieve an accu-
racy of up to 70% mAP with a pre-trained SSD MobileNet vl model on COCO dataset and
fine-tuning the last layers on the CORe50 [26, 27] dataset. Based on our previous results
illustrated in Figs. 5 and 7, it is to be expected that an even higher accuracy could be
achieved by a Faster R-CNN model under similar conditions. Thus, the evaluation results
on CORe50 is another proof that the selected object detection approaches are capable of
giving solid performance when used in video surveillance applications.

4.2.2 Face recognition

As mentioned in Section 2, we evaluate the accuracy of face recognition models comprehen-
sively by training and testing on static images alone, image sequences alone, and different
combinations of the two. The static images used are taken from VGGFace2 [4], whereas
image sequences are from two different sources, YouTube Faces DB [43] and one with
images of higher resolution built by ourselves. We take the average of the results produced
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Fig.6 Losses of the re-trained Faster R-CNN model with 200k iterations, using a momentum optimizer with
manual step learning rate

ra
L

by four random subjects chosen at the very beginning of the evaluation process to gener-
ate the final results. These subjects are carefully chosen so that there are enough images for
them from both VGGFace?2 and YouTube Faces DB.

We first present the evaluation results produced by training on static images from
VGGFace?2 and image sequences from YouTube Faces DB in Figs. 9 and 10, which include
models trained on static images only, image sequences only, same number of static images
and image sequences, and all available images, respectively.
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Fig. 7 Accuracy of the re-trained SSD model with 20k+ iterations, using an RMSprop optimizer with
exponential decay learning rate

Perhaps unsurprisingly, it is shown in Fig. 9 that the highest accuracy on static images
is achieved by models trained on static images only and all available images. On the other
hand, the model trained on image sequences alone yields a much lower accuracy, which
could be because images provided by YouTube Faces DB are generally of low resolution
and full of noises. In addition to image quality, YouTube Faces DB contains 1 to 6 videos
per subject, which means that many images are taken from the same video. The result of
which is that many images of the same subject appear to be somewhat similar, and thus
could be redundant. However, this is not a problem when it comes to static images as most
of them for the same subject are taken under various different conditions. The accuracy
of the model trained on equal number of static images and image sequences in this case
is somewhere in between, which is to be expected as we have slightly more static images
than image sequences for this part of the evaluation. Therefore, by having the same number
of both types of images, we have to remove some static images from the training dataset,
which causes the accuracy to drop.

The evaluation results shown in Fig. 10 are likely to offer more insights into video
surveillance scenarios since data captured by most surveillance cameras comes in the form
of image sequences, not static images. This time, the model trained on image sequences
outperforms the one trained on static images which could be due to various reasons. For
example, although different images are used for training and testing, here we use images
from the same set of videos for both purposes. Therefore, an image in the training dataset
might be nearly identical to another image in the testing dataset without being exactly the
same image, which leads to the improvement in accuracy for the image sequences model.
Again, the model trained on all images achieves a promising accuracy, which is further
improved by the one trained on equal number of both types of images for similar reasons as
in the case of evaluation on static images.

As mentioned above, YouTube Faces DB has quite a few limitations which could intro-
duce negative impact on our evaluation results. For example, YouTube Faces DB only
provides a single video for some subjects, which is primarily why we use different image
sequences from the same set of videos for both training and testing. Furthermore, image
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Fig. 8 Losses of the re-trained SSD model with 20k+ iterations, using an RMSprop optimizer with

exponential decay learning rate

sequences provided by YouTube Faces DB are generally of low quality, which makes it
extremely difficult for models trained on high-quality static images to achieve satisfac-
tory accuracies. Although images captured by surveillance cameras are in most cases of
lower quality than static images, most modern surveillance cameras could arguably produce
images of higher quality than the ones provided by YouTube Faces DB.

Therefore, we build another testing dataset ourselves with image sequences of higher
quality taken from videos downloaded from YouTube. A new training dataset is also built
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using a collection of completely different YouTube videos from the testing dataset. Conse-
quently, we can see in Fig. 11 that the accuracy of the model trained on low-quality image
sequences from YouTube Faces DB drops steeply from 88.9% to 37.5% compared to the one
obtained by testing on YouTube Faces DB as well. Conversely, the model trained on static
images from VGGFace?2 yields a slightly higher accuracy, which could be mainly due to the
improvement in image quality. Since image sequences from different videos are used for
training and testing, the accuracy of the model trained on our own dataset is only leading by
a very narrow margin compared to the one trained on static images. Again, we get slightly
higher accuracy this time by training our model on the same number of static images and
image sequences, and even higher accuracy with all available images. However, we have to
bear in mind that the small improvement in accuracy is only made possible with more data
and computation at the same time.

Hence, from this part of our experiments, we can conclude that when developing a prac-
tical video surveillance system, the best accuracy can be achieved by training the face
recognition model on a mixture of static images and image sequences. Additionally, the
ratio of images can usually be ignored, meaning that it is normally preferred to have more
images in the training dataset without worrying if there are more static images than image
sequences, or vice versa. However, if computational resources are at a premium, or it is the
case that only static images or image sequences are available for training, it is generally
acceptable to train the model on a single type of images without sacrificing too much accu-
racy. Note that this is only true when image sequences used for training are of relatively
high quality.

5 Future work

In this paper, we have only discussed object detection methods designed to process static
images. This is mainly because video object detection is a more challenging problem and
existing methods for such a problem still have a lot of room for improvement in comparison.
With that said, recent advances in video object detection such as [29, 41, 46] have shown
that such methods are capable of achieving higher detection accuracies at real-time rates
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Fig.9 Average accuracy of various face recognition models tested on static images from VGGFace2
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Fig. 10 Average accuracy of various face recognition models tested on low-quality image sequences from
YouTube Faces DB

and may be more robust to difficulties such as occlusions. Therefore, video object detec-
tion is suitable to be considered as part of the future improvements for the proposed video
surveillance system.

Furthermore, it is discussed in papers including [3, 7, 42, 45] that it is possible to achieve
impressive accuracies with video salient object detection (VSOD) based on the visual atten-
tion mechanism. Saliency models have been proved to be generally faster than traditional
object detection models and require less annotation work to be done. However, it was also
stated in [3] that we still lack a reliable and robust salient object detection algorithm which
is capable of producing promising results in nearly all cases. This makes VSOD a possible
improvement to the proposed system once better algorithms have been invented.

In addition to video object detection and video salient object detection, video process-
ing frameworks such as Convolutional 3D (C3D) [18, 19, 39] could be adopted to extract
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Fig. 11 Average accuracy of various face recognition models tested on high-quality image sequences from
videos downloaded from YouTube
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spatiotemporal features from videos in an accurate and efficient way. According to exper-
iment results reported in [39], C3D outperforms state-of-the-art methods on 4 different
benchmarks while being easy to train and deploy. The fact that C3D is capable of using 3-
dimensional convolutional networks (3D ConvNets) to perform accurate object and action
recognition while being efficient and simple to use makes it a promising future improvement
to the proposed system.

6 Conclusion

We have presented a comprehensive overview of some of the existing object detection and
face recognition algorithms and reasons why they may or may not be preferable to video
surveillance applications. Detailed comparisons have been made amongst some of the lat-
est algorithms and these comparisons have been kept as fair as possible by making use of
control variables such as training datasets and feature extractors. Steps for preparing the
necessary datasets and training the models required are also illustrated. From the proposed
end-to-end video surveillance system, we can see that it is possible to build such a system
with both object detection and face recognition capabilities using deep learning methods.

By comparing accuracy and speed of the latest algorithms, we conclude that Faster R-
CNN [32] with Inception ResNet V2 [37] is amongst the best options for achieving the
highest object detection accuracy without paying too much attention to speed. Otherwise, if
speed is of utmost importance, SSD [24] with MobileNet [14] makes a much faster model
without sacrificing too much accuracy.

In terms of face recognition, FaceNet [34] achieves state-of-the-art accuracy whilst being
fast enough for most real-time applications with MTCNN [44] used for face detection and
alignment. Additionally, from our experiments, we can see that although the best face recog-
nition accuracy is achieved by training on a mixture of as many static images and image
sequences as possible, the accuracy would probably not suffer too much if only a single
type of images are available for training. It is crucial, however, to train the model on high-
quality image sequences, especially when images captured by the surveillance camera are
of high quality as well.
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